Mesoporous Materials for Solid-Phase Extraction
Madhur Babu Singh, Nutan Sharma, Sapna Raghav, Rajesh Kumar, Pallavi Jain
Mesoporous materials (MM) have gained more attention for their application in solid-phase extraction (SPE). These materials, characterized by their large and uniform pore volumes, offer exceptional stability, selectivity, and catalytic activity, making them ideal sorbents for SPE. Their wide range of applications spans environmental analysis, biomedical and pharmaceutical fields, and the food and beverage industry. The selection of mesoporous materials as sorbents in SPE involves considerations of selectivity, catalytic activity, reproducibility, and extraction efficiency. Despite their benefits, challenges such as high synthesis costs and the difficulty in shaping pores for specific applications persist. Nonetheless, the versatile nature of mesoporous materials continues to drive innovation in various applicative fields, including electrochemistry, semiconductors, and optical properties.
Keywords
Mesoporous Materials, Solid-Phase Extraction, Sorbents, Selectivity, Catalytic Activity
Published online 3/20/2025, 19 pages
Citation: Madhur Babu Singh, Nutan Sharma, Sapna Raghav, Rajesh Kumar, Pallavi Jain, Mesoporous Materials for Solid-Phase Extraction, Materials Research Foundations, Vol. 173, pp 203-221, 2025
DOI: https://doi.org/10.21741/9781644903452-8
Part of the book on Mesoporous Materials
References
[1] V. Meynen, P. Cool, E.F. Vansant, Verified syntheses of mesoporous materials, Microporous Mesoporous Mater. 125 (2009) 170–223. https://doi.org/https://doi.org/10.1016/j.micromeso.2009.03.046
[2] S. Kumar, M.M. Malik, R. Purohit, Synthesis Methods of Mesoporous Silica Materials, Mater. Today Proc. 4 (2017) 350–357. https://doi.org/https://doi.org/10.1016/j.matpr.2017.01.032
[3] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, The Preparation of Alkyltrimethylammonium–Kanemite Complexes and Their Conversion to Microporous Materials, Bull. Chem. Soc. Jpn. 63 (1990) 988–992. https://doi.org/10.1246/bcsj.63.988
[4] A. Vinu, T. Mori, K. Ariga, New families of mesoporous materials, Sci. Technol. Adv. Mater. 7 (2006) 753–771. https://doi.org/10.1016/j.stam.2006.10.007
[5] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature. 359 (1992) 710–712. https://doi.org/10.1038/359710a0
[6] J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. Leonowicz, S.B. McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker, Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chem. Mater. 6 (1994) 2317–2326.
[7] M. Dubois, T. Gulik-Krzywicki, B. Cabane, Growth of silica polymers in a lamellar mesophase, Langmuir. 9 (1993) 673–680.
[8] M. Moritz, M. Geszke-Moritz, Mesoporous materials as multifunctional tools in biosciences: Principles and applications, Mater. Sci. Eng. C. 49 (2015) 114–151. https://doi.org/https://doi.org/10.1016/j.msec.2014.12.079
[9] K.S.W. Sing, No Title, Pure Appl. Chem. 57 (1985) 603–619. https://doi.org/doi:10.1351/pac198557040603
[10] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), 57 (1985) 603–619. https://doi.org/doi:10.1351/pac198557040603
[11] S. Savic, K. Vojisavljevic, M.P. uč a-Nešić, K. Zivojevic, M. Mladenovic, N. Knezevic, Hard template synthesis of nanomaterials based on mesoporous silica, Metall. Mater. Eng. 24 (2018).
[12] H.K. Schmidt, E. Geiter, M. Mennig, H. Krug, C. Becker, R.-P. Winkler, The Sol-Gel Process for Nano-Technologies: New Nanocomposites with Interesting Optical and Mechanical Properties, J. Sol-Gel Sci. Technol. 13 (1998) 397–404. https://doi.org/10.1023/A:1008660909108
[13] Y. Qi, D. Wu, J. Wei, K. Ding, H. Wang, Y. Zhang, X. Qian, Y. Guan, Selective extraction of low molecular weight proteins by mesoporous silica particles with modified internal and external surfaces, Anal. Bioanal. Chem. 398 (2010) 1715–1722.
