Mesoporous Materials for Photocatalytic Degradation of Pollutants

$40.00

Mesoporous Materials for Photocatalytic Degradation of Pollutants

A.M. Gutiérrez-Peralta, C.E. Pérez-García, E. Mas-Hernández, E. Quiroz-Pérez, J.A. de Lira-Flores*

This chapter explores the use of mesoporous materials as photocatalysts for contaminant degradation. It explains the principles of photocatalysis, where materials such as TiO₂ and ZnO generate reactive species under light to oxidize contaminants. Factors influencing efficiency, such as light intensity, pH, and photocatalyst dosage, are discussed. Different synthesis methods of mesoporous materials, such as sol-gel, are also reviewed. Finally, a patent analysis is presented, highlighting the growth in the use of these materials in water and air purification technologies.

Keywords
Mesoporous Materials, Photocatalysis, Environmental Remediation, Contaminant Degradation, Semiconductor Oxides

Published online 3/20/2025, 43 pages

Citation: A.M. Gutiérrez-Peralta, C.E. Pérez-García, E. Mas-Hernández, E. Quiroz-Pérez, J.A. de Lira-Flores*, Mesoporous Materials for Photocatalytic Degradation of Pollutants, Materials Research Foundations, Vol. 173, pp 160-202, 2025

DOI: https://doi.org/10.21741/9781644903452-7

Part of the book on Mesoporous Materials

References
[1] L. Lin, W. Jiang, L. Chen, P. Xu, H. Wang, Treatment of Produced Water with Photocatalysis: Recent Advances, Affecting Factors and Future Research Prospects, Catalysts, 10 (2020) 924. https://doi.org/10.3390/catal10080924
[2] S.I. Sinar Mashuri, M.L. Ibrahim, M.F. Kasim, M.S. Mastuli, U. Rashid, A.H. Abdullah, A. Islam, N. Asikin Mijan, Y.H. Tan, N. Mansir, N.H. Mohd Kaus, T.-Y. Yun Hin, Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society, Catalysts, 10 (2020) 1260. https://doi.org/10.3390/catal10111260
[3] X. Yang, D. Wang, Photocatalysis: From Fundamental Principles to Materials and Applications, ACS Applied Energy Materials, 1 (2018) 6657-6693. https://doi.org/10.1021/acsaem.8b01345
[4] L. Buzzetti, G.E.M. Crisenza, P. Melchiorre, Mechanistic Studies in Photocatalysis, Angewandte Chemie International Edition, 58 (2019) 3730-3747. https://doi.org/10.1002/anie.201809984
[5] A. Balapure, J.R. Dutta, R. Ganesan, Recent advances in semiconductor heterojunction: a detailed review of fundamentals of the photocatalysis, charge transfer mechanism, and materials, RSC Applied Interfaces, (2023). https://doi.org/10.1039/D3LF00126A
[6] F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Recent Advances and Applications of Semiconductor Photocatalytic Technology, Applied Sciences, 9 (2019) 2489. https://doi.org/10.3390/app9122489
[7] L. Wang, J. Zhao, H. Liu, J. Huang, Design, modification and application of semiconductor photocatalysts, Journal of the Taiwan Institute of Chemical Engineers, 93 (2018) 590-602. https://doi.org/10.1016/j.jtice.2018.09.004
[8] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chemical Reviews, 114 (2014) 9919-9986. https://doi.org/10.1021/cr5001892
[9] A. Meng, L. Zhang, B. Cheng, J. Yu, Dual Cocatalysts in TiO2 Photocatalysis, Advanced Materials, 31 (2019) 1807660. https://doi.org/10.1002/adma.201807660
[10] Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges, Advanced Materials, 31 (2019) 1901997. https://doi.org/10.1002/adma.201901997
