Mesoporous Materials for Liquid Chromatographic Separation
Vipul D. Prajapati, Princy Shrivastav
This chapter explores the creative application of mesoporous materials to improve liquid chromatography’s efficacy and efficiency. Mesoporous materials have special benefits in chromatographic applications, such as enhanced loading capacity, stronger selectivity, and better separation performance. These materials are distinguished by their highly organized pore architectures and huge surface areas. The production and functionalization of mesoporous materials are covered in detail in this chapter, along with an emphasis on their favourable physicochemical characteristics as chromatographic media. The chapter also examines the different uses of mesoporous materials in liquid chromatography, including preparative and process-scale procedures as well as analytical separations. The useful advantages and future possibilities of these materials in chromatography are demonstrated through case studies and a discussion of current developments in the field. Through this exploration, the chapter aims to present mesoporous materials as a versatile and powerful tool in the ongoing development of chromatographic techniques.
Keywords
Mesoporous Materials, Liquid Chromatography, Chromatographic Separation, Pore Structure, Surface Area, Functionalization, Stationary Phase
Published online 3/20/2025, 31 pages
Citation: Vipul D. Prajapati, Princy Shrivastav, Mesoporous Materials for Liquid Chromatographic Separation, Materials Research Foundations, Vol. 173, pp 93-123, 2025
DOI: https://doi.org/10.21741/9781644903452-4
Part of the book on Mesoporous Materials
References
[1] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6024-6036. https://doi.org/10.1021/ja974025i
[2] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834-10843. https://doi.org/10.1021/ja00053a020
[3] L. Zhao, H. Qin, R. Wu, H. Zou, Recent advances of mesoporous materials in sample preparation, J. Chromatogr. A 1228 (2012) 193-204. https://doi.org/10.1016/j.chroma.2011.09.051
[4] R. Eivazzadeh-Keihan, K.K. Chenab, R. Taheri-Ledari, J. Mosafer, S.M. Hashemi, A. Mokhtarzadeh, A. Maleki, M.R. Hamblin, Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering, Mater. Sci. Eng. C Mater. Biol. Appl. 107 (2020) 110267. https://doi.org/10.1016/j.msec.2019.110267
[5] K.W. Gallis, A.G. Eklund, S.T. Jull, J.T. Araujo, J.G. Moore, C.C. Landry, The Use of Mesoporous Silica in Liquid Chromatography, in: A. Sayari, M. Jaroniec (Eds), Studies in Surface Science and Catalysis, Elsevier Inc., United Kingdom, 2000, pp. 747-755. https://doi.org/10.1016/S0167-2991(00)80279-7
[6] A. Soliven, S. Kayillo, R.A. Shalliker, Liquid Chromatography Reversed Phase, in: P. Worsfold, C. Poole, A. Townshend, M. Miró (Eds.), Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Analytical Science, Elsevier Academic Press, United Kingdom, 2013, pp. 238-243. https://doi.org/10.1016/B978-0-12-409547-2.00305-X
[7] I. François, K. Sandra, P. Sandra, Comprehensive liquid chromatography: Fundamental aspects and practical considerations-A review, Anal. Chim. Acta. 641 (2009) 14-31. https://doi.org/10.1016/j.aca.2009.03.041