[14] F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Silica-Based Mesoporous Organic–Inorganic Hybrid Materials, Angew. Chemie Int. Ed. 45 (2006) 3216–3251. https://doi.org/https://doi.org/10.1002/anie.200503075
[15] B.L. Newalkar, S. Komarneni, H. Katsuki, Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave–hydrothermal process, Chem. Commun. (2000) 2389–2390. https://doi.org/10.1039/B007441L
[16] B.E. Grabicka, M. Jaroniec, Microwave-assisted synthesis of periodic mesoporous organosilicas with ethane and disulfide groups, Microporous Mesoporous Mater. 119 (2009) 144–149. https://doi.org/https://doi.org/10.1016/j.micromeso.2008.10.006
[17] T. Sánchez, P. Salagre, Y. Cesteros, Ultrasounds and microwave-assisted synthesis of mesoporous hectorites, Microporous Mesoporous Mater. 171 (2013) 24–34. https://doi.org/https://doi.org/10.1016/j.micromeso.2013.01.001
[18] M.E. Raisglid, M.F. Burke, Fundamentals of solid phase extraction and its application to environmental analyses, in: A.B.T.-S. in S.S. and C. Dąbrowski (Ed.), Adsorpt. Its Appl. Ind. Environ. Prot., Elsevier, 1999: pp. 37–75. https://doi.org/https://doi.org/10.1016/S0167-2991(99)80356-5
[19] E. Chladek, R.S. Marano, Use of Bonded Phase Silica Sorbents for the Sampling of Priority Pollutants in Wastewaters*, J. Chromatogr. Sci. 22 (1984) 313–320. https://doi.org/10.1093/chromsci/22.8.313
[20] Solid Phase Extraction Technique – Trends, Opportunities and Applications, Polish J. Environ. Stud. 15 (2006) 677–690.
[21] J. Yu, C. Wu, J. Xing, Development of new solid-phase microextraction fibers by sol–gel technology for the determination of organophosphorus pesticide multiresidues in food, J. Chromatogr. A. 1036 (2004) 101–111. https://doi.org/https://doi.org/10.1016/j.chroma.2004.02.081
[22] S. Ötles, C. Kartal, Solid-Phase Extraction (SPE): Principles and Applications in Food Samples, Acta Sci. Pol. Technol. Aliment. 15 (2016) 5–15. https://doi.org/10.17306/J.AFS.2016..1
[23] G. Font, J. Mañes, J.C. Moltó, Y. Picó, Solid-phase extraction in multi-residue pesticide analysis of water, J. Chromatogr. A. 642 (1993) 135–161. https://doi.org/https://doi.org/10.1016/0021-9673(93)80083-K
[24] H. Sabik, R. Jeannot, B. Rondeau, Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters, J. Chromatogr. A. 885 (2000) 217–236. https://doi.org/https://doi.org/10.1016/S0021-9673(99)01084-5
[25] D. Wang, X. Chen, J. Feng, M. Sun, Recent advances of ordered mesoporous silica materials for solid-phase extraction, J. Chromatogr. A. 1675 (2022) 463157. https://doi.org/https://doi.org/10.1016/j.chroma.2022.463157
[26] S. Chatterjee, H. Gohil, I. Raval, S. Chatterjee, A.R. Paital, An Anthracene Excimer Fluorescence Probe on Mesoporous Silica for Dual Functions of Detection and Adsorption of Mercury (II) and Copper (II) with Biological In Vivo Applications, Small. 15 (2019) 1804749. https://doi.org/https://doi.org/10.1002/smll.201804749
[27] Y. Wang, B. Wang, Q. Wang, J. Di, S. Miao, J. Yu, Amino-Functionalized Porous Nanofibrous Membranes for Simultaneous Removal of Oil and Heavy-Metal Ions from Wastewater, ACS Appl. Mater. Interfaces. 11 (2019) 1672–1679. https://doi.org/10.1021/acsami.8b18066
[28] A. Shkatulov, R. Joosten, H. Fischer, H. Huinink, Core–Shell Encapsulation of Salt Hydrates into Mesoporous Silica Shells for Thermochemical Energy Storage, ACS Appl. Energy Mater. 3 (2020) 6860–6869. https://doi.org/10.1021/acsaem.0c00971