[11] X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters, 12 (2017) 143. https://doi.org/10.1186/s11671-017-1904-4
[12] K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, Journal of Alloys and Compounds, 727 (2017) 792-820. https://doi.org/10.1016/j.jallcom.2017.08.142
[13] C.A. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo, M. Macías, ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates, Catalysis Today, 313 (2018) 12-19. https://doi.org/10.1016/j.cattod.2017.12.009
[14] R. Georgekutty, M.K. Seery, S.C. Pillai, A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism, The Journal of Physical Chemistry C, 112 (2008) 13563-13570. https://doi.org/10.1021/jp802729a
[15] N. Kolobov, M.G. Goesten, J. Gascon, Metal-organic frameworks: molecules or semiconductors in photocatalysis?, Angewandte Chemie International Edition, 60 (2021) 26038-26052. https://doi.org/10.1002/anie.202106342
[16] B. Niu, X. Wang, K. Wu, X. He, R. Zhang, Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology, Materials, 11 (2018) 1910. https://doi.org/10.3390/ma11101910
[17] E. Rastegari, Y.-J. Hsiao, W.-Y. Lai, Y.-H. Lai, T.-C. Yang, S.-J. Chen, P.-I. Huang, S.-H. Chiou, C.-Y. Mou, Y. Chien, An update on mesoporous silica nanoparticle applications in nanomedicine, Pharmaceutics, 13 (2021) 1067. https://doi.org/10.3390/pharmaceutics13071067
[18] W. Li, J. Liu, D. Zhao, Mesoporous materials for energy conversion and storage devices, Nature Reviews Materials, 1 (2016) 16023. https://doi.org/10.1038/natrevmats.2016.23
[19] L. Zhao, H. Qin, R.a. Wu, H. Zou, Recent advances of mesoporous materials in sample preparation, Journal of Chromatography A, 1228 (2012) 193-204. https://doi.org/10.1016/j.chroma.2011.09.051
[20] S.L. Suib, A Review of Recent Developments of Mesoporous Materials, The Chemical Record, 17 (2017) 1169-1183. https://doi.org/10.1002/tcr.201700025
[21] J.A.S. Costa, R.A. de Jesus, D.O. Santos, J.B. Neris, R.T. Figueiredo, C.M. Paranhos, Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review, Journal of Environmental Chemical Engineering, 9 (2021) 105259. https://doi.org/10.1016/j.jece.2021.105259
[22] R. Lin, Y. Ding, A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates, Materials, 6 (2013) 217-243. https://doi.org/10.3390/ma6010217
[23] K. Bai, J. Hao, Y. Yang, A. Qian, The effect of hydrothermal temperature on the properties of SBA-15 materials, Heliyon, 6 (2020). https://doi.org/10.1016/j.heliyon.2020.e04436
[24] P. Innocenzi, Mesoporous ordered films via self-assembly: trends and perspectives, Chemical Science, 13 (2022) 13264-13279. https://doi.org/10.1039/D2SC04828K
[25] B.M. Al-Shehri, A.E.R.S. Khder, S.S. Ashour, M.S. Hamdy, A review: the utilization of mesoporous materials in wastewater treatment, Materials Research Express, 6 (2019) 122002. https://doi.org/10.1088/2053-1591/ab52af
[26] K.-W. Kim, T.Y. Yun, S.-H. You, X. Tang, J. Lee, Y. Seo, Y.-T. Kim, S.H. Kim, H.C. Moon, J.K. Kim, Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly, NPG Asia Materials, 12 (2020) 84. https://doi.org/10.1038/s41427-020-00257-w
[27] Y. Li, J. Shi, Hollow-Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications, Advanced Materials, 26 (2014) 3176-3205. https://doi.org/10.1002/adma.201305319
[28] N. Pal, A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids, Advances in Colloid and Interface Science, 189-190 (2013) 21-41. https://doi.org/10.1016/j.cis.2012.12.002
