Sustainable Mesoporous Material for Environmental Remediation and Advanced Medicinal Applications
Hojjat Tayefi, Masoud Salehipour, Shahla Rezaei, Mehdi Mogharabi-Manzari
Mesoporous materials have gained significant attention in recent years due to their unique structural properties, such as high surface area, tunable pore sizes, and robust chemical stability. This paper explores the development of sustainable mesoporous materials and their dual applications in environmental remediation and advanced medicine. In environmental contexts, these materials are demonstrated to effectively adsorb pollutants, degrade hazardous substances, and facilitate catalytic processes for water and air purification. In medicinal applications, their biocompatibility, controlled drug delivery capabilities, and potential for diagnostic imaging offer promising advancements in targeted therapies and regenerative medicine. By utilizing eco-friendly synthesis methods and renewable resources, this research highlights the potential of mesoporous materials as sustainable solutions to global environmental and healthcare challenges. Through a multidisciplinary approach, the study underscores the transformative role of mesoporous materials in fostering sustainable development across diverse scientific and industrial sectors.
Keywords
Mesoporous Materials, Environmental Remediation, Drug Delivery, Nanoparticles, Controlled Release
Published online 3/20/2025, 15 pages
Citation: Hojjat Tayefi, Masoud Salehipour, Shahla Rezaei, Mehdi Mogharabi-Manzari, Sustainable Mesoporous Material for Environmental Remediation and Advanced Medicinal Applications, Materials Research Foundations, Vol. 173, pp 145-159, 2025
DOI: https://doi.org/10.21741/9781644903452-6
Part of the book on Mesoporous Materials
References
[1] K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. Hill, Nanoarchitectonics for Mesoporous Materials, Bull. Chem. Soc. Jpn. 85 (2012) 1–32. https://doi.org/10.1246/bcsj.20110162
[2] M. Nazari, F. Zadehahmadi, M.M. Sadiq, A.L. Sutton, H. Mahdavi, M.R. Hill, Challenges and solutions to the scale-up of porous materials, Commun. Mater. 5 (2024) 170. https://doi.org/10.1038/s43246-024-00608-y
[3] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710–712. https://doi.org/10.1038/359710a0
[4] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science 279 (1998) 548–552. https://doi.org/10.1126/science.279.5350.548
[5] X.S. Zhao, G.Q. (Max) Lu, G.J. Millar, Advances in Mesoporous Molecular Sieve MCM-41, Ind. Eng. Chem. Res. 35 (1996) 2075–2090. https://doi.org/10.1021/ie950702a
[6] W. Li, D. Zhao, An overview of the synthesis of ordered mesoporous materials, Chem. Commun. 49 (2013) 943–946. https://doi.org/10.1039/C2CC36964H
[7] Z. Yang, Y. Lu, Z. Yang, Mesoporous materials: tunable structure, morphology and composition, Chem. Commun. (2009) 2270–2277. https://doi.org/10.1039/B820539F
[8] K. Lan, D. Zhao, Functional Ordered Mesoporous Materials: Present and Future, Nano Lett. 22 (2022) 3177–3179. https://doi.org/10.1021/acs.nanolett.2c00902
[9] S.L. Suib, A Review of Recent Developments of Mesoporous Materials, Chem. Rec. 17 (2017) 1169–1183. https://doi.org/10.1002/tcr.201700025
[10] M. Mogharabi-Manzari, M. Amini, M. Abdollahi, M. Khoobi, G. Bagherzadeh, M.A. Faramarzi, Co-immobilization of Laccase and TEMPO in the Compartments of Mesoporous Silica for a Green and One-Pot Cascade Synthesis of Coumarins by Knoevenagel Condensation, ChemCatChem 10 (2018) 1542–1546. https://doi.org/10.1002/cctc.201701527
[11] S.-H. Wu, C.-Y. Mou, H.-P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev. 42 (2013) 3862–3875. https://doi.org/10.1039/C3CS35405A
[12] J. Hwang, J.H. Lee, J. Chun, Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate, Mater. Lett. 283 (2021) 128765. https://doi.org/10.1016/j.matlet.2020.128765
