Mesoporous Materials for Diagnostics Applications
Melkamu Biyana Regasa
Mesoporous materials emerged as highly functional material systems to solve the problems of medical issues in health diagnostics. This might be because of these materials’ tunable structure, broad surface areas, advanced cargo capability, voluminous chemical availability, low cost, low toxicity, high performance for visualization and treatment, and outstanding possibility to incorporate the desirable functions for diagnosis. Recently, tremendous investigations were performed along the potential applications of mesoporous materials in diagnosis like therapeutics, theranostic, medical imaging, point-of-care tests and clinical laboratory testing. This chapter discusses the applications of mesoporous materials in the advancement of precise drug transportation, improving the accuracy of bioimaging techniques, theranostic, point-of-care test and clinical laboratory testing.
Keywords
Mesoporous Materials, Health Diagnosis, Theranostic, Bioimaging, Point-of-Care-Test, Therapeutics
Published online 3/20/2025, 26 pages
Citation: Melkamu Biyana Regasa, Mesoporous Materials for Diagnostics Applications, Materials Research Foundations, Vol. 173, pp 470-495, 2025
DOI: https://doi.org/10.21741/9781644903452-18
Part of the book on Mesoporous Materials
References
[1] I.A. Spiridon, I.D. Cӑruntu, I. Spiridon, R. Brӑescu, Insight into potential biomedical application of mesoporous materials, Pharmaceutics. 14 (2022) 2382. https://doi.org/10.3390/pharmaceutics14112382
[2] R. Diab, N. Canilho, I.A. Pavel, F.B. Haffner, M. Girardon, A. Pasc, Silica-based systems for oral delivery of drugs, macromolecules and cells, Adv. Colloid Interface Sci. 249 (2017) 346-362. https://doi.org/10.1016/j.cis.2017.04.005
[3] L. Giorno, E. Piacentini, F. Bazzarelli, Macroporous, Mesoporous, and microporous membranes. In ; E. Drioli, L. Giorno, (Eds.), Encyclopedia of Membranes, Springer: Berlin/Heidelberg, Germany, 2016, pp. 1-2. https://doi.org/10.1007/978-3-642-40872-4_2244-1
[4] J.A. Cecilia, R.M. Tost, M.R. Millan, Mesoporous materials: From synthesis to applications, Int. J. Mol. Sci. 20 (2019) 3213. https://doi.org/10.3390/ijms20133213
[5] N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Enzymes immobilized in mesoporous silica: A physical-chemical perspective, Adv. Colloid Interface Sci. 205 (2014) 339-360. https://doi.org/10.1016/j.cis.2013.08.010
[6] D.B. Emrie, Sol-gel synthesis of nanostructured mesoporous silica powder and thin films, J. Nanomater. 2024 (2024) 16. https://doi.org/10.1155/2024/6109770
[7] M. Bayoumia, M.M. Kamil, F.A. Rahi, N.Z. Kbah, A.A. Ma’aen, Advanced mesoporous silica nanoparticles: Synthesis, characteristics, and applications, J. Med. Sci. 2 (2023) 43e48. https://doi.org/10.55810/2789-9128.1019
[8] M. Vallet-Regí, Our contributions to applications of mesoporous silica nanoparticles. Acta Biomater. 137 (2022) 44-52. https://doi.org/10.1016/j.actbio.2021.10.011
[9] J.M. Rosenholm, C. Sahlgren, M. Linden, Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment, Curr. Drug Targets. 12 (2011) 1166 – 1186. https://doi.org/10.2174/138945011795906624
[10] K.W. Kim, B. Park, J. Kim, C. Jo, J.K. Kim, Recent progress in block copolymer soft-template-assisted synthesis of versatile mesoporous materials for energy storage systems, J. Mater. Chem. A. 11 (2023) 7358-7386. https://doi.org/10.1039/D2TA09353G
[11] H.N. Lokupitiya, A. Jones, B. Reid, S. Guldin, M. Stefik, Ordered mesoporous to macroporous oxides with tunable isomorphic architectures: Solution criteria for persistent micelle templates, Chem. Mater. 28 (2016) 1653-1667. https://doi.org/10.1021/acs.chemmater.5b04407
[12] F. Trindade, M.J. Politi, 2-Sol-gel chemistry-deals with sol-gel processes, in: R. Bacani, M.J. Politi, F. Trindade, E.R. Triboni (Eds.), Nano Design for Smart Gels, Elsevier, 2019, pp. 15-34. https://doi.org/10.1016/B978-0-12-814825-9.00002-3
[13] N.I. Vazquez, Z. Gonzalez, B. Ferrari, Y. Castro, Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications, Bol. Soc. Esp. de Cerám. Vidr. 56 (2017) 139-145. https://doi.org/10.1016/j.bsecv.2017.03.002
[14] Y. Han, L. Zhang, W. Yang, Synthesis of mesoporous silica using the sol-gel approach: Adjusting architecture and composition for novel applications, Nanomaterials. 14 (2024) 903. https://doi.org/10.3390/nano14110903
[15] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis, Mater. Horiz. 3 (2016) 91-112. https://doi.org/10.1039/C5MH00260E
[16] K. Xue, B. Lin, S. Huang, B. Cai, W. Lai, T. Zhan, Y. Liang, C. Zhang, A dry chemistry, ultrasensitive microfluidic fiber material-based immunosensor for electrochemiluminescence point-of-care testing of luteinizing hormone, Sens. Actuators B: Chem. 393 (2023) 134259. https://doi.org/10.1016/j.snb.2023.134259
[17] S.M. Savić, K. Vojisavljević, M. Počuča-Nešić, K. Živojević, M. Mladenović, N.Z. Knežević, Hard template synthesis of nanomaterials based on mesoporous silica, Metall. Mater. Eng. 24 (2018) 225-241. https://doi.org/10.30544/400
[18] W. Xin, Y.H. Song, Mesoporous carbons: Recent advances in synthesis and typical applications, RSC Adv. 5 (2015) 83239-83285. https://doi.org/10.1039/C5RA16864C
[19] M. Marcos-Hernández, D. Villagrán, 11-Mesoporous composite nanomaterials for dye removal and other applications, in: George Z. Kyzas, Athanasios C. Mitropoulos (Eds.), Micro and Nano Technologies, Composite Nanoadsorbents, Elsevier, 2019, pp 265-293. https://doi.org/10.1016/B978-0-12-814132-8.00012-5
[20] J. Zhang, B. Shen, J. Chen, L. Chen, Y. Meng, J. Feng, A dual-sensitive mesoporous silica nanoparticle based drug carrier for cancer synergetic therapy, Colloids Surf. B: Biointerfaces. 175 (2019) 65-72. https://doi.org/10.1016/j.colsurfb.2018.11.071
[21] S. Daneshjou, B. Dabirmanesh, F. Rahimi, S. Jabbari, K. Khajeh, Catalytic parameters and thermal stability of chondroitinase ABCI on red porous silicon nanoparticles, J. Biotechnol. 324 (2020) 83-90. https://doi.org/10.1016/j.jbiotec.2020.09.020
[22] S. Azizi, J. Soleymani, S. Shojaei, N. Shadjou, Synthesize of folic acid functionalized dendritic fibrous nanosilica and its application as an efficient nanocatalyst for access to direct amidation of carboxylic acids with amines, J. Nanostructures. 10 (2020) 671-681.