[29] I.Y. Kaplin, E.S. Lokteva, E.V. Golubina, V.V. Lunin, Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application, Molecules, 25 (2020) 4242. https://doi.org/10.3390/molecules25184242
[30] N. Pal, J.-H. Lee, E.-B. Cho, Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles, Nanomaterials, 10 (2020) 2122. https://doi.org/10.3390/nano10112122
[31] D.S. Kim, S.-Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity, Applied Catalysis A: General, 323 (2007) 110-118. https://doi.org/10.1016/j.apcata.2007.02.010
[32] Y. Wang, Y.-J. Hu, X. Hao, P. Peng, J.-Y. Shi, F. Peng, R.-C. Sun, Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review, Advanced Composites and Hybrid Materials, 3 (2020) 267-284. https://doi.org/10.1007/s42114-020-00158-0
[33] A. Simaioforidou, V. Kostas, M.A. Karakassides, M. Louloudi, Surface chemical modification of macroporous and mesoporous carbon materials: Effect on their textural and catalytic properties, Microporous and Mesoporous Materials, 279 (2019) 334-344. https://doi.org/10.1016/j.micromeso.2019.01.005
[34] J. Wang, Q. Ma, Y. Wang, Z. Li, Z. Li, Q. Yuan, New insights into the structure-performance relationships of mesoporous materials in analytical science, Chemical Society Reviews, 47 (2018) 8766-8803. https://doi.org/10.1039/C8CS00658J
[35] Y. Li, M. Dong, W. Song, X. Liang, Y. Chen, Y. Liu, Preparation and Characterization of Paraffin/Mesoporous Silica Shape-Stabilized Phase Change Materials for Building Thermal Insulation, Materials, 14 (2021) 1775. https://doi.org/10.3390/ma14071775
[36] C. Li, Q. Li, Y.V. Kaneti, D. Hou, Y. Yamauchi, Y. Mai, Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems, Chemical Society Reviews, 49 (2020) 4681-4736. https://doi.org/10.1039/D0CS00021C
[37] M.H. Amin, Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane, Catalysts, 10 (2020) 51. https://doi.org/10.3390/catal10010051
[38] Y. Awoke, Y. Chebude, I. Díaz, Controlling Particle Morphology and Pore Size in the Synthesis of Ordered Mesoporous Materials, Molecules, 25 (2020) 4909. https://doi.org/10.3390/molecules25214909
[39] P.E. Imoisili, K.O. Ukoba, T.-C. Jen, Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash, Boletín de la Sociedad Española de Cerámica y Vidrio, 59 (2020) 159-164. https://doi.org/10.1016/j.bsecv.2019.09.006
[40] S. Sonal, P. Prakash, B.K. Mishra, G.C. Nayak, Synthesis, characterization and sorption studies of a zirconium(iv) impregnated highly functionalized mesoporous activated carbons, RSC Advances, 10 (2020) 13783-13798. https://doi.org/10.1039/C9RA10103A
[41] Y. Yan, G. Chen, P. She, G. Zhong, W. Yan, B.Y. Guan, Y. Yamauchi, Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage, Advanced Materials, 32 (2020) 2004654. https://doi.org/10.1002/adma.202004654
[42] B.K. Singh, Y. Kim, S. Kwon, K. Na, Synthesis of Mesoporous Zeolites and Their Opportunities in Heterogeneous Catalysis, Catalysts, 11 (2021) 1541. https://doi.org/10.3390/catal11121541
[43] B. Singh, J. Na, M. Konarova, T. Wakihara, Y. Yamauchi, C. Salomon, M.B. Gawande, Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications, Bulletin of the Chemical Society of Japan, 93 (2020) 1459-1496. https://doi.org/10.1246/bcsj.20200136