[8] K. Robards, P.R. Haddad, P.E. Jackson, High-performance Liquid Chromatography-Separations, in: Principles and Practice of Modern Chromatographic Methods, Elsevier Academic Press, United Kingdom, 2004, pp. 305-380. https://doi.org/10.1016/B978-0-08-057178-2.50009-1
[9] D.S. Hage, Chromatography, in: N. Rifai, A.R. Horvath, C.T. Wittwer (Eds.), Principles and Applications of Clinical Mass Spectrometry, Elsevier Inc., United Kingdom, 2018, pp. 1-32. https://doi.org/10.1016/B978-0-12-816063-3.00001-3
[10] C.F. Poole, S.K. Poole, Foundations of retention in partition chromatography, J. Chromatogr. A. 1216(10) (2009) 1530-1550. https://doi.org/10.1016/j.chroma.2008.10.092
[11] R. Consden, Partition chromatography on paper, its scope and application, Nature. 162(4114) (1948) 359-361. https://doi.org/10.1038/162359a0
[12] M.K. Gupta, P.K. Biswas, Chromatography: Basic principle, types, and applications, in: A.K. Bhatt, R.K. Bhatia, T.C. Bhalla (Eds.), Basic Biotechniques for Bioprocess and Bioentrepreneurship, Elsevier Academic Press, United Kingdom, 2023, pp. 173-182. https://doi.org/10.1016/B978-0-12-816109-8.00010-6
[13] K.Z. Masoodi, S.M. Lone, R.S. Rasool, Ion-exchange chromatography, in: K.Z. Masoodi, S.M. Lone, R.S. Rasool (Eds.), Advanced Methods in Molecular Biology and Biotechnology, Elsevier Academic Press, United Kingdom, 2021, pp. 151-154. https://doi.org/10.1016/B978-0-12-824449-4.00027-X
[14] W. Wang, Z. Liu, Y. Liu, Z. Su, Y. Liu, Plant polypeptides: A review on extraction, isolation, bioactivities and prospects, Int. J. Biol. Macromol. 207 (2022) 169-178. https://doi.org/10.1016/j.ijbiomac.2022.03.009
[15] J.A. Queiroz, C.T. Tomaz, J.M. Cabral, Hydrophobic interaction chromatography of proteins. J. Biotechnol. 87 (2001) 143-159. https://doi.org/10.1016/S0168-1656(01)00237-1
[16] N. Galeotti, E. Hackemann, F. Jirasek, H. Hasse, Prediction of the elution profiles of proteins in mixed salt systems in hydrophobic interaction chromatography, Sep. Purif. Technol. 233 (2020) 116006. https://doi.org/10.1016/j.seppur.2019.116006
[17] J.L. Ochoa, Hydrophobic (interaction) chromatography, Biochimie. 60 (1978) 1-15. https://doi.org/10.1016/S0300-9084(78)80193-X
[18] S. Moldoveanu, V. David, Hydrophilic interaction liquid chromatography, in: Essentials in Modern HPLC Separations, Elsevier Inc., United Kingdom, 2022, pp. 447-477. https://doi.org/10.1016/B978-0-323-91177-1.00017-X
[19] A. Cavazzini, M. Catani, A. Felinger, Hydrophilic interaction liquid chromatography, in: S. Fanali, B. Chankvetadze, P.R. Haddad, C.F. Poole, M.L. Riekkola (Eds.), Liquid Chromatography Fundamental and Instrumentation, Elsevier Inc., United Kingdom, 2023, pp. 227-249. https://doi.org/10.1016/B978-0-323-99968-7.00030-8
[20] D. Schrag, M. Corbier, S. Raimondi, Size exclusion-high-performance liquid chromatography (SEC-HPLC), Methods Mol. Biol. 1131 (2014) 507-512. https://doi.org/10.1007/978-1-62703-992-5_31
[21] V. Cauda, G. Canavese, Mesoporous Materials for Drug Delivery and Theranostics, Pharmaceutics. 12(1108) (2020) 1-3. https://doi.org/10.3390/pharmaceutics12111108