[23] E. Elimbinzi, S.S. Nyandoro, E.B. Mubofu, J.C. Manayil, A.F. Lee, K. Wilson, Valorization of rice husk silica waste: Organoamine functionalized castor oil templated mesoporous silicas for biofuels synthesis, Microporous Mesoporous Mater. 294 (2020) 109868. https://doi.org/10.1016/j.micromeso.2019.109868
[24] X.Q. Wu, Z.D. Shao, Q. Liu, Z. Xie, F. Zhao, Y.M. Zheng, Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water, J. Colloid Interface Sci. 553 (2019) 156-166. https://doi.org/10.1016/j.jcis.2019.06.019
[25] S. Kumar, M. Malik, R. Purohit, Synthesis methods of mesoporous silica materials, Mater. Today Proc. 4 (2017) 350-357. https://doi.org/10.1016/j.matpr.2017.01.032
[26] S.A. Jadhav, I. Miletto, V. Brunella, D. Scalarone, G. Berlier, Porous silica particles: Synthesis, physicochemical characterization and evaluation of suspension stability, Phys. Chem. Ind J. (2017) 1-11. https://doi.org/10.3144/expresspolymlett.2017.11
[27] W. Yang, S. Shirazian, R. Soltani, M.H. Zare, Bio-originated mesosilicate SBA-15: Synthesis, characterization, and application for heavy metal removal, npj Clean Water. 7 (2024) 49. https://doi.org/10.1038/s41545-024-00340-7
[28] I. Nowak, A. Feliczak-Guzik, Mesoporous materials: Materials, technological, and environmental applications, Int. J. Mol. Sci. 24 (2023) 9197. https://doi.org/10.3390/ijms24119197
[29] G. Sharma, Biogenic carbon nanostructured materials for detection of cancer and medical applications: A mini review, Hybrid Adv. 5 (2024) 100166. https://doi.org/10.1016/j.hybadv.2024.100166
[30] P.S. Shinde, P.S. Suryawanshi, K.K. Patil, V.M. Belekar, SA. Sankpal, S.D. Delekar, S.A. Jadhav, A brief overview of recent progress in porous silica as catalyst supports, J. Compos. Sci. 5 (2021) 75. https://doi.org/10.3390/jcs5030075
[31] A.H. Chowdhury, N. Salam, R. Debnath, S.M. Islam, T. Saha, Design and fabrication of porous nanostructures and their applications, in: Y.B. Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens, V. Kokol (Eds.), Micro and Nano Technologies, Nanomaterials Synthesis, Elsevier, 2019, pp 265-294. https://doi.org/10.1016/B978-0-12-815751-0.00008-0
[32] J. Li, J. Huang, Y. Jiang, L. Wu, Y. Deng, Magnetic large-mesoporous nanoreactors enable enzymatically regulated background-free and persistently signalling diseases diagnosis. Adv. Funct. Mater. 33 (2023) 2212317. https://doi.org/10.1002/adfm.202212317
[33] Y. Kuwahara, D.Y. Kang, J.R. Copeland, N.A. Brunelli, S.A. Didas, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C.W. Jones, Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J. Am. Chem. Soc. 134 (2012) 10757-10760. https://doi.org/10.1021/ja303136e
[34] S. Liu, X. He, X. Hu, Y. Puab, X. Mao, Porous nanomaterials for biosensing and related biological application in in vitro/vivo usability, Mater. Adv. 5 (2024) 453. https://doi.org/10.1039/D3MA00498H
[35] F.R. Mansour, S.F. Hammad, I.A. Abdallah, A. Bedair, R.M. Abdelhameed, M. Locatelli, Applications of metal organic frameworks in point of care testing, Trends Anal. Chem. 172 (2024) 117596. https://doi.org/10.1016/j.trac.2024.117596
[36] E.B. Cho, J. Park, M. Jaroniec, Structural stability of Si-C bonds in periodic mesoporous thiophene-silicas prepared under acidic conditions, J. Phys. Chem. C. 117 (2013) 21441-21449. https://doi.org/10.1021/jp408385t
[37] Y.Q. Almajidi, R.H. Althomali, K. Gandla, H. Uinarni, N. Sharma, B.M. Hussien, M.S. Alhassan, Romero-Parra, R.M., Bisht, Y.S. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications, Microchem. J. 191 (2023) 108901. https://doi.org/10.1016/j.microc.2023.108901
[38] L. Xu, Z. Lin, Y. Chen, Z. Fan, X. Pei, S. Yang, X. Kou, Y. Wang, Z. Zou, D. Xi, P. Yin, G. Su, M. Zhou, J. Dai, L. Pan, Y. Zhao, Carbon-based cages with hollow confined structures for efficient microwave absorption: State of the art and prospects, Carbon. 201 (2023) 1090-1114. https://doi.org/10.1016/j.carbon.2022.10.015
[39] S. Jarmolińska, A. Feliczak-Guzik, I. Nowak, Synthesis, characterization and use of mesoporous silicas of the following types SBA-1, SBA-2, HMM-1 and HMM-2, Materials. 13 (2020) 1-33. https://doi.org/10.3390/ma13194385
