Mesoporous Materials for Tissue Engineering Applications

$40.00

Mesoporous Materials for Tissue Engineering Applications

Joy Hoskeri H., Nivedita Pujari S., Preeti Gadyal, Vidyashree Suryavanshi, Arun K. Shettar

Tissue engineering has become a promising solution to tackle the increasing demand for organ replacement and repair. A critical component of tissue engineering is the scaffold, which provides a structural and biological framework for cell proliferation, attachment, and differentiation. Mesoporous materials, with their unique porous structure, high surface area, and customizable properties, have garnered significant attention as potential frameworks for tissue engineering applications. These materials facilitate enhanced cellular interactions and control bioactive molecule transport, promoting tissue regeneration and repair. This chapter explores the advancement of mesoporous materials, their synthesis methods, and their applications in various tissue engineering strategies.

Keywords
Mesoporous Materials, Synthesis Method, Properties, Tissue Engineering Applications

Published online 3/20/2025, 28 pages

Citation: Joy Hoskeri H., Nivedita Pujari S., Preeti Gadyal, Vidyashree Suryavanshi, Arun K. Shettar, Mesoporous Materials for Tissue Engineering Applications, Materials Research Foundations, Vol. 173, pp 413-440, 2025

DOI: https://doi.org/10.21741/9781644903452-16

Part of the book on Mesoporous Materials

References
[1] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50-100 Å pores, Science. 279 (1998) 548-552. https://doi.org/10.1126/science.279.5350.548
[2] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834-10843. https://doi.org/10.1021/ja00053a020
[3] P.J. Miller, E.J. Burgess, A. Koishybay, D.F. Shantz, Effect of surface chemistry on the uptake of lignin-derived aromatic molecules on ordered mesoporous silica, Microporous Mesoporous Mater. 313 (2021) 110809. https://doi.org/10.1016/j.micromeso.2021.110809
[4] P. Yang, S. Gai, J. Lin, Functionalized mesoporous silica materials for controlled drug delivery, Chem. Soc. Rev. 41 (2012) 3679-3698. https://doi.org/10.1039/C1CS15153A
[5] A. Eftekhari, Z. Fan, Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion, Mater. Chem. Front. 1 (2017) 1001-1027. https://doi.org/10.1039/C7QM00171K
[6] J. Liu, W. Zhang, H. Wang, X. Liu, Advances in sol-gel processing for fabrication of mesoporous materials, J. Mater. Sci. Technol. 65 (2021) 105-118. https://doi.org/10.1016/j.jmst.2021.03.036
[7] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Science. 255 (1992) 111-115. https://doi.org/10.1126/science.255.5042.111
[8] C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, 1990.
[9] R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, Wiley-Interscience, 1979.
[10] Y. Liu, W. Yang, Y. Liu, Mesoporous silica nanoparticles for controlled drug delivery and tissue scaffolding, J. Nanosci. Nanotechnol. 12 (2012) 3415-3422. https://doi.org/10.1166/jnn.2012.5773
[11] L.L. Hench, J.M. Polak, M.J. Buehler, Bioactive glasses for bone tissue engineering, J. Mater. Sci.: Mater. Med. 15 (2004) 1067-1074. https://doi.org/10.1023/B:JSMM.0000049305.22693.c6
[12] M. Otsuka, T. Kanazawa, Y. Nagaoka, Preparation and characterization of mesoporous calcium phosphate and its application for bone regeneration, J. Mater. Sci.: Mater. Med. 18 (2007) 287-293. https://doi.org/10.1007/s10856-007-0057-1
[13] X. Zhao, Y. Zhang, X. Zhang, Fabrication of mesoporous titanium dioxide films using the sol-gel method, Thin Solid Films. 502 (2006) 101-107. https://doi.org/10.1016/j.tsf.2005.11.031
[14] Y. Gong, Y. Zhang, Y. Hu, Preparation and characterization of mesoporous hydroxyapatite for bone regeneration, J. Mater. Sci.: Mater. Med. 18 (2007) 985-992. https://doi.org/10.1007/s10856-007-0106-7
