Mesoporous Materials for Cosmetics

$40.00

Mesoporous Materials for Cosmetics

Sithara Gopinath, P. Radhakrishnan Nair, Suresh Mathew

Mesoporous materials are emerging as new carriers in cosmetic formulations due to their unique structural properties including high surface area, tunable pore size and controlled release capacity. These materials provide active ingredients such as antioxidants, vitamins and UV filters that are more stable, effective and skin penetrating. Their biocompatibility and ability to protect delicate materials from damage make them ideal for use in anti-aging, skin whitening and sun protection products Despite the many benefits, there are never complications so just like production scalability and regulatory approval. This chapter explores the synthesis, applications, and future potential of mesoporous materials in cosmetics.

Keywords
Mesoporous Materials, Cosmetics, Drug Delivery, Skin Care, Nanocarriers, Sustainability

Published online 3/20/2025, 29 pages

Citation: Sithara Gopinath, P. Radhakrishnan Nair, Suresh Mathew, Mesoporous Materials for Cosmetics, Materials Research Foundations, Vol. 173, pp 441-469, 2025

DOI: https://doi.org/10.21741/9781644903452-17

Part of the book on Mesoporous Materials

References
[1] A. Ribeiro, M. Estanqueiro, M. Oliveira, J.S. Lobo, Main benefits and applicability of plant extracts in skin care products, Cosmetics. 2 (2015) 48-65. https://doi.org/10.3390/cosmetics2020048
[2] M.A. Farage, K.W. Miller, P. Elsner, H.I. Maibach, Intrinsic and extrinsic factors in skin ageing: A review, Int. J. Cosmet. Sci. 30 (2008) 87-95. https://doi.org/10.1111/j.1468-2494.2007.00415.x
[3] J. Krutmann, A. Bouloc, G. Sore, B.A. Bernard, T. Passeron, The skin aging exposome, J. Dermatol. Sci. 85 (2017) 152-161. https://doi.org/10.1016/j.jdermsci.2016.09.015
[4] R.H. Dahal, D.S. Shim, J. Kim, Development of actinobacterial resources for functional cosmetics, J. Cosmet. Dermatol. 16 (2017) 243-252. https://doi.org/10.1111/jocd.12304
[5] A. Long, J. Crowther, K. Beach, J. Neil, Skin topometry changes demonstrate anti-aging efficacy of a topically applied cosmetic product via in vivo testing, J. Am. Acad. Dermatol. 56 (2007) 224. https://doi.org/10.1016/j.jaad.2006.10.184
[6] R. Ganceviciene, A.I. Liakou, A. Theodoridis, E. Makrantonaki, C.C. Zouboulis, Skin anti-aging strategies, Derm.-Endocrinol. 4 (2012) 308-319. https://doi.org/10.4161/derm.22804
[7] R.A. Baxter, Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation, J. Cosmet. Dermatol. 7 (2008) 2-7. https://doi.org/10.1111/j.1473-2165.2008.00354.x
[8] S. Mukherjee, A. Date, V. Patravale, H.C. Korting, A. Roeder, G. Weindl, Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety, Clin. Interv. Aging. 1 (2006) 327-348. https://doi.org/10.2147/ciia.2006.1.4.327
[9] B. Fubini, A. Hubbard, Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis, Free Radic. Biol. Med. 34 (2003) 1507-1516. https://doi.org/10.1016/S0891-5849(03)00149-7
[10] M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol. 39 (2007) 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
[11] L.A.P. Huy, H. Hua, C.P. Huy, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci. 4 (2008) 89-96. https://doi.org/10.59566/IJBS.2008.4089