[40] N. Pal, A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids, Adv. Colloid Interface Sci. 189 (2013) 21-41. https://doi.org/10.1016/j.cis.2012.12.002
[41] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F.R. Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 ( 2015) 1051-1069. https://doi.org/10.1515/pac-2014-1117
[42] B. Xu, S. Li, R. Shi, H. Liu, Multifunctional mesoporous silica nanoparticles for biomedical applications, Signal Transduct. Target. Ther. 8 (2023) 435. https://doi.org/10.1038/s41392-023-01654-7
[43] T.T.H. Thi, V.D. Cao, T.N.Q. Nguyen, D.T. Hoang, V.C. Ngo, D.H. Nguyen, Functionalized mesoporous silica nanoparticles and biomedical applications, Mater. Sci. Eng. C. 99 (2019) 631-656. https://doi.org/10.1016/j.msec.2019.01.129
[44] M.K.M. Esfahani, S.E. Alavi, P.J. Cabot, N. Islam, E.L. Izake, Application of mesoporous silica nanoparticles in cancer therapy and delivery of repurposed anthelmintics for cancer therapy, Pharmaceutics. 14 (2022) 1579. https://doi.org/10.3390/pharmaceutics14081579
[45] M. Ghaferi, M.K.M. Esfahani, A. Raza, S. Al Harthi, Ebrahimi Shahmabadi H., Alavi S.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances, J. Drug Target. 29(2021) 131-154. https://doi.org/10.1080/1061186X.2020.1812614
[46] Y. Gao, D. Gao, J. Shen, Q. Wang, A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies, Front. Chem. 8 (2020) 598722. https://doi.org/10.3389/fchem.2020.598722
[47] M. Moritz, M. Geszke-Moritz, Mesoporous materials as elements of modern drug delivery systems for anti-inflammatory agents: A review of recent achievements, Pharmaceutics. 14 (2022) 1542. https://doi.org/10.3390/pharmaceutics14081542
[48] C. Han, H. Huang, Y. Dong, X. Sui, B. Jian, W. Zhu, A comparative study of the use of mesoporous carbon and mesoporous silica as drug carriers for oral delivery of the water-insoluble drug carvedilol, Molecules. 24 (2019) 1770. https://doi.org/10.3390/molecules24091770
[49] S. Porrang, S. Davaran, N. Rahemi, S. Allahyari, E. Mostafavi, How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature, Int. J. Nanomed. 17 (2022) 1803-1827. https://doi.org/10.2147/IJN.S353349
[50] S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B.S. Varnamkhasti, A.A. Saboury, Mesoporous silica nanoparticles for therapeutic/diagnostic applications, Biomed Pharmacother. 109 (2019) 1100-1111. https://doi.org/10.1016/j.biopha.2018.10.167
[51] M. Ashrafizadeh, H. Saebfar, M.H. Gholami, K. Hushmandi, A. Zabolian, P. Bikarannejad, M. Hashemi, S. Daneshi, S. Mirzaei, E. Sharifi, A.P. Kumar, H. Khan, H.S Hossein, M. Vosough, N. Rabiee, V.K. Thakur, P. Makvandi, Y.K. Mishra, F.R. Tay, Y. Wang, A. Zarrabi, G. Orive, E. Mostafavi. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance, Expert Opin. Drug Deliv. 19 ( 2022) 355-382. https://doi.org/10.1080/17425247.2022.2041598
[52] L. Liu, H. Ma, J. Yu, Y. Fan, Fabrication of glycerophosphate-based nanochitin hydrogels for prolonged release under in vitro physiological conditions, Cellulose. 28 (2021) 4887-4897. https://doi.org/10.1007/s10570-021-03819-5
[53] B.K. Poudel, Z.C. Soe, H.B. Ruttala, B. Gupta, T. Ramasamy, T.K. Thapa, M. Gautam, W. Ou, H.T. Nguyen, J.H. Jeong, S.G. Jin, H.G. Choi, C.S. Yong, J.O. Kim, In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers, Int. J. Pharm. 548 (2018) 92-103. https://doi.org/10.1016/j.ijpharm.2018.06.056
[54] M. Karimi, H. Mirshekari, M. Aliakbari, P. Sahandi-Zangabad, M.R. Hamblin, Smart mesoporous silica nanoparticles for controlled-release drug delivery, Nanotechnol Rev. 5 (2016) 195-207. https://doi.org/10.1515/ntrev-2015-0057
[55] Z. Zhang, W. He, J. Zheng, G. Wang, J. Ji, Rice husk ash-derived silica nanofluids: Synthesis and stability study, Nanoscale Res. Lett. 11 (2016) 502. https://doi.org/10.1186/s11671-016-1726-9
[56] A. Pourjavadi, Z.M. Tehrani, S. Jokar, Chitosan based supramolecular polypseudorotaxane as a pH-responsive polymer and their hybridization with mesoporous silica-coated magnetic graphene oxide for triggered anticancer drug delivery, Polymer. 76 (2015) 52-61. https://doi.org/10.1016/j.polymer.2015.08.050