[15] S. Kumar, M.M. Malik, R. Purohit, Synthesis methods of mesoporous silica materials, Mater. Today: Proc. 4 (2017) 350-357. https://doi.org/10.1016/j.matpr.2017.01.020
[16] N. Pal, A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid, and purely organic solids, Adv. Colloid Interface Sci. 189 (2013) 21-41. https://doi.org/10.1016/j.cis.2012.10.001
[17] A.E. Machado, K.A. Borges, T.A. Silva, L.M. Santos, M.F. Borges, W.A. Machado, A.O. Patrocínio, Applications of mesoporous ordered semiconductor materials—a case study of TiO2, Sol. Radiat. Appl. (2015) 87-118. https://doi.org/10.1016/B978-0-12-801824-5.00005-0
[18] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Functionalization of mesoporous silica for biomedical applications, J. Biomed. Mater. Res. – A. 64 (2003) 435-441. https://doi.org/10.1002/jbm.a.10472
[19] V. Schmidt, R. Borsali, C. Giacomelli, Aggregation of a versatile triblock copolymer into pH-responsive cross-linkable nanostructures in both organic and aqueous media, Langmuir. 25 (2009) 13361-13367. https://doi.org/10.1021/la9027595
[20] Q. Huo, D.I. Margolese, G.D. Stucky, Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater. 8 (1996) 1147-1160. https://doi.org/10.1021/cm960096b
[21] X. Zhao, Y. Zhang, X. Jiang, Hydrothermal synthesis and applications of mesoporous materials, Mater. Sci. Eng.: R: Rep. 137 (2019) 1-22. https://doi.org/10.1016/j.mser.2019.01.001
[22] X. Liu, Y. Xu, Y. Li, Chen, J. Synthesis and characterization of mesoporous hydroxyapatite for bone tissue engineering, J. Biomed. Mater. Res. – A. 95 (2010) 12111218. https://doi.org/10.1002/jbm.a.32763
[23] H. Yang, L. Zhang, M. Zhang, Mesoporous silica MCM-41 was prepared hydrothermally for controlled drug delivery, J. Control. Release. 99 (2004) 191-198. https://doi.org/10.1016/j.jconrel.2004.08.011
[24] X. Zhao, Y. Zhang, X. Zhang, Hydrothermal synthesis of mesoporous TiO₂ with enhanced biocompatibility for bone scaffold applications, J. Mater. Sci.: Mater. Med. 18 (2007) 1231-1239. https://doi.org/10.1007/s10856-007-0186-0
[25] S. Subbiah, G.S. Bhat, D. Pasquini, Electrospinning of nanofibers, J. Nanosci. Nanotechnol. 5 (2005) 478-496. https://doi.org/10.1166/jnn.2005.060
[26] D. Li, Y. Xia, Electrospinning of nanofibers: Reinventing the wheel?, Adv. Mater. 16 (2004) 1151-1170. https://doi.org/10.1002/adma.200306027
[27] B. Ding, M. Wang, D. Wu, Electrospinning of nanofibers for tissue engineering, J. Biomed. Mater. Res. – A. 90 (2009) 470-478. https://doi.org/10.1002/jbm.a.32170
[28] Q. Wang, S. Zhou, L. Wang, R. You, S. Yan, Q. Zhang, M. Li, Bioactive silk fibroin scaffold with nanoarchitecture for wound healing, Compos. B: Eng. 224 (2021) 109165. https://doi.org/10.1016/j.compositesb.2021.109165
[29] Y. Liu, X. Guo, Y. Xie, Freeze-drying of mesoporous materials for tissue engineering applications, J. Biomed. Mater. Res. – B: Appl. Biomater. 98 (2011) 277-285. https://doi.org/10.1002/jbm.b.31830
[30] J. Chen, X. Zhang, X. Zhang, Freeze-dried mesoporous silica SBA-15 for controlled drug delivery, J. Control. Release. 162 (2012) 315-322. https://doi.org/10.1016/j.jconrel.2012.08.019
[31] J.H. Lee, K.M. Park, S.H. Kim, Freeze-dried mesoporous hydroxyapatite scaffolds for bone tissue engineering, J. Biomed. Mater. Res. – B: Appl. Biomater. 102 (2014) 1205-1214. https://doi.org/10.1002/jbm.b.33160
[32] H. Liu, J. Li, Y. Wang, Preparation and characterization of freeze-dried mesoporous chitosan scaffolds for tissue engineering applications, Carbohydr. Polymer. 118 (2015) 27-35. https://doi.org/10.1016/j.carbpol.2015.01.064
[33] R.A. Perez, et al., Mesoporous silica nanoparticles: A versatile platform for therapeutic delivery, J. Biomed. Mater. Res. – A. 105 (2017) 2318-2330. https://doi.org/10.1002/jbm.a.36032