[44] A. Glotov, A. Vutolkina, A. Pimerzin, V. Nedolivko, G. Zasypalov, V. Stytsenko, E. Karakhanov, V. Vinokurov, Ruthenium Catalysts Templated on Mesoporous MCM-41 Type Silica and Natural Clay Nanotubes for Hydrogenation of Benzene to Cyclohexane, Catalysts, 10 (2020) 537. https://doi.org/10.3390/catal10050537
[45] Y. Song, Z. Zhang, L. Yan, L. Zhang, S. Liu, S. Xie, L. Xu, J. Du, Electrodeposition of Ti-Doped Hierarchically Mesoporous Silica Microspheres/Tungsten Oxide Nanocrystallines Hybrid Films and Their Electrochromic Performance, Nanomaterials, 9 (2019) 1795. https://doi.org/10.3390/nano9121795
[46] M. Trejda, A. Jądrzak, A. Nurwita, D. Kryszak, An efficient synthesis of acidic mesoporous materials, Catalysis Today, 354 (2020) 61-66. https://doi.org/10.1016/j.cattod.2019.04.030
[47] M. Dell’Edera, F. Petronella, A. Truppi, L.F. Liotta, N. Gallì, T. Sibillano, C. Giannini, R. Brescia, F. Milano, M. Striccoli, A. Agostiano, M.L. Curri, R. Comparelli, Low Temperature Synthesis of Photocatalytic Mesoporous TiO2 Nanomaterials, Catalysts, 10 (2020) 893. https://doi.org/10.3390/catal10080893
[48] A.L.A. Marinho, F.S. Toniolo, F.B. Noronha, F. Epron, D. Duprez, N. Bion, Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane, Applied Catalysis B: Environmental, 281 (2021) 119459. https://doi.org/10.1016/j.apcatb.2020.119459
[49] M.G. Mohamed, E.C. Atayde, B.M. Matsagar, J. Na, Y. Yamauchi, K.C.W. Wu, S.-W. Kuo, Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework, Journal of the Taiwan Institute of Chemical Engineers, 112 (2020) 180-192. https://doi.org/10.1016/j.jtice.2020.06.013
[50] F. Sahel, F. Sebih, S. Bellahouel, A. Bengueddach, R. Hamacha, Synthesis and characterization of highly ordered mesoporous nanomaterials Al-MCM-41 and Al-SBA-15 from bentonite as efficient catalysts for the production of biodiesel MELA and EELA, Research on Chemical Intermediates, 46 (2020) 133-148. https://doi.org/10.1007/s11164-019-03939-5
[51] M. Esperanza Adrover, M. Pedernera, M. Bonne, B. Lebeau, V. Bucalá, L. Gallo, Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate, Saudi Pharmaceutical Journal, 28 (2020) 15-24. https://doi.org/10.1016/j.jsps.2019.11.002
[52] S. Abdulridha, J. Jiang, S. Xu, Z. Zhou, H. Liang, B. Mao, Y. Zhou, A.A. Garforth, Y. Jiao, X. Fan, Cellulose nanocrystals (CNCs) as hard templates for preparing mesoporous zeolite Y assemblies with high catalytic activity, Green Chemistry, 22 (2020) 5115-5122. https://doi.org/10.1039/D0GC01070G
[53] M.T. Colomer, Special Issue “Design, Synthesis and Applications of Macroporous, Mesoporous, and Microporous Materials”, International Journal of Molecular Sciences, 25 (2024) 7127. https://doi.org/10.3390/ijms25137127
[54] H. Sanaeishoar, M. Sabbaghan, F. Mohave, Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates, Microporous and Mesoporous Materials, 217 (2015) 219-224. https://doi.org/10.1016/j.micromeso.2015.06.027
[55] V. Hulea, E. Dumitriu, F. Fajula, Mild Oxidation of Organosulfur Compounds with H2O2 over Metal-Containing Microporous and Mesoporous Catalysts, Catalysts, 11 (2021) 867. https://doi.org/10.3390/catal11070867
[56] A.S. Thill, W.T. Figueiredo, F.O. Lobato, M.O. Vaz, W.P. Fernandes, V.E. Carvalho, E.A. Soares, F. Poletto, S.R. Teixeira, F. Bernardi, New horizons in photocatalysis: the importance of mesopores for cerium oxide, Journal of Materials Chemistry A, 8 (2020) 24752-24762. https://doi.org/10.1039/D0TA08655J