[57] M. Mladenović, I. Morgan, N. Ilić, M. Saoud, MV. Pergal, G.N. Kaluđerović, N.Z. Knežević, pH-Responsive release of ruthenium metallotherapeutics from mesoporous silica-based nanocarriers, Pharmaceutics. 13 (2021) 460. https://doi.org/10.3390/pharmaceutics13040460
[58] L. Ma’mani, S. Nikzad, H. Kheiri-Manjili, S. Al-Musawi, M. Saeedi, S. Askarlou, A. Foroumadi, A. Shafiee, Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy, Eur. J. Med. Chem. 83 (2014) 646-54. https://doi.org/10.1016/j.ejmech.2014.06.069
[59] K. Vaghasiya, E. Ray, A. Sharma, O.P. Katare, R.K. Verma, Matrix metalloproteinase-responsive mesoporous silica nanoparticles cloaked with cleavable protein for “self-actuating” on-demand controlled drug delivery for cancer therapy, ACS App. Bio. Mater. 3 (2020) 4987-4999. https://doi.org/10.1021/acsabm.0c00497
[60] Y. Wang, L. Wang, L. Guo, M. Yan, L. Feng, S. Dong, J. Hao, Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy, New J. Chem. 43 (2019) 4908-4918. https://doi.org/10.1039/C8NJ06105J
[61] N. Asadi, N. Annabi, E. Mostafavi, M. Anzabi, R. Khalilov, S. Saghfi, M. Mehrizadeh, A. Akbarzadeh, Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL-PEG-PCL for controlled delivery of 5FU, Artif. Cells Nanomed. Biotechnol. 46 (2018) 938-945. https://doi.org/10.1080/21691401.2018.1439839
[62] J. Wu, D.H. Bremner, S. Niu, D. Li, R. Tang, L.M. Zhu, Multifunctional A7R peptide-modified hollow mesoporous silica@ Ag2S nanotheranostics for photoacoustic/near-infrared fluorescence imaging-guided tumor-targeted chemo-photothermal therapy, J. Biomed. Nanotechnol. 15 (2019) 1415-1431. https://doi.org/10.1166/jbn.2019.2729
[63] C. Ong, B.G. Cha, J. Kim, Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy, ACS App. Bio. Mater. 2 (2019) 3630-3638. https://doi.org/10.1021/acsabm.9b00483
[64] L. Zhang, Y. Li, C.Y. Jimmy, Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment, J. Mater. Chem. B. 2 (2014) 452-470. https://doi.org/10.1039/C3TB21196G
[65] X. Liu, X. Wu, Y. Xing, Y. Zhang, X. Zhang, Q. Pu, M. Wu, J.X. Zhao, Reduced graphene oxide/mesoporous silica nanocarriers for pH-triggered drug release and photothermal therapy, ACS App. Bio. Mater. 3 (2020) 2577-2587. https://doi.org/10.1021/acsabm.9b01108
[66] G. Song, Q. Wang, Y. Wang, G. Lv, C. Li, R. Zou, Z. Chen, Z. Qin, K. Huo, R. Hu, J. Hu, A low-toxic multifunctional nanoplatform based on Cu9S5@ mSiO2 core-shell nanocomposites: Combining photothermal-and chemotherapies with infrared thermal imaging for cancer treatment, Adv. Funct. Mater. 23 (2013) 4281-4292. https://doi.org/10.1002/adfm.201203317
[67] J. Liu, C. Wang, X. Wang, L. Cheng, Y. Li, Z. Liu, Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy, Adv. Funct. Mater. 25 (2015) 384-392. https://doi.org/10.1002/adfm.201403079
[68] S. Chen, C. Xing, D. Huang, C. Zhou, B. Ding, Z. Gou, Z. Peng, D. Wang, X. Zhu, Y. Cao, Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions, Sci. Adv. 6 (2020) eaay6825. https://doi.org/10.1126/sciadv.aay6825
[69] S. Barui, V. Cauda, Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy, Pharmaceutics. 12 (2020) 527. https://doi.org/10.3390/pharmaceutics12060527
[70] Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications, Int. J. Pharm. 420 (2011) 1-10. https://doi.org/10.1016/j.ijpharm.2011.08.032
[71] V. Negri, J. Pacheco-Torres, D. Calle, P. López-Larrubia, Carbon nanotubes in biomedicine, Top. Curr. Chem. (Cham). 378 (2020) 15. https://doi.org/10.1007/s41061-019-0278-8
[72] Y. Wang, Y. Xie, K.V. Kilchrist, J. Li, C.L. Duvall, D. Oupický, Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for sirna/mirna combination cancer therapy, ACS Appl. Mater. Interfaces. 12 (2020) 4308-4322. https://doi.org/10.1021/acsami.9b21214
[73] S. Pinel, N. Thomas, C. Boura, M. Barberi-Heyob, Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment, Adv. Drug. Deliv. Rev. 138 (2019) 344-357. https://doi.org/10.1016/j.addr.2018.10.013
[74] M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Mesoporous silica nanoparticles for drug delivery: Current insights, Molecules. 23 (2018) 47. https://doi.org/10.3390/molecules23010047
[75] N. Vadia, S. Rajput, Applications of mesoporous material for drug delivery, in: Importance & Applications of Nanotechnology, MedDocs Publishers, 2019.