[12] B. Uttara, A.V. Singh, P. Zamboni, R. Mahajan, Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol. 7 (2009) 65-74. https://doi.org/10.2174/157015909787602823
[13] E.B. Kurutas, The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state, Nutr. J. 15 (2016) 71. https://doi.org/10.1186/s12937-016-0186-5
[14] O.A. Fawole, N.P. Makunga, U.L. Opara, Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract, BMC Complement. Altern. Med. 12 (2012) 1-11. https://doi.org/10.1186/1472-6882-12-200
[15] M. Kim, T. Shibata, S. Kwon, T.J. Park, H.Y. Kang, Ultraviolet-irradiated endothelial cells secrete stem cell factor and induce epidermal pigmentation, Sci. Rep. 8 (2018) 4235. https://doi.org/10.1038/s41598-018-22608-y
[16] K.D. Hsu, H.J. Chen, C.S. Wang, C.C. Lum, S.P. Wu, S.P. Lin, K.C. Cheng, Extract of ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor, Sci. Rep. 6 (2016) 32854. https://doi.org/10.1038/srep32854
[17] S. Mondal, A. Thampi, M. Puranik, Kinetics of melanin polymerization during enzymatic and nonenzymatic oxidation, J. Phys. Chem. B. 122 (2018) 2047-2063. https://doi.org/10.1021/acs.jpcb.7b07941
[18] C. Corinaldesi, G. Barone, F. Marcellini, A. Dell’Anno, R. Danovaro, Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products, Mar. Drugs. 15 (2017) 118. https://doi.org/10.3390/md15040118
[19] A. Herman, A.P. Herman, B.W. Domagalska, A. Młynarczyk, Essential oils and herbal extracts as antimicrobial agents in cosmetic emulsion, Indian J. Microbiol. 53 (2013) 232-237. https://doi.org/10.1007/s12088-012-0329-0
[20] S.F. Nabavi, A.D. Lorenzo, M. Izadi, E.S. Sánchez, M. Daglia, S.M. Nabavi, Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients. 7 (2015) 7729-7748. https://doi.org/10.3390/nu7095359
[21] U. Klaschka, Natural personal care products-analysis of ingredient lists and legal situation, Environ. Sci. Eur. 28 (2016) 8. https://doi.org/10.1186/s12302-016-0076-7
[22] G.A. Rivera, M. Llompart, M. Lores, C.G. Jares, Preservatives in cosmetics: Regulatory aspects and analytical methods, Anal. Cosmet. Prod. (2018) 175-224. https://doi.org/10.1016/B978-0-444-63508-2.00009-6
[23] L.H. Lee, K.G. Chan, J. Stach, E.M.H. Wellington, B.H. Goh, Editorial: The search for biological active agent(s) from actinobacteria. Front. Microbiol. 9 (2018) 824. https://doi.org/10.3389/fmicb.2018.00824
[24] R. Xu, N. Shang, P. Li, In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH, Anaerobe. 17 (2011) 226-231. https://doi.org/10.1016/j.anaerobe.2011.07.010
[25] J.A. Frank, C.I. Reich, S. Sharma, J.S. Weisbaum, B.A. Wilson, G.J. Olsen, Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes, Appl. Environ. Microbiol. 74 (2008) 2461-2470. https://doi.org/10.1128/AEM.02272-07
[26] S.H. Yoon, S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo, J. Chun, Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies, Int. J. Syst. Evol. Microbiol. 67 (2017) 1613-1617. https://doi.org/10.1099/ijsem.0.001755
[27] National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/, 2024 (accessed 25 March 2024).
[28] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870-1874. https://doi.org/10.1093/molbev/msw054
[29] H.M. Shin, H.K. Byung, Y.C. Eun, S.H. Jung, S.K. Yeong, R.M. Kyung, Y. Kim, Suppressive effect of novel aromatic diamine compound on nuclear factor-κB-dependent expression of inducible nitric oxide synthase in macrophages, Eur. J. Pharmacol. 521 (2005) 1-8. https://doi.org/10.1016/j.ejphar.2005.07.013