[57] S.Z. Islam, S. Nagpure, D.Y. Kim, S.E. Rankin, Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania, Inorganics, 5 (2017) 15. https://doi.org/10.3390/inorganics5010015
[58] T. Wang, Y. Li, W.-T. Wu, Y.-l. Zhang, L.-g. Wu, H.-l. Chen, Effect of chiral-arrangement on the solar adsorption of black TiO2-SiO2 mesoporous materials for photodegradation and photolysis, Applied Surface Science, 537 (2021) 148025. https://doi.org/10.1016/j.apsusc.2020.148025
[59] H. Hou, G. Shao, W. Yang, W.-Y. Wong, One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption, Progress in Materials Science, 113 (2020) 100671. https://doi.org/10.1016/j.pmatsci.2020.100671
[60] H. Wu, Y. Xiao, Y. Guo, S. Miao, Q. Chen, Z. Chen, Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(III) ions, Microporous and Mesoporous Materials, 292 (2020) 109754. https://doi.org/10.1016/j.micromeso.2019.109754
[61] L. Bouna, A. Ait El Fakir, A. Benlhachemi, K. Draoui, M. Ezahri, B. Bakiz, S. Villain, F. Guinneton, N. Elalem, Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay, Applied Clay Science, 196 (2020) 105764. https://doi.org/10.1016/j.clay.2020.105764
[62] H. Zhang, G. Yuan, H. Guo, H. Li, L. Xiong, X. Chen, Preparation and characterization of mesoporous materials from low-grade palygorskite clay and its applied in composite phase change material, Journal of Energy Storage, 40 (2021) 102791. https://doi.org/10.1016/j.est.2021.102791
[63] EPO, Espacenet – Patent Search, in, European Patent Office, 2024.
[64] D.C.d.S. Alves, B.S. de Farias, C. Breslin, L.A.d.A. Pinto, T.R.S.A. Cadaval, Chapter 18 – Carbon nanotube-based materials for environmental remediation processes, in: D. Giannakoudakis, L. Meili, I. Anastopoulos (Eds.) Advanced Materials for Sustainable Environmental Remediation, Elsevier, 2022, pp. 475-513. https://doi.org/10.1016/B978-0-323-90485-8.00017-5
[65] M.F. Lanjwani, M. Tuzen, M.Y. Khuhawar, T.A. Saleh, Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review, Inorganic Chemistry Communications, 159 (2024) 111613. https://doi.org/10.1016/j.inoche.2023.111613
[66] W. Yu, L. Zhao, Chemiluminescence detection of reactive oxygen species generation and potential environmental applications, TrAC Trends in Analytical Chemistry, 136 (2021) 116197. https://doi.org/10.1016/j.trac.2021.116197
[67] A.S. Adday, S.M. Al-Jubouri, Photocatalytic oxidative removal of the organic pollutant from wastewater using recyclable Ag2O@CRA heterojunction photocatalyst, Case Studies in Chemical and Environmental Engineering, 10 (2024) 100852. https://doi.org/10.1016/j.cscee.2024.100852
[68] W. Xie, G. Liu, Y. Liu, Y. Bai, Y. Liao, T. Li, C. Wang, S. Chang, J. Hu, Multidimensional TiO2 photocatalysts for the degradation of organic dyes in wastewater treatment, Journal of Porous Materials, 31 (2024) 1655-1681. https://doi.org/10.1007/s10934-024-01619-3
[69] Z.H. Jabbar, B.H. Graimed, S.H. Ammar, D.A. Sabit, A.A. Najim, A.Y. Radeef, A.G. Taher, The latest progress in the design and application of semiconductor photocatalysis systems for degradation of environmental pollutants in wastewater: Mechanism insight and theoretical calculations, Materials Science in Semiconductor Processing, 173 (2024) 108153. https://doi.org/10.1016/j.mssp.2024.108153
[70] A.J. Chacón-García, S. Rojas, E.S. Grape, F. Salles, T. Willhammar, A.K. Inge, Y. Pérez, P. Horcajada, SU-101 for the removal of pharmaceutical active compounds by the combination of adsorption/photocatalytic processes, Scientific Reports, 14 (2024) 7882. https://doi.org/10.1038/s41598-024-58014-w