[76] B. Fu, M. Dang, J. Tao, Y. Li, Y. Tang, Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo photothermal breast cancer therapy, J. Colloid Interface Sci. 570 (2020) 197-204. https://doi.org/10.1016/j.jcis.2020.02.051
[77] N. Alamer, A. Meshkini, L. Khoshtabiat, A. Behnamsani, Synergizing effects of chemodynamic therapy and chemotherapy against breast cancer by oxaliplatin-loaded polydopamine/BSA@copper ferrite, J. Drug Deliv. Sci. Technol. 72 (2022) 103391. https://doi.org/10.1016/j.jddst.2022.103391
[78] H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen, W. Gu, Z. Zhang, H. Yu, P. Zhang, S. Wang, Y. Li, Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer, Adv. Funct. Mater. 27 (2017) 1604300. https://doi.org/10.1002/adfm.201604300
[79] E.B. Kang, G.B. Lee, I. In, S.Y. Park, pH-Sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide, Eur. Polym. J. 101 (2018) 96-104. https://doi.org/10.1016/j.eurpolymj.2018.02.016
[80] H.S. Tuli, R. Joshi, G. Kaur, V.K. Garg, K. Sak, M. Varol, J. Kaur, S.A. Alharbi, T.A. Alahmadi, D. Aggarwal, K. Dhama, V.S. Jaswal, S. Mittal, G. Sethi, Metal nanoparticles in cancer: From synthesis and metabolism to cellular interactions, J. Nanostructure Chem. 13 (2022) 321-348. https://doi.org/10.1007/s40097-022-00504-2
[81] W. Li, Z. Cao, R. Liu, L. Liu, H. Li, X. Li, Y. Chen, C. Lu, Y. Liu, AuNPs as an important inorganic nanoparticle applied in drug carrier systems, Artif. Cells Nanomed. Biotechnol. 47 (2019) 4222-4233. https://doi.org/10.1080/21691401.2019.1687501
[82] S. Liang, G. Liao, W. Zhu, L. Zhang, Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies, Biomater. Res. 26 (2022) 32. https://doi.org/10.1186/s40824-022-00275-5
[83] G. Yang, L. Xu, Y. Chao, J., Xu, X. Sun, Y. Wu, R. Peng, Z. Liu, Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses, Nat. Commun. 8 (2017) 902. https://doi.org/10.1038/s41467-017-01050-0
[84] P.L. Abbaraju, Mesoporous Silica Nanoparticles for Biomedical Application, Aust Institute for Bioengineering & Nanotechnology Institution, The University of Queensland, https://espace.library.uq.edu.au/ view/UQ:681687/2017 (accessed July 20, 2024).
[85] Z.X. Zhao, Y.Z. Huang, S.G. Shi, S.H. Tang, D.H. Li, X.L. Chen, Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy, Nanotechnology. 25 (2014) 285701. https://doi.org/10.1088/0957-4484/25/28/285701
[86] S. Feng, Y. Mao, X. Wang, M. Zhou, H. Lu, Q. Zhao, S. Wang, Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy, J. Colloid Interface Sci. 559 (2020) 51-64. https://doi.org/10.1016/j.jcis.2019.09.120
[87] B.S. Fateh, M. Hamidi, A. Maleki, Z. Karami, H. Mohamadpour, M.R.S. Zanjani, Polysorbate-coated mesoporous silica nanoparticles as an efficient carrier for improved rivastigmine brain delivery, Brain Res. 1781 (2022) 147786. https://doi.org/10.1016/j.brainres.2022.147786
[88] S. Wang, W. Wu, Y. Liu, C. Wang, Q. Xu, Q. Lv, R. Huang, X. Li, Targeted peptide-modified oxidized mesoporous carbon nanospheres for chemo-thermo combined therapy of ovarian cancer in vitro, Drug Deliv. 29 (2022) 1947-1952. https://doi.org/10.1080/10717544.2022.2089298
[89] D. Gkiliopoulos, I. Tsamesidis, A. Theocharidou, G.K. Pouroutzidou, E. Christodoulou, E. Stalika, K. Xanthopoulos, D. Bikiaris, K. Triantafyllidis, E. Kontonasaki, SBA-15 mesoporous silica as delivery vehicle for rhbmp-2 bone morphogenic protein for dental applications, Nanomaterials. 12 (2022) 822. https://doi.org/10.3390/nano12050822
[90] Z. Wang, X. Li, X Zhang, R. Sheng, Q. Lin, W. Song, L. Hao, Novel contact lenses embedded with drug-loaded zwitterionic nanogels for extended ophthalmic drug delivery, Nanomaterials. 11 (2021) 2328. https://doi.org/10.3390/nano11092328
[91] A. Khorasani, D. Shahbazi-Gahrouei, A. Safari, Recent metal nanotheranostics for cancer diagnosis and therapy: A review, Diagnostics. 13 (2023) 833. https://doi.org/10.3390/diagnostics13050833
[92] P. Sowmiya, T. Stalin Dhas, D. Inbakandan, N. Anandakumar, S. Nalini, K.S.U. Suganya, R.R. Remya, V. Karthick, C.M. Vineeth Kumar, Optically active organic and inorganic nanomaterials for biological imaging applications: A review, Micron. 172 (2023) 103486. https://doi.org/10.1016/j.micron.2023.103486
[93] E. Aznar, M. Oroval, L. Pascual, J.R. Murguia, R. Martinez-Manez, F. Sancenon, Gated materials for on-command release of guest molecules, Chem. Rev. 116 (2016) 561-718. https://doi.org/10.1021/acs.chemrev.5b00456
[94] W.X. Mai, H. Meng, Mesoporous Silica Nanoparticles: A multifunctional nano therapeutic system, Integr. Biol. 5 (2013) 19-28. https://doi.org/10.1039/c2ib20137b
[95] K. Ponsanti, B. Tangnorawich, N. Ngernyuang, C. Pechyen, Synthesis of mesoporous silica nanoparticles (MSNs)/silver nanoparticles (AgNPs): Promising hybrid materials for detection of breast cancer cells, J. Mater. Sci. Mater. Electron. 33 (2022) 7515-7527. https://doi.org/10.1007/s10854-022-07891-w