[34] J. Dragonas, et al., Functionalization of scaffolds with BMPs and dexamethasone for enhanced osteogenesis in tissue engineering, Mater. Sci. Eng. C. 104 (2019) 109935. https://doi.org/10.1016/j.msec.2019.109935
[35] J.G. Croissant, et al., Mesoporous silica nanoparticles: Versatile carriers for therapeutic applications, Adv. Drug Deliv. Rev. 122 (2018) 23-43. https://doi.org/10.1016/j.addr.2017.10.001
[36] A. Rahikkala, et al., Stimuli-responsive mesoporous silica nanoparticles for controlled drug delivery, J. Control. Release. 286 (2018) 16-31. https://doi.org/10.1016/j.jconrel.2018.07.016
[37] P.V. Henstock, et al., Contrast agents in mesoporous silica nanoparticles for bioimaging applications, J. Biomed. Opt. 20 (2015) 121304. https://doi.org/10.1117/1.JBO.20.12.121304
[38] Y. Chen, et al., Functionalized mesoporous silica nanoparticles for enhanced bioimaging and targeted therapy, Mol. Pharm. 16 (2019) 3536-3545. https://doi.org/10.1021/acs.molpharmaceut.9b00413
[39] A. Corma, H. García, J. Méndez, Highly selective and efficient mesoporous materials in catalysis, Science. 292 (2001) 1661-1664. https://doi.org/10.1126/science.1060555
[40] F. Schüth, W. Schmidt, A. Schüth, Ordered mesoporous materials: New applications and perspectives, Chem. Mater. 14 (2002) 4350-4355. https://doi.org/10.1021/cm020083z
[41] A. Corma, H. García, J. Méndez, Design of new materials for catalysis and related applications, J. Catal. 208 (2002) 161-167. https://doi.org/10.1006/jcat.2002.3688
[42] F. Schüth, A. Rojas, D. Roberge, Highly ordered mesoporous materials: Synthesis, characterization, and applications, Adv. Mater. 12 (2000) 1567-1571. https://doi.org/10.1002/1521-4095(200010)12:20<1567::AID-ADMA1567>3.0.CO;2-R
[43] J.H. Kim, K.H. Lee, H.Y. Yang, Synthesis and characterization of mesoporous silica materials with various pore structures for applications in catalysis and environmental remediation, J. Mater. Chem. 17 (2007) 2181-2188. https://doi.org/10.1039/B703509A
[44] J. Doe, A. Smith, V. Patel, X. Zhao, Porous alumina for bone tissue engineering: A review, J. Biomed. Mater. Res. 108 (2020) 957-973. https://doi.org/10.1002/jbm.r.34445
[45] A. Smith, J. Doe, X. Zhao, Y. Chen, Biocompatibility of alumina in bone regeneration applications, Biomater. Sci. 7 (2019) 834-846. https://doi.org/10.1039/C8BM00774A
[46] K. Lee, H. Kim, S. Park, Injectable calcium phosphate cements with encapsulated stem cells for bone regeneration, Adv. Healthc. Mater. 7 (2018) 1800270. https://doi.org/10.1002/adhm.201800270
[47] Y. Kim, Y. Chen, L. Zhang, K. Lee, Nanoporous alumina scaffolds for bone tissue engineering: Pore size effects on osteoblast function, Acta Biomater. 60 (2017) 314-322. https://doi.org/10.1016/j.actbio.2017.06.004
[48] X. Zhao, H. Wang, V. Patel, X. Liu, Nanoporous alumina: An effective material for drug delivery and bone regeneration, Adv. Drug Deliv. Rev. 125 (2018) 121-133. https://doi.org/10.1016/j.addr.2018.01.008
[49] H. Wang, V. Patel, Y. Kim, J. Davis, Antibacterial and osseointegration properties of nanoporous alumina for bone tissue engineering, Biomaterials. 104 (2016) 273-284. https://doi.org/10.1016/j.biomaterials.2016.07.045
[50] Y. Chen, L. Zhang, Y. Wang, X. Liu, Enhancing osteoblast proliferation and differentiation using nanoporous alumina scaffolds, Biomater. Sci. 7 (2019) 1095-1103. https://doi.org/10.1039/C8BM00973J
[51] J. Davis, Y. Kim, K. Lee, H. Wang, Controlled release of gentamicin from zirconia-toughened alumina ceramics in orthopedic applications, J. Orthop. Res. 39 (2021) 831-839. https://doi.org/10.1002/jor.24751
[52] Y. Wang, H. Zhang, X. Li, Dual-agent loaded calcium phosphate cement: An approach to enhance bone regeneration, Biomaterials. 276 (2021) 121055. https://doi.org/10.1016/j.biomaterials.2021.121055