[71] Y. Sun, S.-Q. Guo, L. Fan, J. Cai, W. Han, F. Zhang, Molecular oxygen activation in photocatalysis: Generation, detection and application, Surfaces and Interfaces, 46 (2024) 104033. https://doi.org/10.1016/j.surfin.2024.104033
[72] Y. Nosaka, A.Y. Nosaka, Generation and Detection of Reactive Oxygen Species in Photocatalysis, Chemical Reviews, 117 (2017) 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
[73] H. Tang, H. E, C. Yao, X. Wang, J. Zhou, W. Song, Z. Zhang, Boosted antibiotic elimination over 2D/2D mesoporous CeO2/BiOCl S-scheme photocatalyst, Separation and Purification Technology, 354 (2025) 128977. https://doi.org/10.1016/j.seppur.2024.128977
[74] Y. Ahmadi, K.-H. Kim, Modification strategies for visible-light photocatalysts and their performance-enhancing effects on photocatalytic degradation of volatile organic compounds, Renewable and Sustainable Energy Reviews, 189 (2024) 113948. https://doi.org/10.1016/j.rser.2023.113948
[75] M. Xu, P. Zhu, Q. Cai, M. Bu, C. Zhang, H. Wu, Y. He, M. Fu, S. Li, X. Liu, In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity, Chinese Chemical Letters, 35 (2024) 109524. https://doi.org/10.1016/j.cclet.2024.109524
[76] R. Ma, Y. Su, C. Li, X. Lv, W. Li, J. Yang, W. Zhang, H. Wang, Novel MOF-derived dual Z-scheme g-C3N4/Bi2O2CO3/β-Bi2O3 heterojunctions with enhanced photodegradation of tetracycline hydrochloride, Separation and Purification Technology, 354 (2025) 128580. https://doi.org/10.1016/j.seppur.2024.128580
[77] Z. Jiang, T. Wang, J. Wang, T. Yu, C. Kong, Z. Yang, H. Zhu, Oxygen vacancy-rich BiVO4 modified with mesoporous MIL-88A(Fe) Z-scheme heterojunction for enhanced photocatalytic formaldehyde degradation, Separation and Purification Technology, 353 (2025) 128581. https://doi.org/10.1016/j.seppur.2024.128581
[78] J.O. Eniola, M.O. Ansari, M.A. Barakat, R. Kumar, Chapter 6 – Aerogels in photocatalysis, in: A.A.P. Khan, M.O. Ansari, A. Khan, A.M. Asiri (Eds.) Advances in Aerogel Composites for Environmental Remediation, Elsevier, 2021, pp. 87-108. https://doi.org/10.1016/B978-0-12-820732-1.00006-0
[79] K. Zhu, C. Jin, Z. Jian, Y. Wei, R. Nan, C. Zhang, L. Hu, Significantly enhanced photocatalytic performance of mesoporous C@ZnO hollow nanospheres via suppressing charge recombination, Chemical Physics Letters, 716 (2019) 102-105. https://doi.org/10.1016/j.cplett.2018.12.013
[80] M. Ateia, M.G. Alalm, D. Awfa, M.S. Johnson, C. Yoshimura, Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: A critical review, Science of The Total Environment, 698 (2020) 134197. https://doi.org/10.1016/j.scitotenv.2019.134197
[81] A. Yusuf, H. Oladipo, L. Yildiz Ozer, C. Garlisi, V. Loddo, M.R.M. Abu-Zahra, G. Palmisano, Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene, Chemical Engineering Journal, 391 (2020) 123574. https://doi.org/10.1016/j.cej.2019.123574
[82] A. Yusuf, G. Palmisano, Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor, Chemical Engineering Science, 229 (2021) 116051. https://doi.org/10.1016/j.ces.2020.116051
[83] C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis, 122 (1990) 178-192. https://doi.org/10.1016/0021-9517(90)90269-P