[96] M. Ma, F. Yan, M. Yao, Z. Wei, D. Zhou, H. Yao, H. Zheng, H. Chen, J. Shi, Template-free synthesis of hollow/porous organosilica-fe3o4 hybrid nanocapsules toward magnetic resonance imaging-guided high-intensity focused ultrasound therapy, ACS Appl. Mater. Interfaces. 8 (2016) 29986-29996. https://doi.org/10.1021/acsami.6b10370
[97] N. Aslan, B. Ceylan, M.M. Koç, F. Findik, Metallic nanoparticles as X-ray computed tomography (CT) contrast agents: A review, J. Mol. Struct. 1219 (2020) 128599. https://doi.org/10.1016/j.molstruc.2020.128599
[98] L. Gholamzadeh, H. Sharghi, M.K. Aminian, Synthesis of barium-doped PVC/Bi2WO6 composites for X-ray radiation shielding, Nucl. Eng. Technol. 54 (2022) 318-325. https://doi.org/10.1016/j.net.2021.07.045
[99] H. Al-Ghamdi, H.M. Hemily, I.H. Saleh, Z.F. Ghataas, A.A. Abdel-Halim, M.I. Sayyed, S. Yasmin, A.H. Almuqrin, M. Elsafi, Impact of WO3-nanoparticles on silicone rubber for radiation protection efficiency, Materials. 15 (2022) 5706. https://doi.org/10.3390/ma15165706
[100] M.N. Azman, N.J. Abualroos, K.A. Yaacob, R. Zainon, Feasibility of nanomaterial tungsten carbide as lead-free nanomaterialbased radiation shielding, Radiat. Phys. Chem. 202 (2022) 110492. https://doi.org/10.1016/j.radphyschem.2022.110492
[101] L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, c. Mao, Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles, Adv. Funct. Mater. 28 (2018) 1704623. https://doi.org/10.1002/adfm.201704623
[102] X. Wang, M. Zheng, F. Raza, Y. Liu, Y. Wei, M. Qiu, J. Su, Recent developments in mesoporous silica nanoparticles for tumor theranostic applications, Curr. Pharm. Des. 28 (2022) 151-164. https://doi.org/10.2174/1381612827666211111152839
[103] M.S. Laranjeira, T.P. Ribeiro, A.I. Magalhães, P.C. Silva, J.A.M. Santos F.J. Monteiro, Magnetic mesoporous silica nanoparticles as a theranostic approach for breast cancer: Loading and release of the poorly soluble drug exemestane, Int. J. Pharm. 619 (2022) 121711. https://doi.org/10.1016/j.ijpharm.2022.121711
[104] Z. Li, J. Guo, M. Zhang, G. Li, L. Hao, Gadolinium-coated mesoporous silica nanoparticle for magnetic resonance imaging, Front. Chem. 10 (2022) 837032. https://doi.org/10.3389/fchem.2022.837032
[105] C. Li, L. Zhao, L. Jia, Z. Ouyang, Y. Gao, R. Guo, S. Song, X. Shi, X. Cao, 68Ga-labeled dendrimer-entrapped gold nanoparticles for PET/CT dual-modality imaging and immunotherapy of tumors, J. Mater. Chem. B. 10 (2022) 3648-3656. https://doi.org/10.1039/D2TB00378C
[106] Z.J. Wang, Q. Li, L.L. Tan, C.G. Liu, L. Shang, Metal-organic frameworks mediated assembly of gold nanoclusters for sensing applications, J. Anal. Test. 6 (2022) 163-177. https://doi.org/10.1007/s41664-022-00224-0
[107] B.T. Cisneros, J.J. Law, M.L. Matson, A. Azhdarinia, E.M. Sevick-Muraca, L.J. Wilson, Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging, Nanomedicine. 9 (2014) 2499-2509. https://doi.org/10.2217/nnm.14.26
[108] S.W. Chou, T.H. Chen, Y.C. Fa, Y.Y. Yang, C.Y. Lin, K.L. Kuo, S.T. Wu, E.C. Lin, J.A. Annie Ho, J.K. Hsiao, gadoliniumengineered magnetic alloy nanoparticles for magnetic resonance T1/T2 dual-modal and computed tomography imaging, Chem. Mater. 34 (2022) 10050-10058. https://doi.org/10.1021/acs.chemmater.2c02537
[109] R. Huang, Y.W. Shen, Y.Y. Guan, Y.X. Jiang, Y. Wu, K. Rahman, L.J. Zhang, H.J. Liu, X. Luan, Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology, Acta Biomater. 116 (2020) 1-15. https://doi.org/10.1016/j.actbio.2020.09.009
[110] X. Cai, Q. Zhu, Y. Zeng, Q. Zeng, X. Chen, Y. Zhan, Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy, Int. J. Nanomed. 14 (2019) 8321-8344. https://doi.org/10.2147/IJN.S218085
[111] K. Deka, K.A. Guleria, D. Kumar, J. Biswas, S. Lodha, S.D. Kaushik, S. Dasgupta, P. Deb, Exclusive T2 MRI contrast enhancement by mesoporous carbon framework encapsulated manganese oxide nanoparticles, Curr. Appl. Phys. 20 (2020) 89-95. https://doi.org/10.1016/j.cap.2019.10.010
[112] W. Xu, S. Zhang, Q. Zhou, W. Chen, VHPKQHR peptide modified magnetic mesoporous nanoparticles for MRI detection of atherosclerosis lesions, Artif. Cells Nanomed. Biotechnol. 47 (2019) 2440-2448. https://doi.org/10.1080/21691401.2019.1626411
[113] X.Y. Zheng, J. Pellico, A.A. Khrapitchev, N.R. Sibson, J.J. Davis, Dy-DOTA integrated mesoporous silica nanoparticles as promising ultrahigh field magnetic resonance imaging contrast agents, Nanoscale. 10 (2018) 21041-21045. https://doi.org/10.1039/C8NR07198E
[114] D. Zhuang, H. Zhang, G. Hu, B. Guo, Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma, J. Nanobiotechnol. 20 (2022) 284. https://doi.org/10.1186/s12951-022-01479-6