[13] H. Qiu, S. Che, Chiral mesoporous silica: Chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors, Chem. Soc. Rev. 40 (2011) 1259–1268. https://doi.org/10.1039/C0CS00002G
[14] A.-M. Putz, K. Wang, A. Len, J. Plocek, P. Bezdicka, G.P. Kopitsa, T.V. Khamova, C. Ianăşi, L. Săcărescu, Z. Mitróová, C. Savii, M. Yan, L. Almásy, Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium, 11th Int. Conf. Phys. Adv. Mater. 424 (2017) 275–281. https://doi.org/10.1016/j.apsusc.2017.04.121
[15] L. Liu, X. Shan, X. Hu, W. Lv, J. Wang, Superhydrophobic Silica Aerogels and Their Layer-by-Layer Structure for Thermal Management in Harsh Cold and Hot Environments, ACS Nano 15 (2021) 19771–19782. https://doi.org/10.1021/acsnano.1c07184
[16] R.I. Ripon, Z.A. Begum, R. Miyazawa, K. Leonard, M. Ogata, B. Ahmmad, I.M.M. Rahman, Development and application of a new macrocyclic ligand-functionalized mesoporous silica sorbent for selective separation of radiocesium from environmental wastewater, Microchem. J. 207 (2024) 111649. https://doi.org/10.1016/j.microc.2024.111649
[17] T.M. Albayati, S.M. Alardhi, A.H. Khalbas, Z.J. Humdi, N.S. Ali, I.K. Salih, N.M.C. Saady, S. Zendehboudi, M.A. Abdulrahman, Comprehensive Review of Mesoporous Silica Nanoparticles: Drug Loading, Release, and Applications as Hemostatic Agents, ChemistrySelect 9 (2024) e202400450. https://doi.org/10.1002/slct.202400450
[18] X. Zhao, P. Gao, B. Shen, X. Wang, T. Yue, Z. Han, Recent advances in lignin-derived mesoporous carbon based-on template methods, Renew. Sustain. Energy Rev. 188 (2023) 113808. https://doi.org/10.1016/j.rser.2023.113808
[19] D. Gang, Z. Uddin Ahmad, Q. Lian, L. Yao, M.E. Zappi, A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon, Chem. Eng. J. 403 (2021) 126286. https://doi.org/10.1016/j.cej.2020.126286
[20] J. Zhang, N. Zhang, F.M.G. Tack, S. Sato, D.S. Alessi, P. Oleszczuk, H. Wang, X. Wang, S. Wang, Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review, J. Hazard. Mater. 418 (2021) 126266. https://doi.org/10.1016/j.jhazmat.2021.126266
[21] M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem. Soc. Rev. 47 (2018) 2680–2721. https://doi.org/10.1039/C7CS00787
[22] Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications, Chem. Soc. Rev. 41 (2012) 4909. https://doi.org/10.1039/c2cs35086f
[23] X. Deng, K. Chen, H. Tüysüz, Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides, Chem. Mater. 29 (2017) 40–52. https://doi.org/10.1021/acs.chemmater.6b02645
[24] Y. Zou, X. Zhou, J. Ma, X. Yang, Y. Deng, Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications, Chem. Soc. Rev. 49 (2020) 1173–1208. https://doi.org/10.1039/C9CS00334G
[25] Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications, Chem. Soc. Rev. 41 (2012) 4909. https://doi.org/10.1039/c2cs35086f
[26] M. Salehipour, S. Rezaei, H.F. Asadi Khalili, A. Motaharian, M. Mogharabi-Manzari, Nanoarchitectonics of Enzyme/Metal–Organic Framework Composites for Wastewater Treatment, J. Inorg. Organomet. Polym. Mater. 32 (2022) 3321–3338. https://doi.org/10.1007/s10904-022-02390-1
[27] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science 341 (2013) 1230444. https://doi.org/10.1126/science.1230444
[28] T. Limongi, F. Susa, M. Allione, E. Di Fabrizio, Drug Delivery Applications of Three-Dimensional Printed (3DP) Mesoporous Scaffolds, Pharmaceutics 12 (2020) 851. https://doi.org/10.3390/pharmaceutics12090851
[29] S. Nikpour, M. Salehipour, S. Rezaei, M. Mogharabi-Manzari, Design and fabrication of magnetic cross-linked laccase aggregate using superparamagnetic metal-organic frameworks for phenol removal, Biochem. Eng. J. 209 (2024) 109385. https://doi.org/10.1016/j.bej.2024.109385
[30] Y. Feng, Q. Ma, Z. Wang, Q. Zhang, L. Zhao, J. Cui, Y. Du, S. Jia, Multivariate mesoporous MOFs with regulatable hydrophilic/hydrophobic surfaces as a versatile platform for enzyme immobilization, Chin. J. Catal. 60 (2024) 386–398.