[84] M.N. Chong, B. Jin, H.Y. Zhu, C.W.K. Chow, C. Saint, Application of H-titanate nanofibers for degradation of Congo Red in an annular slurry photoreactor, Chemical Engineering Journal, 150 (2009) 49-54. https://doi.org/10.1016/j.cej.2008.12.002
[85] P.K. Jaseela, K.O. Shamsheera, A. Joseph, Mesoporous Titania-Silica nanocomposite as an effective material for the degradation of Bisphenol A under visible light, Journal of Saudi Chemical Society, 24 (2020) 651-662. https://doi.org/10.1016/j.jscs.2020.05.004
[86] P.M. Rendel, G. Rytwo, Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2, Desalination and Water Treatment, 173 (2020) 231-242. https://doi.org/10.5004/dwt.2020.24693
[87] G. Rytwo, A.L. Zelkind, Evaluation of Kinetic Pseudo-Order in the Photocatalytic Degradation of Ofloxacin, Catalysts, 12 (2022) 24. https://doi.org/10.3390/catal12010024
[88] P. Pourdayhimi, P.W. Koh, H. Nur, S.L. Lee, Highly Crystalline Zinc Oxide/Mesoporous Hollow Silica Composites Synthesized at Low Temperature for the Photocatalytic Degradation of Sodium Dodecylbenzenesulfonate, Australian Journal of Chemistry, 72 (2019) 252-259. https://doi.org/10.1071/CH18175
[89] K.K. Abbas, K.M. Shabeeb, A.A.A. Aljanabi, A.M.H.A. Al-Ghaban, Photocatalytic degradation of Cefazolin over spherical nanoparticles of TiO2/ZSM-5 mesoporous nanoheterojunction under simulated solar light, Environmental Technology & Innovation, 20 (2020) 101070. https://doi.org/10.1016/j.eti.2020.101070
[90] D.F. Ollis, Kinetics of photocatalyzed reactions: five lessons learned, Frontiers in chemistry, 6 (2018) 378. https://doi.org/10.3389/fchem.2018.00378
[91] K. Bisaria, S. Sinha, R. Singh, H.M.N. Iqbal, Recent advances in structural modifications of photo-catalysts for organic pollutants degradation – A comprehensive review, Chemosphere, 284 (2021) 131263. https://doi.org/10.1016/j.chemosphere.2021.131263
[92] A. Intisar, A. Ramzan, S. Hafeez, N. Hussain, M. Irfan, N. Shakeel, K.A. Gill, A. Iqbal, M. Janczarek, T. Jesionowski, Adsorptive and photocatalytic degradation potential of porous polymeric materials for removal of pesticides, pharmaceuticals, and dyes-based emerging contaminants from water, Chemosphere, 336 (2023) 139203. https://doi.org/10.1016/j.chemosphere.2023.139203
[93] T.H. Sia, S. Dai, B. Jin, M. Biggs, M.N. Chong, Hybridising nitrogen doped titania with kaolinite: A feasible catalyst for a semi-continuous photo-degradation reactor system, Chemical Engineering Journal, 279 (2015) 939-947. https://doi.org/10.1016/j.cej.2015.05.101
[94] A.P. Naik, A.V. Salkar, M.S. Majik, P.P. Morajkar, Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N=N bond cleavage and identification of new intermediates, Photochemical & Photobiological Sciences, 16 (2017) 1126-1138. https://doi.org/10.1039/c7pp00090a
[95] J. Singh, M. Sharma, S. Basu, Heavy metal ions adsorption and photodegradation of remazol black XP by iron oxide/silica monoliths: Kinetic and equilibrium modelling, Advanced Powder Technology, 29 (2018) 2268-2279. https://doi.org/10.1016/j.apt.2018.06.011
[96] M. Sharma, J. Singh, S. Basu, Efficient metal ion adsorption and photodegradation of Rhodamine-B by hierarchical porous Fe-Ni@SiO2 monolith, Microchemical Journal, 145 (2019) 708-717. https://doi.org/10.1016/j.microc.2018.11.042
[97] A. Motamedisade, A. Heydari, D.J. Osborn, A.S. Alotabi, G.G. Andersson, Au9 clusters deposited as co-catalysts on S-modified mesoporous TiO2 for photocatalytic degradation of methyl orange, Applied Surface Science, 655 (2024) 159475. https://doi.org/10.1016/j.apsusc.2024.159475