[22] J. Zhao, F. Gao, Y. Fu, W. Jin, P. Yang, D. Zhao, Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography, Chem. Commun. (2002) 752-753. https://doi.org/10.1039/b110637f
[23] M. Faraji, Y. Yamini, F. Noormohammadi, M. Adeli, Application of magnetic nanomaterials in environmental monitoring, in: M. Ahmadi, A. Afkhami, T. Madrakian (Eds.), Magnetic Nanomaterials in Analytical Chemistry, Elsevier Inc., United Kingdom, 2021, pp. 155-189. https://doi.org/10.1016/B978-0-12-822131-0.00005-4
[24] H. Li, L. Wang, Y. Wei, W. Yan, J. Feng, Preparation of Templated Materials and Their Application to Typical Pollutants in Wastewater: A Review, Front. Chem. 10 (882876) (2022) 1-20. https://doi.org/10.3389/fchem.2022.882876
[25] H. Ghaedi, M. Zhao, Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials, Energy & Fuels. 36(5) (2022) 2424-2446. https://doi.org/10.1021/acs.energyfuels.1c04435
[26] Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42 (2013) 2610-2653. https://doi.org/10.1039/C2CS35369E
[27] T. Zhao, A. Elzatahry, X. Li, D. Zhao, Single-micelle-directed synthesis of mesoporous materials, Nat. Rev. Mater. 4 (2019) 775-791. https://doi.org/10.1038/s41578-019-0144-x
[28] Z. Li, L. Liu, Z. Wang, P. Gao, G.K. Li, Synthesis and Application of Mesoporous Materials: Process Status, Technical Problems, and Development Prospects: A Mini-Review, Energy Fuels, 37 (2023) 3413-3427. https://doi.org/10.1021/acs.energyfuels.2c03882
[29] J.A. Cecilia, R. Moreno, M. Retuerto Millán, Mesoporous Materials: From Synthesis to Applications, Int. J. Mol. Sci. 20(3) 3213 (2019) 1-4. https://doi.org/10.3390/ijms20133213
[30] M. Benítez, C. Rodríguez-Carrillo, S. Sánchez-Artero, J. El Haskouri, P. Amorós, J.V. Ros-Lis, Scaled-up microwave-assisted batch and flow synthesis and life cycle assessment of a silica mesoporous material: UVM-7, Green Chem. 26 (2024) 785-793. https://doi.org/10.1039/D3GC02875E
[31] J. Quinchia, J. Sánchez, J.C. Poveda, A. Moreno, Microwave-assisted synthesis of mesostructured aluminosilicates (MA) for the preparation of nano-MoS2/MA catalysts active in decalin hydrocracking. Microporous Mesoporous Mater. 301 (2020) 110226. https://doi.org/10.1016/j.micromeso.2020.110226
[32] N.H.N. Kamarudin, A.A. Jalil, S. Triwahyono, S.N. Timmiati, Microwave-assisted synthesis of mesoporous silica nanoparticles as a drug delivery vehicle, Malaysian J. Anal. Sci. 20(6) (2016) 1382-1389. https://doi.org/10.17576/mjas-2016-2006-17
[33] Y. Cao, H. Wei, Z. Xia, Advances in microwave assisted synthesis of ordered mesoporous materials. Trans. Nonferrous Met. Soc. China. 19 (2009) s656-s664. https://doi.org/10.1016/S1003-6326(10)60127-6
[34] L. López-Pérez, M.A. López-Martínez, K. Djanashvili, K. Góra-Marek, K.A. Tarach, M.E. Borges, M.C. Ignacio, Process Intensification of Mesoporous Material’s Synthesis by Microwave-Assisted Surfactant Removal, ACS Sustainable Chem. Eng. 45(8) (2020) 16814-16822. https://doi.org/10.1021/acssuschemeng.0c05438