[31] X. Gao, Y. Dong, S. Li, J. Zhou, L. Wang, B. Wang, MOFs and COFs for Batteries and Supercapacitors, Electrochem. Energy Rev. 3 (2020) 81–126. https://doi.org/10.1007/s41918-019-00055-1
[32] K.T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Covalent organic frameworks, Nat. Rev. Methods Primer 3 (2023) 1. https://doi.org/10.1038/s43586-022-00181-z
[33] S. Daliran, M. Blanco, A. Dhakshinamoorthy, A.R. Oveisi, J. Alemán, H. García, Defects and Disorder in Covalent Organic Frameworks for Advanced Applications, Adv. Funct. Mater. 34 (2024) 2312912. https://doi.org/10.1002/adfm.202312912
[34] J. Wang, S. Zhuang, Covalent organic frameworks (COFs) for environmental applications, Coord. Chem. Rev. 400 (2019) 213046. https://doi.org/10.1016/j.ccr.2019.213046
[35] N. Zhang, A. Ishag, Y. Li, H. Wang, H. Guo, P. Mei, Q. Meng, Y. Sun, Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review, J. Clean. Prod. 277 (2020) 123360. https://doi.org/10.1016/j.jclepro.2020.123360
[36] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev. 38 (2009) 1477–1504. https://doi.org/10.1039/B802426J
[37] M. Alhamami, H. Doan, C.-H. Cheng, A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption, Materials 7 (2014) 3198–3250. https://doi.org/10.3390/ma7043198
[38] P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal–organic frameworks for heavy metal removal from water, Coord. Chem. Rev. 358 (2018) 92–107. https://doi.org/10.1016/j.ccr.2017.12.010
[39] G. Lin, B. Zeng, J. Li, Z. Wang, S. Wang, T. Hu, L. Zhang, A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism, Chem. Eng. J. 460 (2023) 141710. https://doi.org/10.1016/j.cej.2023.141710
[40] M. Hirscher, B. Panella, B. Schmitz, Metal-organic frameworks for hydrogen storage, Sel. Pap. 1st Int. Conf. Met. Org. Framew. Open Framew. Compd. MOF 2008 Oct. 8–10 2008 129 (2010) 335–339. https://doi.org/10.1016/j.micromeso.2009.06.005
[41] H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen Storage in Metal-Organic Frameworks: A Review, Adv. Electrochem. Mater. Manuf. 128 (2014) 368–392. https://doi.org/10.1016/j.electacta.2013.10.190
[42] Y. He, F. Chen, B. Li, G. Qian, W. Zhou, B. Chen, Porous metal–organic frameworks for fuel storage, Coord. Chem. Energy 373 (2018) 167–198. https://doi.org/10.1016/j.ccr.2017.10.002
[43] M. Aghaee, M. Salehipour, S. Rezaei, M. Mogharabi-Manzari, Bioremediation of organic pollutants by laccase-metal–organic framework composites: A review of current knowledge and future perspective, Bioresour. Technol. (2024) 131072. https://doi.org/10.1016/j.biortech.2024.131072
[44] M. Salehipour, S. Rezaei, J. Mosafer, Z. Pakdin-Parizi, A. Motaharian, M. Mogharabi-Manzari, Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents, J. Nanoparticle Res. 23 (2021). https://doi.org/10.1007/s11051-021-05156-x
[45] M. Salehipour, S. Nikpour, S. Rezaei, S. Mohammadi, M. Rezaei, D. Ilbeygi, A. Hosseini-Chegeni, M. Mogharabi-Manzari, Safety of metal–organic framework nanoparticles for biomedical applications: An in vitro toxicity assessment, Inorg. Chem. Commun. 152 (2023) 110655. https://doi.org/10.1016/j.inoche.2023.110655
[46] M. Mogharabi-Manzari, M. Heydari, S. Sadeghian-Abadi, M. Yousefi-Mokri, M.A. Faramarzi, Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry, Biocatal. Biotransformation 37 (2019) 455–465. https://doi.org/10.1080/10242422.2019.1611788
[47] S. Rezaei, R. Yazdian-Robati, M. Mogharabi-Manzari, M. Salehipour, Editorial: Medical and Pharmaceutical Applications of Nanomaterials: From Diagnosis to Treatment, Front. Nanotechnol. 6 (2024). https://www.frontiersin.org/journals/nanotechnology/articles/10.3389/fnano.2024.1386250
[48] X. Yang, P. Qiu, J. Yang, Y. Fan, L. Wang, W. Jiang, X. Cheng, Y. Deng, W. Luo, Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic, Small 17 (2021) 1904022. https://doi.org/10.1002/smll.201904022
[49] M. Etienne, L. Zhang, N. Vilà, A. Walcarius, Mesoporous Materials-Based Electrochemical Enzymatic Biosensors, Electroanalysis 27 (2015) 2028–2054. https://doi.org/10.1002/elan.201500172