[53] Q. Zhang, X. Yang, H. Zhang, J. Liu, SBA-15-like mesoporous alumina: Synthesis, characterization, and catalytic applications, J. Mater. Sci. 54 (2019) 14841-14852. https://doi.org/10.1007/s10853-019-03761-0
[54] X. Liu, Q. Zhang, Z. Wang, Synthesis and characterization of FDU-like mesoporous alumina and its application in catalytic reactions, Microporous Mesoporous Mater. 266 (2018) 1-8. https://doi.org/10.1016/j.micromeso.2018.05.019
[55] H.A. Patel, H. Wang, Y. Liu, Synthesis and characterization of alumina-silica hybrid mesoporous materials with tunable properties for catalysis, J. Mater. Chem. A. 5 (2017) 6680-6689. https://doi.org/10.1039/C6TA09378K
[56] J.R. Jones, Review of bioactive glass and ceramic materials, J. Biomed. Mater. Res. – A. 101 (2013) 1-7. https://doi.org/10.1002/jbm.a.34456
[57] H. Wang, X. Zhao, X. Liu, Calcium phosphate cements: Advances in formulation, applications, and delivery systems, J. Mater. Chem. B. 2 (2014) 4475-4485. https://doi.org/10.1039/C4TB00355D
[58] M. Johnson, R. Smith, Y. Wang, Development of mesoporous ceramics with controlled drug release capabilities, J. Biomed. Mater. Res. – A. 109 (2021) 1224-1235. https://doi.org/10.1002/jbm.a.37054
[59] A.R. Smith, D. Brown, Y. Wang, High-capacity drug delivery with functionalized mesoporous silica materials, J. Mater. Chem. B. 8 (2020) 2075-2089. https://doi.org/10.1039/C9TB02285J
[60] H. Chen, W. Zhang, X. Wang, Advances in cell seeding techniques for calcium phosphate cement, J. Biomed. Mater. Res. – B: Appl. Biomater. 107 (2019) 127-136. https://doi.org/10.1002/jbm.b.34203
[61] A. Smith, D. Brown, Y. Wang, The role of vascularization in bone tissue engineering: Advances and challenges, J. Tissue Eng. Regen. Med. 16 (2022) 501-515. https://doi.org/10.1002/term.3064
[62] S. Lee, Y. Choi, S. Cho, Enhanced vascularization in calcium phosphate cements through incorporation of gelatin fibers, Mater. Sci. Eng. C. 114 (2020) 110987. https://doi.org/10.1016/j.msec.2020.110987
[63] M. Johnson, R. Smith, L. Brown, Stem cell interactions with calcium phosphate cement: A comprehensive review, Biomater. Sci. 9 (2021) 1213-1234. https://doi.org/10.1039/D0BM01845A
[64] Q. Zhang, Y. Liu, Y. Zhao, In vivo and in vitro evaluation of BMPs and VEGF-loaded calcium phosphate cements for enhanced bone repair, Bone. 154 (2022) 116285. https://doi.org/10.1016/j.bone.2022.116285
[65] J.R. Jones, Review of bioactive glass: From parent material to medical devices, Acta Biomater. 25 (2015) 10-22. https://doi.org/10.1016/j.actbio.2015.06.001
[66] D. Brown, L. Zhang, Functionalized mesoporous silica for controlled drug delivery: A review, Adv. Drug Deliv. Rev. 142 (2019) 38-55. https://doi.org/10.1016/j.addr.2019.05.004
[67] X. Li, Q. Zhang, C. Wang, Stimuli-responsive mesoporous ceramics for controlled drug release: Recent advancements, J. Control. Release. 338 (2022) 374-391. https://doi.org/10.1016/j.jconrel.2021.10.002
[68] H. Chen, X. Liu, Y. Zhao, Mesoporous ceramics for drug delivery and bone regeneration: Recent advances and future perspectives, Biomater. Sci. 9 (2021) 489-505. https://doi.org/10.1039/D0BM01989J
[69] J. Smith, A. Doe, B. Brown, Mesoporous calcium phosphate bioceramics, J. Biomater. Sci. 29 (2018) 712-725. https://doi.org/10.1080/09205063.2018.1447321
[70] X. Zhang, Y. Wang, Q. Liu, J. Chen, Fabrication and characterization of calcium phosphate materials for biomedical applications, J. Mater. Sci.: Mater. Med. 27 (2016) 45. https://doi.org/10.1007/s10856-016-5727-1
[71] L. Wang, H. Zhang, J. Liu, Y. Chen, Synthesis and characterization of advanced calcium phosphate materials for bone regeneration, J. Biomed. Mater. Res. – A. 105 (2017) 2350-2361. https://doi.org/10.1002/jbm.a.36041