[35] A. Shiekh, A. Mushtaq, U. Jabeen, F. Bashir, M. Zahra, F. Behlil, N. Hina, I. Hafeez, Surface Modification of Mesoporous Silica Nanoparticles with Hexamethyl Disilazane as Smart Carriers for Tocopherol Acetate, Nano Biomed. Eng. 14(3) (2022) 216-224. https://doi.org/10.5101/nbe.v14i3.p216-224
[36] E. Ahmadi, N. Dehghannejad, S. Hashemikia, M. Ghasemnejad, H. Tabebordbar, Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery, Drug Deliv. 21(3) (2014) 164-172. https://doi.org/10.3109/10717544.2013.838715
[37] S. Porrang, N. Rahemi, S. Davaran, M. Mahdavi, B. Hassanzadeh, A.M. Gholipour, Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system, J. Taiwan Inst. Chem. Eng. 123 (2021) 47-58. https://doi.org/10.1016/j.jtice.2021.05.024
[38] Y.L. Khung, D. Narducci, Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting, Adv. Colloid Interface Sci. 226(Pt B) (2015) 166-186. https://doi.org/10.1016/j.cis.2015.10.009
[39] S. Kovtareva, L. Kusepova, G. Tazhkenova, T. Mashan, K. Bazarbaeva, E. Kopishev, Surface Modification of Mesoporous Silica Nanoparticles for Application in Targeted Delivery Systems of Antitumour Drugs, Polymers (Basel). 16(8) (2024) 1105. https://doi.org/10.3390/polym16081105
[40] C. Li, S. Cheng, Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system, Crit. Rev. Biotechnol. 39(8) (2019) 1015-1030. https://doi.org/10.1080/07388551.2019.1662367
[41] E.M. Conners, K. Rengasamy, A. Bose, Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications, J. Ind. Microbiol. Biotechnol. 49(4) (2022) kuac012 1-12. https://doi.org/10.1093/jimb/kuac012
[42] J. Deng, Y. Song, Z. Lan, Z. Xu, Y. Chen, B. Yang, H. Hao, The surface modification effect on the interfacial properties of glass fiber-reinforced epoxy: A molecular dynamics study, Nanotechnol. Rev. 11(1) (2022) 1143-1157. https://doi.org/10.1515/ntrev-2022-0068
[43] Z. Zhang, J. Zeng, J. Groll, M. Matsusaki, Layer-by-layer assembly methods and their biomedical applications, Biomater. Sci 10(15) (2022) 4077-4094. https://doi.org/10.1039/D2BM00497F
[44] S. Zhao, F. Caruso, L. Dähne, G. Decher, B.G. De Geest, J. Fan, N. Feliu, Y. Gogotsi, P.T. Hammond, M.C. Hersam, A. Khademhosseini, N. Kotov, S. Leporatti, Y. Li, F. Lisdat, L.M. Liz-Marzán, S. Moya, P. Mulvaney, A.L. Rogach, S. Roy, D.G. Shchukin, A.G. Skirtach, M.M. Stevens, G.B. Sukhorukov, P.S. Weiss, Z. Yue, D. Zhu, W.J. Parak, The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald, ACS Nano. 13(6) (2019) 6151-6169. https://doi.org/10.1021/acsnano.9b03326
[45] J.J. Richardson, J. Cui, M. Björnmalm, J.A. Braunger, H. Ejima, F. Caruso, Innovation in Layer-by-Layer Assembly, Chem. Rev. 116 (2016) 14828-14867. https://doi.org/10.1021/acs.chemrev.6b00627
[46] C. Wang, M.J. Park, H. Yu, H. Matsuyama, E. Drioli, H.K. Shon, Recent advances of nanocomposite membranes using layer-by-layer assembly, J. Memb. Sci. 661 (2022) 120926 1-30. https://doi.org/10.1016/j.memsci.2022.120926
[47] R. Guillet-Nicolas, L. Marcoux, F. Kleitz, Insights into pore surface modification of mesoporous polymer-silica composites: introduction of reactive amines, New J. Chem. 34 (2010) 355-366. https://doi.org/10.1039/b9nj00478e