[29] J. V Jokerst, M. Thangaraj, P.J. Kempen, R. Sinclair, S.S. Gambhir, Photoacoustic Imaging of Mesenchymal Stem Cells in Living Mice via Silica-Coated Gold Nanorods, ACS Nano. 6 (2012) 5920–5930. https://doi.org/10.1021/nn302042y
[30] Y. Li, N. Li, W. Pan, Z. Yu, L. Yang, B. Tang, Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery, ACS Appl. Mater. Interfaces. 9 (2017) 2123–2129. https://doi.org/10.1021/acsami.6b13876
[31] X. Zhang, L. Jing, L. Wei, F. Zhang, H. Yang, Semipermeable Organic–Inorganic Hybrid Microreactors for Highly Efficient and Size-Selective Asymmetric Catalysis, ACS Catal. 7 (2017) 6711–6718. https://doi.org/10.1021/acscatal.7b01659
[32] B. Shen, L. Huang, J. Shen, L. Meng, E.J. Kluender, C. Wolverton, B. Tian, C.A. Mirkin, Synthesis of Metal-Capped Semiconductor Nanowires from Heterodimer Nanoparticle Catalysts, J. Am. Chem. Soc. 142 (2020) 18324–18329. https://doi.org/10.1021/jacs.0c09222
[33] F. Farjadian, S. Azadi, S. Mohammadi-Samani, H. Ashrafi, A. Azadi, A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs, Heliyon. 4 (2018) e00930. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00930
[34] W. Cao, L.-H. Ye, J. Cao, J.-J. Xu, L.-Q. Peng, Q.-Y. Zhu, Q.-Y. Zhang, S.-S. Hu, Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry, J. Chromatogr. A. 1406 (2015) 68–77. https://doi.org/https://doi.org/10.1016/j.chroma.2015.06.035
[35] Z. Wu, D. Zhao, Ordered mesoporous materials as adsorbents, Chem. Commun. 47 (2011) 3332–3338. https://doi.org/10.1039/C0CC04909C
[36] P. Stathi, K. Dimos, M.A. Karakassides, Y. Deligiannakis, Mechanism of heavy metal uptake by a hybrid MCM-41 material: Surface complexation and EPR spectroscopic study, J. Colloid Interface Sci. 343 (2010) 374–380. https://doi.org/https://doi.org/10.1016/j.jcis.2009.11.029
[37] T. Yokoi, T. Tatsumi, H. Yoshitake, Fe3+ coordinated to amino-functionalized MCM-41: an adsorbent for the toxic oxyanions with high capacity, resistibility to inhibiting anions, and reusability after a simple treatment, J. Colloid Interface Sci. 274 (2004) 451–457. https://doi.org/https://doi.org/10.1016/j.jcis.2004.02.037
[38] C.R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach, Science (80-. ). 266 (1994) 1961–1966. https://doi.org/10.1126/science.266.5193.1961
[39] C.M. Zelenski, P.K. Dorhout, Template Synthesis of Near-Monodisperse1 Microscale Nanofibers and Nanotubules of MoS2, J. Am. Chem. Soc. 120 (1998) 734–742. https://doi.org/10.1021/ja972170q
[40] Y. Han, L. Zhang, W. Yang, Synthesis of Mesoporous Silica Using the Sol–Gel Approach: Adjusting Architecture and Composition for Novel Applications, Nanomaterials. 14 (2024). https://doi.org/10.3390/nano14110903
[41] M.D.G. García, M.M. Galera, M.J.M. Bueno, Silica Based Mesoporous Materials as Sorbents for Solid-Phase Extraction of Organic Pollutants in Water, in: M.M.M. Elnashar, S. Karakuş (Eds.), Water Purif., IntechOpen, Rijeka, 2023. https://doi.org/10.5772/intechopen.112010
[42] Y. Chang, C. Wang, T. Liang, C. Zhao, X. Luo, T. Guo, J. Gong, H. Wu, Sol–gel synthesis of mesoporous spherical zirconia, RSC Adv. 5 (2015) 104629–104634. https://doi.org/10.1039/C5RA23782C
[43] A. Vinu, K.Z. Hossain, K. Ariga, Recent advances in functionalization of mesoporous silica, J. Nanosci. Nanotechnol. 5 (2005) 347–371.