[30] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 120 (1998) 6024-6036. https://doi.org/10.1021/ja974025i
[31] H.D. Brightbill, R.L. Modlin, Toll-like receptors: Molecular mechanisms of the mammalian immune response, Immunology. 101 (2000) 1-10. https://doi.org/10.1046/j.1365-2567.2000.00093.x
[32] Y. Emre, C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, A.M.C. Doulcier, Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages, Biochem. J. 402 (2007) 271-278. https://doi.org/10.1042/BJ20061430
[33] W. Sosroseno, I. Barid, E. Herminajeng, H. Susilowati, Nitric oxide production by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans, Oral Microbiol. Immunol. 17 (2002) 72-78. https://doi.org/10.1046/j.0902-0055.2001.00091.x
[34] S. Ahmed, S.A. Sulaiman, A.A. Baig, M. Ibrahim, S. Liaqat, S. Fatima, S. Jabeen, N. Shamim, N.H. Othman, Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action, Oxid. Med. Cell. Longev. 2018 (2018) 8367846. https://doi.org/10.1155/2018/8367846
[35] S.J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J.H. Lee, S. Chen, C. Corpe, A. Dutta, S.K. Dutta, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention, J. Am. Coll. Nutr. 22 (2003) 18-35. https://doi.org/10.1080/07315724.2003.10719272
[36] D.E. Pratt, Natural antioxidants from plant material, in: M.T. Huang, C.T. Ho, C.Y. Lee (Eds.), Phenolic Compounds in Food and Their Effects on Health II, ACS Symposium Series, American Chemical Society: Washington, DC, USA, 1992, pp. 54-71. https://doi.org/10.1021/bk-1992-0507.ch005
[37] D.M. Kasote, S.S. Katyare, M.V. Hegde, H. Bae, Significance of antioxidant potential of plants and its relevance to therapeutic applications, Int. J. Biol. Sci. 11 (2015) 982-991. https://doi.org/10.7150/ijbs.12096
[38] L. Wei, N. Hu, Y. Zhang, Synthesis of polymer-mesoporous silica nanocomposites, Materials. 3 (2010) 4066-4079. https://doi.org/10.3390/ma3074066
[39] S.P. Chaudhari, A. Gupte, Mesoporous silica as a carrier for amorphous solid dispersion, J. Pharm. Res. Int. 16 (2017) 1-19. https://doi.org/10.9734/BJPR/2017/33553
[40] F.L. Li, H.J. Zhang, Synthesis of hollow sphere and 1D structural materials by sol-gel process, Materials. 10 (2017) 995. https://doi.org/10.3390/ma10090995
[41] E. Blanco, L. Esquivias, R. Litrán, M. Piñero, M.R.D. Solar, N.D.L.R. Fox, Sonogels and derived materials, Appl. Organomet. Chem. 13 (1999) 399-418. https://doi.org/10.1002/(SICI)1099-0739(199905)13:5<399::AID-AOC825>3.0.CO;2-A
[42] S.P. Chaudhari, A. Gupte, Mesoporous silica as a carrier for amorphous solid dispersion, J. Pharm. Res. Int. 16 (2017) 1-19. https://doi.org/10.9734/BJPR/2017/33553
[43] A.M. Putz, W. Kunzhou, A. Len, J. Plocek, P. Bezdicka, G.P. Kopitsa, T.V. Khamova et al. Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium, Appl. Surf. Sci. 424 (2017) 275-281. https://doi.org/10.1016/j.apsusc.2017.04.121
[44] W.K. Tan, H. Muto, G. Kawamura, Z. Lockman, A. Matsuda, Nanomaterial fabrication through the modification of sol-gel derived coatings, Nanomaterials. 11 (2021) 181. https://doi.org/10.3390/nano11010181