[48] A. Fakhar, M. Sadeghi, M. Dinari, Stepwise surface modification of mesoporous silica and its use in poly(urethane‐urea) composite films, Polym. Int. 71 (2022) 107-116. https://doi.org/10.1002/pi.6290
[49] L. Ludescher, R. Morak, S. Braxmeier, F. Putz, N. Hüsing, G. Reichenauer, O. Paris, Hierarchically organized materials with ordered mesopores: adsorption isotherm and adsorption-induced deformation from small-angle scattering, Phys. Chem. Chem. Phys. 22 (2020) 12713-12723. https://doi.org/10.1039/D0CP01026J
[50] Z.A. ALOthman, A Review: Fundamental Aspects of Silicate Mesoporous Materials, Mater. 5 (2012) 2874-2902. https://doi.org/10.3390/ma5122874
[51] J. Goscianska, A. Olejnik, R. Pietrzak, Comparison of ordered mesoporous materials sorption properties towards amino acids, Adsorption. 19 (2013) 581-588. https://doi.org/10.1007/s10450-013-9481-z
[52] N.S. Ali, H.N. Harharah, I.K. Salih, N.M. Cata Saady, S. Zendehboudi, T.M. Albayati, Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater, Sci. Rep. 13 (2023) 9837. https://doi.org/10.1038/s41598-023-37090-4
[53] T. Ohsuna, Z. Liu, S. Che, O. Terasaki, Characterization of Chiral Mesoporous Materials by Transmission Electron Microscopy, Small. 1(2) (2005) 233-237. https://doi.org/10.1002/smll.200400048
[54] S.M. Shawky, A.A. Abo-AlHassan, H. Lill, D. Bald, S.F. EL-Khamisy, M.E. El-Zeiny, Efficient Loading and Encapsulation of Anti-Tuberculosis Drugs using Multifunctional Mesoporous Silicate Nanoparticles, J. Nanosci. Curr. Res. 1(1) (2016) 1-9.
[55] S. Hudson, D.A. Tanner, W. Redington, E. Magner, K. Hodnett, S. Nakahara, Quantitative TEM analysis of a hexagonal mesoporous silicate structure, Phys. Chem. Chem. Phys. 8(29) (2006) 3467-3474. https://doi.org/10.1039/b605581h
[56] M.L. Ruiz-González, A. Torres-Pardo, J.M. González-Calbet, The Role of Transmission Electron Microscopy in the Early Development of Mesoporous Materials for Tissue Regeneration and Drug Delivery Applications, Pharmaceutics 13(12) (2021) 2200. https://doi.org/10.3390/pharmaceutics13122200
[57] W. Wei, L. Ziwei, H. Jiajie, Z. Yi, L. Yongsheng, Microstructure Characterization of Mesoporous Materials by FE-SEM, J. Test. Eval. 40(3) (2012) 496-500. https://doi.org/10.1520/JTE104285
[58] G.A. Eimer, M.B. Gómez Costa, L.B. Pierella, O.A. Anunziata, Thermal and FTIR spectroscopic analysis of the interactions of aniline adsorbed on to MCM-41 mesoporous material, J. Colloid Interface Sci. 263(2) (2003) 400-407. https://doi.org/10.1016/S0021-9797(03)00038-9
[59] S. Kumar, A. Sharma, D. Gautam, S. Hooda, Characterization of Mesoporous Materials, in: A. Uthaman, S. Thomas, T. Li, H. Maria (Eds.) Advanced Functional Porous Materials. Engineering Materials, Springer Cham., Switzerland AG, 2022, pp. 175-204. https://doi.org/10.1007/978-3-030-85397-6_6
[60] P. Basu, Analytical Techniques, in: P. Basu (Ed.), Biomass Gasification, Pyrolysis and Torrefaction, Academic Press, Elsevier Inc., United Kingdom, 2018, pp. 479-495. https://doi.org/10.1016/B978-0-12-812992-0.00023-6
[61] D. Camuffo, Measuring Time of Wetness and Moisture in Materials, in: Microclimate for Cultural Heritage, Elsevier B.V., United Kingdom, 2019, pp. 459-482. https://doi.org/10.1016/B978-0-444-64106-9.00019-5