[115] Y. Hou, C.C. Lv, Y.L. Guo, X.H. Ma, W. Liu, Y. Jin, B.X. Li, M. Yang, S.Y. Yao, Recent advances and applications in paper-based devices for point-of-care testing, J. Anal. Test. 6 (2022) 247-273. https://doi.org/10.1007/s41664-021-00204-w
[116] H. Wang, Y. Wang, W. Wang, Y. Zhang, Q. Yuan, J. Tan, Materials-functionalized point-of-care testing devices for pathogen detection, Acc. Mater. Res. 4 (2023) 1083-1094. https://doi.org/10.1021/accountsmr.3c00151
[117] Z. Zhang, P. Ma, R. Ahmed, J. Wang, D. Akin, F. Soto, B.F. Liu, P. Li, U. Demirci, Advanced point-of care testing technologies for human acute respiratory virus detection, Adv. Mater. 34 (2022) 1-39. https://doi.org/10.1002/adma.202103646
[118] M.B. Behyar, A. Nilghaz, M. Hasanzadeh, N. Shadjou, Recent progresses and challenges on mesoporous silica nanoparticles for DNA-based biosensors and diagnostics, TrAC Trends Anal. Chem. 178 (2024) 117846. https://doi.org/10.1016/j.trac.2024.117846
[119] L. Zhu, W. Fu, B. Zhu, Q. Feng, X. Ying, S. Li, J. Chen, X. Xie, C. Pan, J. Liu, C. Chen, X. Chen, D. Zhu, An integrated microfluidic electrochemiluminescence device for point-of-care testing of acute myocardial infarction, Talanta. 262 (2023) 124626. https://doi.org/10.1016/j.talanta.2023.124626
[120] J. Guo, S. Chen, S. Tian, K. Liu, X. Ma, J. Guo, A sensitive and quantitative prognosis of C-reactive protein at picogram level using mesoporous silica encapsulated core-shell up-conversion nanoparticle based lateral flow strip assay, Talanta. 230 (2021) 122335. https://doi.org/10.1016/j.talanta.2021.122335
[121] B.J. Burkett, D.J. Bartlett, P.W. McGarrah, A.R. Lewis, D.R. Johnson, K. Berberoğlu, M.K. Pandey, A.T. Packard, T.R. Halfdanarson, C.B. Hruska, G.B. Johnson, A.T. Kendi, A review of theranostics: Perspectives on emerging approaches and clinical advancements, Radiol Imaging Cancer. 5 (2023) e220157. https://doi.org/10.1148/rycan.220157
[122] K. Bannik, B. Madas, M. Jarzombek, A. Sutter, G. Siemeister, D. Mumberg, S. Zitzmann-Kolbe, Radiobiological effects of the alpha emitter Ra-223 on tumor cells, Sci. Rep. 9 (2019) 18489. https://doi.org/10.1038/s41598-019-54884-7
[123] A. Rahikkala, S.A.P. Pereira, P. Figueiredo, M.L.C. Passos, A.R.T.S. Araújo, M.L.M.F.S. Saraiva, H.A. Santos, Mesoporous silica nanoparticles for targeted and stimuli-responsive delivery of chemotherapeutics: A review, Adv. Biosyst. 2 (2018) 1800020. https://doi.org/10.1002/adbi.201800020
[124] B. Darvishi, L. Farahmand, K. Majidzadeh-A, Stimuli-responsive mesoporous silica nps as non-viral dual sirna/chemotherapy carriers for triple negative breast cancer, Mol. Ther. Nucleic Acids. 7 (2017) 164-180. https://doi.org/10.1016/j.omtn.2017.03.007
[125] K. Hemant, P. Balaram, K. Jitender, K. Pramod, In vitro and bioimaging studies of mesoporous silica nanocomposites encapsulated iron-oxide and loaded doxorubicin drug (DOX/IO@Silica) as magnetically guided drug delivery system, Curr. Pharm. Biotechnol. 24 (2023) 1297-1306. https://doi.org/10.2174/1389201023666220428084920
[126] R.R. Castillo, D. Lozano, M. Vallet-Regí, Mesoporous silica nanoparticles as carriers for therapeutic biomolecules, Pharmaceutics. 12 (2020) 432. https://doi.org/10.3390/pharmaceutics12050432
[127] V.L. Dunne, T.C. Wright, F.D.C.G. Liberal, J.M. O’Sullivan, K.M. Prise, Synergistic activity of DNA damage response inhibitors in combination with radium-223 in prostate cancer, Cancers. 16 (2024) 1510. https://doi.org/10.3390/cancers16081510
[128] S. Sargazi, U. Laraib, M. Barani, A. Rahdar, I. Fatima, M. Bilal, S. Pandey, R.K. Sharma, G.Z. Kyzas, Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: A review, J. Mol. Struct. 1261 (2022) 132922. https://doi.org/10.1016/j.molstruc.2022.132922
[129] J. Chen, W. Han, J. Chen, W. Zong, W. Wang, Y. Wang, G. Cheng, C. Li, L. Ou, Y. Yu, High performance of a unique mesoporous polystyrene-based adsorbent for blood purification, Regen. Biomater. 4 (2017) 31-37. https://doi.org/10.1093/rb/rbw038
[130] Y. Pan, P. Xue, S. Liu, L. Zhang, Q. Guan, J. Zhu, X. Tian, Metal-based hybrid nanoparticles as radiosensitizers in cancer therapy, Colloid Interf. Sci. Commun. 23 (2018) 45-51. https://doi.org/10.1016/j.colcom.2018.01.004
[131] H. Zhu, K. Zheng, R. Aldo Boccaccini. Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules, Acta Biomater. 129 (2021) 1-17. https://doi.org/10.1016/j.actbio.2021.05.007
[132] X. Liu, F. Wu, Y. Ji, L. Yin, Recent advances in anti-cancer protein/peptide delivery, Bioconjug. Chem. 30 (2019) 305-324. https://doi.org/10.1021/acs.bioconjchem.8b00750
[133] T. Karpinski, A. Adamczak, Anticancer activity of bacterial proteins and peptides, Pharmaceutics. 10 (2018) 54. https://doi.org/10.3390/pharmaceutics10020054