[50] K.A. Kilian, T. Böcking, J.J. Gooding, The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors, Chem. Commun. (2009) 630–640. https://doi.org/10.1039/B815449J
[51] Y. Esmaeili, M. Khavani, A. Bigham, A. Sanati, E. Bidram, L. Shariati, A. Zarrabi, N.A. Jolfaie, M. Rafienia, Mesoporous silica@chitosan@gold nanoparticles as “on/off” optical biosensor and pH-sensitive theranostic platform against cancer, Int. J. Biol. Macromol. 202 (2022) 241–255. https://doi.org/10.1016/j.ijbiomac.2022.01.063
[52] M. Hasanzadeh, N. Shadjou, M. de la Guardia, M. Eskandani, P. Sheikhzadeh, Mesoporous silica-based materials for use in biosensors, TrAC Trends Anal. Chem. 33 (2012) 117–129. https://doi.org/10.1016/j.trac.2011.10.011
[53] J.L. Olloqui-Sariego, J.J. Calvente, R. Andreu, Immobilizing redox enzymes at mesoporous and nanostructured electrodes, Curr. Opin. Electrochem. 26 (2021) 100658. https://doi.org/10.1016/j.coelec.2020.100658
[54] Y. Feng, Y. Xu, S. Liu, D. Wu, Z. Su, G. Chen, J. Liu, G. Li, Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing, Coord. Chem. Rev. 459 (2022) 214414. https://doi.org/10.1016/j.ccr.2022.214414
[55] I. Izquierdo-Barba, Á. Martinez, A.L. Doadrio, J. Pérez-Pariente, M. Vallet-Regí, Release evaluation of drugs from ordered three-dimensional silica structures, Eur. J. Pharm. Sci. 26 (2005) 365–373. https://doi.org/10.1016/j.ejps.2005.06.009
[56] M. Manzano, M. Vallet‐Regí, Mesoporous Silica Nanoparticles for Drug Delivery, Adv. Funct. Mater. 30 (2020) 1902634. https://doi.org/10.1002/adfm.201902634
[57] D. Shao, Q. Gao, Y. Sheng, S. Li, Y. Kong, Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose, Int. J. Biol. Macromol. 202 (2022) 37–45. https://doi.org/10.1016/j.ijbiomac.2022.01.033
[58] M. Vallet-Regí, F. Schüth, D. Lozano, M. Colilla, M. Manzano, Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?, Chem. Soc. Rev. 51 (2022) 5365–5451. https://doi.org/10.1039/D1CS00659B
[59] E. Vélez-Peña, R. Morales, C. Reyes-Escobar, C.C. Torres, M. Avello, K.P. Marrugo, J. Manzo-Merino, J.B. Alderete, C.H. Campos, Mesoporous mixed oxides prepared by hard template methodology as novel drug delivery carriers for methotrexate, J. Drug Deliv. Sci. Technol. 73 (2022) 103483. https://doi.org/10.1016/j.jddst.2022.103483
[60] J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, T. Hyeon, Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery, Angew. Chem. Int. Ed. 47 (2008) 8438–8441. https://doi.org/10.1002/anie.200802469
[61] S. Kwon, R.K. Singh, R.A. Perez, E.A. Abou Neel, H.-W. Kim, W. Chrzanowski, Silica-based mesoporous nanoparticles for controlled drug delivery, J. Tissue Eng. 4 (2013) 2041731413503357. https://doi.org/10.1177/2041731413503357
[62] M. Mogharabi, M. Abdollahi, M.A. Faramarzi, Toxicity of nanomaterials; An undermined issue, DARU J. Pharm. Sci. 22 (2014). https://doi.org/10.1186/s40199-014-0059-4
[63] H. Fatima, S. Shukrullah, H. Hussain, H. Aslam, M.Y. Naz, Chapter 11 – Utility of various drug delivery systems and their advantages and disadvantages, in: R. Pratap Singh, K. RB Singh, J. Singh, C.O. Adetunji (Eds.), Nanotechnol. Drug Deliv. Pharm., Academic Press, 2023: pp. 235–258. https://doi.org/10.1016/B978-0-323-95325-2.00015-8
[64] K.B. Seljak, P. Kocbek, M. Gašperlin, Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques, J. Drug Deliv. Sci. Technol. 59 (2020) 101906. https://doi.org/10.1016/j.jddst.2020.101906
[65] B. Sun, X. Zhen, X. Jiang, Development of mesoporous silica-based nanoprobes for optical bioimaging applications, Biomater. Sci. 9 (2021) 3603–3620. https://doi.org/10.1039/D1BM00204J
[66] F.W. Pratiwi, C.W. Kuo, S.-H. Wu, Y.-P. Chen, C.Y. Mou, P. Chen, Chapter Six – The Bioimaging Applications of Mesoporous Silica Nanoparticles, in: F. Tamanoi (Ed.), The Enzymes, Academic Press, 2018: pp. 123–153. https://doi.org/10.1016/bs.enz.2018.07.006
[67] X. Du, X. Li, L. Xiong, X. Zhang, F. Kleitz, S.Z. Qiao, Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery, Biomaterials 91 (2016) 90–127. https://doi.org/10.1016/j.biomaterials.2016.03.019