[62] M. Kaasalainen, V. Aseyev, E. von Haartman, D.S. Karaman, E. Mäkilä, H. Tenhu, J. Rosenholm, J. Salonen, Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering, Nanoscale Res. Lett. 12(1) (2017) 74. https://doi.org/10.1186/s11671-017-1853-y
[63] F. Babick, Dynamic light scattering (DLS), in: V.D. Hadoroaba, W.E.S. Unger, A.G. Shard (Eds.), Characterization of Nanoparticles, Elsevier Inc., United Kingdom, 2020, pp. 137-172. https://doi.org/10.1016/B978-0-12-814182-3.00010-9
[64] Z. Jia, J. Li, L. Gao, D. Yang, A. Kanaev, Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing. Colloids and Interfaces, 7(15) (2023) 1-18. https://doi.org/10.3390/colloids7010015
[65] S.K. Filippov, R. Khusnutdinov, A. Murmiliuk, W. Inam, L.Y. Zakharova, H. Zhang, V.V. Khutoryanskiy, Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results, Mater. Horiz. 10 (2023) 5354-5370. https://doi.org/10.1039/D3MH00717K
[66] R. Guillet-Nicolas, R. Ahmad, K.A. Cychosz, F. Kleitz, M. Thommes, Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica – recent advances by combining physical adsorption with mercury porosimetry. New J. Chem. 40 (2016) 4351-4360. https://doi.org/10.1039/C5NJ03466C
[67] S.P. Rigby, New methodologies in mercury porosimetry, Stud. Surf. Sci. Catal. 144 (2002) 185-192. https://doi.org/10.1016/S0167-2991(02)80133-1
[68] C. Schlumberger, M. Thommes, Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry-A Tutorial Review, Adv. Mater. Interfaces. 8(4) (2021) 1-25. https://doi.org/10.1002/admi.202002181
[69] D. Majda, M. Zimowska, K. Tarach, K. Góra-Marek, B.D. Napruszewska, A. Michalik-Zym, Water thermoporosimetry as a tool of characterization of the textural parameters of mesoporous materials, J. Therm. Anal. Calorim. 127 (2017) 207-220. https://doi.org/10.1007/s10973-016-5400-3
[70] D. Khan, Shaily. Synthesis and catalytic applications of organo‐functionalized MCM‐41 catalyst: A review, Appl. Organomet. Chem. 37(3) (2023) 1-9. https://doi.org/10.1002/aoc.7007
[71] N.S. Ali, H.N. Harharah, I.K. Salih, N.M. Cata Saady, S. Zendehboudi, T.M. Albayati, Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater, Sci. Rep. 13 (2023) 9837. https://doi.org/10.1038/s41598-023-37090-4
[72] F.M. Bobonich, A.S. Kovalenko, Yu.G. Voloshina, A.S. Korchev, V.N. Solomakha, A.P. Philippov, Y.G. II’in, Adsorptive Properties of Template-Containing Silica-Based MCM-41 and MCM-50 Materials, Adsorp. Sci. Technol. 20(6) (2002) 595-605. https://doi.org/10.1260/026361702321039528
[73] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120(24) (1998) 6024-6036. https://doi.org/10.1021/ja974025i
[74] T.V. Sagar, B. Abhishek, Production techniques of functional solid catalysts, in: C.M. Hussain, P. Sudarsanam (Eds.), Advanced Functional Solid Catalysts for Biomass Valorization, Elsevier Inc., United Kingdom, 2020, pp. 39-75. https://doi.org/10.1016/B978-0-12-820236-4.00002-7
[75] C. Jo, K. Kim, R. Ryoo, Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution, Microporous and Mesoporous Mater. 124(1-3) (2009) 45-51. https://doi.org/10.1016/j.micromeso.2009.04.037