[45] A. Len, G. Paladini, L. Románszki, A.M. Putz, L. Almásy, K. László, S. Bálint et al. Physicochemical characterization and drug release properties of methyl-substituted silica xerogels made using sol-gel process, Int. J. Mol. Sci. 22 (2021) 9197. https://doi.org/10.3390/ijms22179197
[46] O.A. Kamanina, A.S. Evgeniya, P.V. Rybochkin, V.A. Arlyapov, A.N. Vereshchagin, V.P. Ananikov, Preparation of hybrid sol-gel materials based on living cells of microorganisms and their application in nanotechnology, Nanomaterials. 12 (2022) 1086. https://doi.org/10.3390/nano12071086
[47] S.P. Chaudhari, A. Gupte, Mesoporous silica as a carrier for amorphous solid dispersion, J. Pharm. Res. Int. 16 (2017) 1-19. https://doi.org/10.9734/BJPR/2017/33553
[48] A.M. Putz, K. Wang, A. Len, J. Plocek, P. Bezdicka, G.P. Kopitsa, T.V. Khamova et al. Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium, Appl. Surf. Sci. 424 (2017) 275-281. https://doi.org/10.1016/j.apsusc.2017.04.121
[49] R.E. Morsi, R.S. Mohamed, Nanostructured mesoporous silica: Influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake, R. Soc. Open Sci. 5 (2018) 172021. https://doi.org/10.1098/rsos.172021
[50] S. Sadjadi, M.N. Jamal, A survey on application of mesoporous materials in chemistry, Curr. Chem. Lett. 8 (2019) 69-86. https://doi.org/10.5267/j.ccl.2019.2.001
[51] H.Q. Qutaish, Synthesis and Characterisation of Mesoporous Transition Metal Oxides Based on Soft-Templating Method, University of Wollongong, Australia, 2019.
[52] C. Chircov, A. Spoială, C. Păun, L. Crăciun, D. Ficai, A. Ficai, E. Andronescu, Ș.C. Turculeƫ, Mesoporous silica platforms with potential applications in release and adsorption of active agents, Molecules. 25 (2020) 3814. https://doi.org/10.3390/molecules25173814
[53] N. Pal, J.H. Lee, E.B. Cho, Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles, Nanomaterials. 10 (2020) 2122. https://doi.org/10.3390/nano10112122
[54] R. Szymanska, P. Pospisil, J. Kruk, Plant-derived antioxidants in disease prevention, Oxid. Med. Cell. Longev. 2016 (2016) 1-2. https://doi.org/10.1155/2016/1920208
[55] M.P.N. Rao, M. Xiao, W.J. Li, Fungal and bacterial pigments: Secondary metabolites with wide applications, Front. Microbiol. 8 (2017) 1113. https://doi.org/10.3389/fmicb.2017.01113
[56] Y. Wang, Y. Wu, Y. Wang, H. Xu, X. Mei, D. Yu, Y. Wang, W. Li, Antioxidant properties of probiotic bacteria, Nutrients. 9 (2017) 521. https://doi.org/10.3390/nu9050521
[57] R.K. Ko, G.O. Kim, C.G. Hyun, D.S. Jung, N.H. Lee, Compounds with tyrosinase inhibition, elastase inhibition and DPPH radical scavenging activities from the branches of Distylium racemosum Sieb. et Zucc, Phytother. Res. 25 (2011) 1451-1456. https://doi.org/10.1002/ptr.3439
[58] P. Manivasagan, J. Venkatesan, K. Sivakumar, S.K. Kim, Pharmaceutically active secondary metabolites of marine actinobacteria, Microbiol. Res. 169 (2014) 262-278. https://doi.org/10.1016/j.micres.2013.07.014
[59] J. You, K.B. Roh, Z. Li, G. Liu, J. Tang, S. Shin, D. Park, E. Jung, J. You, K.B. Roh, et al. The antiaging properties of Andrographis paniculata by activation epidermal cell stemness, Molecules. 20 (2015) 17557-17569. https://doi.org/10.3390/molecules200917557
[60] N. Oliver, M. Sternlicht, K. Gerritsen, R. Goldschmeding, Could aging human skin use a connective tissue growth factor boost to increase collagen content?, J. Investig. Dermatol. 130 (2010) 338-341. https://doi.org/10.1038/jid.2009.331