[98] J. Singh, S. Basu, Synthesis of mesoporous magnetic Fe2O3/g-C3N4 monoliths for Rhodamine B removal, Microporous and Mesoporous Materials, 303 (2020) 110299. https://doi.org/10.1016/j.micromeso.2020.110299
[99] E. Erusappan, S. Thiripuranthagan, R. Radhakrishnan, M. Durai, S. Kumaravel, T. Vembuli, N.J. Kaleekkal, Fabrication of mesoporous TiO2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes, Journal of Environmental Chemical Engineering, 9 (2021) 105776. https://doi.org/10.1016/j.jece.2021.105776
[100] Y. Wang, F. Wang, Y. Feng, Z. Xie, Q. Zhang, X. Jin, H. Liu, Y. Liu, W. Lv, G. Liu, Facile synthesis of carbon quantum dots loaded with mesoporous gC 3 N 4 for synergistic absorption and visible light photodegradation of fluoroquinolone antibiotics, Dalton Transactions, 47 (2018) 1284-1293. https://doi.org/10.1039/C7DT04360K
[101] X. Zeng, X. Sun, Y. Yu, H. Wang, Y. Wang, Photocatalytic degradation of flumequine with B/N codoped TiO2 catalyst: Kinetics, main active species, intermediates and pathways, Chemical Engineering Journal, 378 (2019) 122226. https://doi.org/10.1016/j.cej.2019.122226
[102] A.A. Fauzi, A.A. Jalil, C.N.C. Hitam, F.F.A. Aziz, N. Chanlek, Superior sulfate radicals-induced visible-light-driven photodegradation of pharmaceuticals by appropriate Ce loading on fibrous silica ceria, Journal of Environmental Chemical Engineering, 8 (2020) 104484. https://doi.org/10.1016/j.jece.2020.104484
[103] S. Rabhi, L. Mahtout, M. Bououdina, L. Khezami, H. Belkacemi, A. Kerrami, E. Sakher, Tuning the photocatalytic activity of TiO2 by Ag loading: Experimental and modelling studies for the degradation of amlodipine besylate drug, Ceramics International, 47 (2021) 21509-21521. https://doi.org/10.1016/j.ceramint.2021.04.162
[104] N. Hosseini, M.R. Toosi, Combined adsorption process and photocatalytic degradation of some commercial herbicides over N-doped TiO2 particles supported on recyclable magnetic hexagonal mesoporous silica, Separation Science and Technology, 54 (2019) 1697-1709. https://doi.org/10.1080/01496395.2018.1539105
[105] M. Zangiabadi, T. Shamspur, A. Saljooqi, A. Mostafavi, Evaluating the efficiency of the GO-Fe3O4/TiO2 mesoporous photocatalyst for degradation of chlorpyrifos pesticide under visible light irradiation, Applied Organometallic Chemistry, 33 (2019) e4813. https://doi.org/10.1002/aoc.4813
[106] S.Y. Ejeta, T. Imae, Photodegradation of pollutant pesticide by oxidized graphitic carbon nitride catalysts, Journal of Photochemistry and Photobiology A: Chemistry, 404 (2021) 112955. https://doi.org/10.1016/j.jphotochem.2020.112955
[107] W. Deng, F. Pan, B. Batchelor, B. Jung, P. Zhang, A. Abdel-Wahab, H. Zhou, Y. Li, Mesoporous TiO2-BiOBr microspheres with tailorable adsorption capacities for photodegradation of organic water pollutants: probing adsorption-photocatalysis synergy by combining experiments and kinetic modeling, Environmental Science: Water Research & Technology, 5 (2019) 769-781. https://doi.org/10.1039/C8EW00922H
[108] M. Faycal Atitar, A.A. Ismail, R. Dillert, D.W. Bahnemann, Photodegradation of Herbicide Imazapyr and Phenol over Mesoporous Bicrystalline Phases TiO2: A Kinetic Study, Catalysts, 9 (2019) 640. https://doi.org/10.3390/catal9080640