[76] H. Aghavandi, A. Ghorbani-Choghamarani, FDU-12@AGA-Pd: A green, novel, recyclable, and highly versatile mesoporous catalyst for C-C coupling reaction and synthesis of tetrazoles, J. Organomet. Chem. 1015 (2024) 123209. https://doi.org/10.1016/j.jorganchem.2024.123209
[77] L.M. Henning, G.J. Smales, M.G. Colmenares, M.F. Bekheet, U. Simon, A. Gurlo, Synthesis and properties of COK‐12 large‐pore mesocellular silica foam. Nano Select 4(3) (2023) 202-212. https://doi.org/10.1002/nano.202200223
[78] C.G. Visconti, Alumina: A Key-Component of Structured Catalysts for Process Intensification, T. Indian Ceram. Soc. 71 (2012) 123-136. https://doi.org/10.1080/0371750X.2012.738481
[79] G. Busca, The surface of transitional aluminas: A critical review, Catal. Today. 226 (2014) 2-13. https://doi.org/10.1016/j.cattod.2013.08.003
[80] Y. Jeong, M. Cui, J. Choi, Y. Lee, J. Kim, Y. Son, J. Khim, Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A, Chemosphere. 238 (2020) 124559. https://doi.org/10.1016/j.chemosphere.2019.124559
[81] M.M. Rahman, M.G. Ara, M.A. Alim, M.S. Uddin, A. Najda, G.M. Albadrani, A.A. Sayed, S.A. Mousa, M.M. Abdel-Daim, Mesoporous Carbon: A Versatile Material for Scientific Applications, Int. J. Mol. Sci. 22(9) (2021) 4498. https://doi.org/10.3390/ijms22094498
[82] P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, F.J. Romero-Salguero, Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications, Chem. Soc. Rev. 42 (2013) 3913-3955. https://doi.org/10.1039/C2CS35222B
[83] H. Dai, X. Yuan, L. Jiang, H. Wang, Z. Jin, Z. Jingjing, T. Xiong, Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective, Coord. Chem. Rev. 441 (2021) 213985. https://doi.org/10.1016/j.ccr.2021.213985
[84] P. Shen, B. Zhang, Y. Wang, X. Liu, C. Yu, T. Xu, S.S. Mofarah, Y. Yu, Y. Liu, H. Sun, H. Arandiyan, Nanoscale niobium oxides anode for electrochemical lithium and sodium storage: a review of recent improvements. J Nanostructure Chem. 11 (2021) 33-68. https://doi.org/10.1007/s40097-020-00367-5
[85] Y. Jiao, X. Zhang, H. Yang, H. Ma, J. Zou, Mesoporous tantalum oxide nanomaterials induced cardiovascular endothelial cell apoptosis via mitochondrial-endoplasmic reticulum stress apoptotic pathway, Drug Deliv. 30 (2023) 108-120. https://doi.org/10.1080/10717544.2022.2147251
[86] Z. Yu, S. Zhu, L. Zhang, S. Watanabe, Mesoporous single crystal titanium oxide microparticles for enhanced visible light photodegradation, Opt. Mater. (Amst) 127 (2022) 112297. https://doi.org/10.1016/j.optmat.2022.112297
[87] B. Leonetti, A. Perin, E.K. Ambrosi, G. Sponchia, P. Sgarbossa, A. Castellin, P. Riello, A. Scarso, Mesoporous zirconia nanoparticles as drug delivery systems: Drug loading, stability and release, J. Drug Deliv. Sci. Technol. 61 (2021) 102189. https://doi.org/10.1016/j.jddst.2020.102189
[88] Z. Guo, Y. Chen, S. Wang, J. Pang, Z. Liu, Dendritic Mesoporous Silica Nanospheres: Toward the Ultimate Minimum Particle Size for Ultraefficient Liquid Chromatographic Separation, ACS Appl. Mater. Interfaces. 13 (2021) 22970-22977. https://doi.org/10.1021/acsami.1c03985