[61] G.O. Gular, Studies on antioxidant properties of the different solvent extracts and fatty acid composition of Hyoscyamus reticulatus L, J. Food Biochem. 36 (2012) 532-538. https://doi.org/10.1111/j.1745-4514.2011.00564.x
[62] Z.A. Elagbar, R.R. Naik, A.K. Shakya, S.K. Bardaweel, Fatty acids analysis, antioxidant and biological activity of fixed oil of annona muricata L. seeds, J. Chem. 2016 (2016) 3-4. https://doi.org/10.1155/2016/6948098
[63] A. Aktumsek, G. Zengin, G.O. Guler, Y.S. Cakmak, A. Duran, Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey, Food Chem. 141 (2013) 91-97. https://doi.org/10.1016/j.foodchem.2013.02.092
[64] T. Nakatsuji, M.C. Kao, J.Y. Fang, C.C. Zouboulis, L. Zhang, R.L. Gallo, C.M. Huang, Antimicrobial property of lauric acid against propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. J. Investig. Dermatol. 129 (2009) 2480-2488. https://doi.org/10.1038/jid.2009.93
[65] M. Otto, Staphylococcus colonization of the skin and antimicrobial peptides, Expert Rev. Dermatol. 5 (2010) 183-195. https://doi.org/10.1586/edm.10.6
[66] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, The preparation of alkyltriinethylaininonium-kaneinite complexes and their conversion to microporous materials, Bull. Chem. Soc. Jpn. 63 (1990) 988-992. https://doi.org/10.1246/bcsj.63.988
[67] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834-10843. https://doi.org/10.1021/ja00053a020
[68] B.G. Trewyn, I.I. Slowing, S. Giri, H.T. Chen, V.S.Y. Lin, Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 40 (2007) 846-853. https://doi.org/10.1021/ar600032u
[69] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science. 279 (1998) 548-552. https://doi.org/10.1126/science.279.5350.548
[70] L.S.D. Silva, A.L. Moretti, G.G. Cher, P.A. Arroyo, Influence of crystallization and ageing time on the reproducibility of mesoporous molecular sieve SBA-15, Rev. Matér. 24 (2019). https://doi.org/10.1590/s1517-707620190002.0695
[71] N. Knežević, J.O. Durand, Large pore mesoporous silica nanomaterials for application in delivery of biomolecules, Nanoscale. 7 (2015) 2199-2209. https://doi.org/10.1039/C4NR06114D
[72] M.L. Ojeda, J.M. Esparza, A. Campero, S. Cordero, I. Kornhauser, F. Rojas, On comparing BJH and NLDFT pore-size distributions determined from N2 sorption on SBA-15 substrata, Phy. Chem. Chem. Phy. 5 (2003)1859-1866. https://doi.org/10.1039/b300821e
[73] T. Arshad, H.M.S. Khan, N. Akhtar, H. Hanan, M.D. Hussain, M. Kazi, Structural elucidation and development of azelaic acid loaded mesoporous silica nanoparticles infused gel: Revolutionizing nanodrug delivery for cosmetics and pharmaceuticals, Heliyon. 10 (2024). https://doi.org/10.2139/ssrn.4721424
[74] S. Saijo, M. Shibata, C. Izawa, Enhancement of the adsorbed amount of ferulic acid on mesoporous silica for use as an ultraviolet radiation absorber in cosmetics, J. Jpn. Soc. Colour Mater. 96 (2023) 108-112. https://doi.org/10.4011/shikizai.96.108
[75] N. Chen, S. Yao, M. Li, Q. Wang, X. Sun, X. Feng, Y. Chen, Nonporous versus mesoporous bioinspired polydopamine nanoparticles for skin drug delivery, Biomacromolecules. 24 (2023) 1648-1661. https://doi.org/10.1021/acs.biomac.2c01431