[134] J. Xie, W. Xu, Y. Wu, B Niu, X. Zhang, Macroporous organosilicon nanocomposites co-deliver Bcl2-converting peptide and chemotherapeutic agent for synergistic treatment against multidrug resistant cancer, Cancer Lett. 469 (2020) 340-354. https://doi.org/10.1016/j.canlet.2019.10.018
[135] Y. Wu, P. Ge, W. Xu, M. Li, Q. Kang, X. Zhang, J. Xie, Cancer-targeted and intracellular delivery of Bcl-2-converting peptide with functional macroporous silica nanoparticles for biosafe treatment, Mater. Sci. Eng. C. 108 (2020) 110386. https://doi.org/10.1016/j.msec.2019.110386
[136] E. Tenland, A. Pochert, N. Krishnan, K.U. Rao, S. Kalsum, K. Braun, I. Glegola-Madejska, M. Lerm, B.D. Robertson, M. Lindén, G. Godaly, Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles, PLOS ONE. 14 (2019) e0212858. https://doi.org/10.1371/journal.pone.0212858
[137] A. Zakeri Siavashani, M. Haghbin Nazarpak, F. Fayyazbakhsh, T. Toliyat, S.J.P. McInnes, M. Solati-Hashjin, Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures, J. Mater. Sci. 51 (2016) 10897-10909. https://doi.org/10.1007/s10853-016-0301-1
[138] Q. Yu, T. Deng, F.C. Lin, B. Zhang, J.I. Zink, Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms, ACS Nano. 14 (2020) 5926-5937. https://doi.org/10.1021/acsnano.0c01336
[139] M. Gerstenberg, C.M. Stürzel, T. Weil, F. Kirchhoff, M. Lindén, Modular hydrogel−mesoporous silica nanoparticle constructs for therapy and diagnostics, Adv. NanoBiomed Res. 2 (2022), 2100125. https://doi.org/10.1002/anbr.202100125
[140] M. Ménard, F. Meyer, C. Affolter-Zbaraszczuk, M. Rabineau, A. Adam, P.D. Ramirez, S. Bégin-Colin, D. Mertz, Design of hybrid protein-coated magnetic core-mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model, Nanotechnology. 30 (2019) 174001. https://doi.org/10.1088/1361-6528/aafe1c
[141] P. Mario. Why C-reactive protein is one of the most requested tests in clinical laboratories?, Clin. Chem. Lab. Med. 61 (2023) 1540-1545. https://doi.org/10.1515/cclm-2023-0086
[142] H.M. Alshekhabobakr, S.O AlSaqatri, N.M. Rizk, Laboratory test utilization practices in hamad medical corporation; role of laboratory supervisors and clinicians in improper test utilization; A descriptive pilot study, J. Multidiscip. Healthc. 15 (2022) 413-4 https://doi.org/10.2147/JMDH.S320545
[143] L. Zhao, H. Qin, R. Wu, H. Zou, Recent advances of mesoporous materials in sample preparation, J. Chromatogr. A. 1228 (2012) 193-204. https://doi.org/10.1016/j.chroma.2011.09.051
[144] R. Savino, R. Terracciano, Mesopore-assisted profiling strategies in clinical proteomics for drug/target discovery, Drug Discov. Today. 17 (2012) 143-152. https://doi.org/10.1016/j.drudis.2011.10.002
[145] R. Terracciano, M. Preianò, G. Maggisano, C. Pelaia, R. Savino, Hexagonal mesoporous silica as a rapid, efficient and versatile tool for MALDI-TOF MS sample preparation in clinical peptidomics analysis: A pilot study, Molecules. 24 (2019) 2311. https://doi.org/10.3390/molecules24122311
[146] F. Farjadian, S. Azadi, S. Mohammadi-Samani, H. Ashrafi, A.A. Azadi, A novel approach to the application of hexagonal mesoporous silica in solid-phase extraction of drugs, Heliyon. 4 (2018) e00930. https://doi.org/10.1016/j.heliyon.2018.e00930
[147] K. Liang, H. Wu, T.Y. Hu, Y. Li, Mesoporous silica chip: Enabled peptide profiling as an effective platform for controlling bio-sample quality and optimizing handling procedure, Clin. Proteom. 13 (2016) 34. https://doi.org/10.1186/s12014-016-9134-9
[148] J. Yao, N. Sun, C. Deng, Recent advances in mesoporous materials for sample preparation in proteomics research, TrAC Trends Anal. Chem. 99 (2018) 88-100. https://doi.org/10.1016/j.trac.2017.11.016
[149] M. Mladenović, S. Jarić, M. Mundžić, A. Pavlović, I. Bobrinetskiy, N.Z. Knežević, Biosensors for cancer biomarkers based on mesoporous silica nanoparticles, Biosensors. 14 (2024) 326. https://doi.org/10.3390/bios14070326
[150] Y. Xia, H. Chen, R. Liu, F. Shi, C. Ren, J. Li, J. Zhao, X. Chen, Z. Yang, Mesoporous SiO2 sphere-based electrochemical impedance immunosensor for ultrasensitive detection of bovine interferon-γ, J. Anal. Test. 7 (2023) 295-303. https://doi.org/10.1007/s41664-023-00255-1
[151] L.P. Juan, M. Cristina, A.M. Pérez-Moreno, R. Jurado-Escobar, G. Bogas, D. T.D. Fernández, M.I. Montañez, C. Mayorga, M.J. Torres, Influence of pore size in protein G’-Grafted mesoporous silica nanoparticles as a serum pretreatment system for in vitro allergy diagnosis, Adv. Healthc. Mater. 12 (2023) 2203321. https://doi.org/10.1002/adhm.202203321
[152] S. Hamd-Ghadareh, A. Salimi, A. Vaziry, Ultrasensitive ratiometric fluorescence bioassay for accurate detection of covid-19-specific nucleocapsid protein in clinical serum samples using modified cleavable mesoporous sio2 satellite-enriched carbon dots, ACS Biomater. Sci. Eng. 9 (2023) 5279-5292. https://doi.org/10.1021/acsbiomaterials.3c00391