[44] C.Y.R.C. Lijun Zhang Xun Hu, A. Yu, Preparation of sinapinaldehyde modified mesoporous silica materials and their application in selective extraction of trace Pb(II), Int. J. Environ. Anal. Chem. 93 (2013) 1274–1285. https://doi.org/10.1080/03067319.2012.736974
[45] A. Walcarius, M. Etienne, B. Lebeau, Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups, Chem. Mater. 15 (2003) 2161–2173. https://doi.org/10.1021/cm021310e
[46] C. Lei, Y. Shin, J. Liu, E.J. Ackerman, Entrapping Enzyme in a Functionalized Nanoporous Support, J. Am. Chem. Soc. 124 (2002) 11242–11243. https://doi.org/10.1021/ja026855o
[47] X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports, Science (80-. ). 276 (1997) 923–926. https://doi.org/10.1126/science.276.5314.923
[48] R.I. Nooney, M. Kalyanaraman, G. Kennedy, E.J. Maginn, Heavy Metal Remediation Using Functionalized Mesoporous Silicas with Controlled Macrostructure, Langmuir. 17 (2001) 528–533. https://doi.org/10.1021/la000720j
[49] S. Dahane, M. Martínez Galera, M.E. Marchionni, M.M. Socías Viciana, A. Derdour, M.D. Gil García, Mesoporous silica based MCM-41 as solid-phase extraction sorbent combined with micro-liquid chromatography–quadrupole-mass spectrometry for the analysis of pharmaceuticals in waters, Talanta. 152 (2016) 378–391. https://doi.org/https://doi.org/10.1016/j.talanta.2016.02.013
[50] E. Pellicer-Castell, C. Belenguer-Sapiña, P. Amorós, J. El Haskouri, J.M. Herrero-Martínez, A. Mauri-Aucejo, Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples, Talanta. 189 (2018) 560–567. https://doi.org/https://doi.org/10.1016/j.talanta.2018.07.044
[51] L. Kharbouche, M.D. Gil García, A. Lozano, H. Hamaizi, M.M. Galera, Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS, Talanta. 199 (2019) 612–619. https://doi.org/https://doi.org/10.1016/j.talanta.2019.02.092
[52] Y. Li, J. Yang, C. Huang, L. Wang, J. Wang, J. Chen, Dendrimer-functionalized mesoporous silica as a reversed-phase/anion-exchange mixed-mode sorbent for solid phase extraction of acid drugs in human urine, J. Chromatogr. A. 1392 (2015) 28–36. https://doi.org/https://doi.org/10.1016/j.chroma.2015.03.003
[53] W. Cao, S.-S. Hu, L.-H. Ye, J. Cao, X.-Q. Pang, J.-J. Xu, Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography, Food Chem. 190 (2016) 474–480. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.05.133
[54] H. Martínez Pérez-Cejuela, I. Ten-Doménech, J. El Haskouri, P. Amorós, E.F. Simó-Alfonso, J.M. Herrero-Martínez, Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples, Anal. Bioanal. Chem. 410 (2018) 4847–4854. https://doi.org/10.1007/s00216-018-1121-8
[55] L.-J. Du, L. Yi, L.-H. Ye, Y.-B. Chen, J. Cao, L.-Q. Peng, Y.-T. Shi, Q.-Y. Wang, Y.-H. Hu, Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent, J. Chromatogr. A. 1537 (2018) 10–20. https://doi.org/https://doi.org/10.1016/j.chroma.2018.01.005
[56] S. Liu, H.-Z. Cui, Y.-L. Li, A.-L. Yang, J.-F. Zhang, R. Zhong, Q. Zhou, M. Lin, X.-F. Hou, Bis-pyrazolyl functionalized mesoporous SBA-15 for the extraction of Cr(III) and detection of Cr(VI) in artificial jewelry samples, Microchem. J. 131 (2017) 130–136. https://doi.org/https://doi.org/10.1016/j.microc.2016.12.003
[57] Z. Li, L. Liu, Z. Wang, P. Gao, G.K. Li, Synthesis and Application of Mesoporous Materials: Process Status, Technical Problems, and Development Prospects: A Mini-Review, Energy & Fuels. 37 (2023) 3413–3427. https://doi.org/10.1021/acs.energyfuels.2c03882
[58] A. Corma, M.S. Grande, V. Gonzalez-Alfaro, A. V Orchilles, Cracking Activity and Hydrothermal Stability of MCM-41 and Its Comparison with Amorphous Silica-Alumina and a USY Zeolite, J. Catal. 159 (1996) 375–382. https://doi.org/https://doi.org/10.1006/jcat.1996.0100
[59] Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang, Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate, Nanoscale. 6 (2014) 1890–1895.