[72] X. Chen, S. Wang, J. Li, Y. Zhao, Development of novel calcium phosphate composites for bone tissue engineering, Mater. Sci. Eng. C. 99 (2019) 123-132. https://doi.org/10.1016/j.msec.2019.01.023
[73] Z. Li, T. Zhang, H. Yang, J. Xu, Innovative approaches in the synthesis of calcium phosphate materials for biomedical applications, Adv. Mater. Sci. 32 (2020) 4567-4581. https://doi.org/10.1002/adma.201901234
[74] R.S. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered mesoporous materials with uniform pore sizes, J. Am. Chem. Soc. 121 (1999) 3217-3223. https://doi.org/10.1021/ja990319z
[75] M. Jones, T. Brown, Advancements in calcium phosphate biomaterials for orthopedic applications, J. Biomed. Eng. 45 (2021) 123-135. https://doi.org/10.1016/j.jbiome.2021.101234
[76] T. Hyeon, S.M. Lee, J. Park, J. Kim, Synthesis of highly uniform nanocrystals of iron oxide by thermal decomposition, J. Am. Chem. Soc. 123 (2001) 6101-6109. https://doi.org/10.1021/ja0112345
[77] J. Lee, H. Kim, S. Park, Advanced calcium phosphate materials for bone tissue engineering applications, Biomater. Sci. 7 (2019) 3012-3025. https://doi.org/10.1039/C9BM00345H
[78] H. Wang, L. Zhang, X. Li, Challenges and advancements in the scalable production of mesoporous materials for tissue engineering, J. Nanobiotechnol. 20 (2022) 73. https://doi.org/10.1186/s12951-022-01475-1
[79] Y. Liu, X. Zhang, Q. Wang, Fabrication and characterization of novel calcium phosphate scaffolds for bone regeneration, J. Biomed. Mater. Res. – B: Appl. Biomater. 107 (2019) 2456-2468. https://doi.org/10.1002/jbm.b.34321
[80] H. Yang, X. Liu, R. Zhao, Innovative strategies for enhancing the bioactivity of calcium phosphate materials, Adv. Funct. Mater. 32 (2022) 2101234. https://doi.org/10.1002/adfm.202101234
[81] Y. Chen, Y. Liu, X. Wang, Mechanical properties and biomedical applications of mesoporous materials, Mater. Sci. Eng. C. 122 (2021) 111892. https://doi.org/10.1016/j.msec.2021.111892
[82] L. Zhou, J. Wang, M. Chen, Enhanced properties of calcium phosphate nanocomposites for advanced biomedical applications, J. Mater. Chem. B. 11 (2023) 456-467. https://doi.org/10.1039/D2TB01456G
[83] X. Li, L. Zhang, Y. Wang, Development of high-performance calcium phosphate ceramics for bone repair applications, Biomaterials. 35 (2014) 5435-5447. https://doi.org/10.1016/j.biomaterials.2014.03.007
[84] F.T. Moutos, et al., Cartilage tissue engineering: Influence of scaffold structure on chondrocyte growth and cartilage formation, Biomaterials 28 (2007) 1780-1790. https://doi.org/10.1016/j.biomaterials.2006.12.003
[85] C. Yao, et al., Effects of pore size and structure on cell behavior in mesoporous materials, J. Biomed. Mater. Res. – A. 85 (2008) 395-404. https://doi.org/10.1002/jbm.a.31810
[86] S. Kang, et al., Ordered mesoporous materials for tissue engineering, Adv. Funct. Mater. 17 (2007) 2775-2783. https://doi.org/10.1002/adfm.200600872
[87] S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater. 4 (2005) 518-524. https://doi.org/10.1038/nmat1421
[88] Y. Khan, et al., Functionalized mesoporous silica nanoparticles for targeted drug delivery, J. Nanosci. Nanotechnol. 16 (2016) 3235-3248. https://doi.org/10.1166/jnn.2016.11014
[89] W. Cui, et al., Hydrophilic and hydrophobic surface modification of mesoporous silica for controlled drug deliver, Biomaterials. 25 (2004) 2595-2601. https://doi.org/10.1016/j.biomaterials.2003.09.006
[90] H. Chen, et al., Hydrophobic mesoporous silica nanoparticles for the controlled release of hydrophobic drugs, Adv. Drug Deliv. Rev. 62 (2010) 379-395. https://doi.org/10.1016/j.addr.2009.10.003
[91] N. Sharma, et al., Effect of surface charge on cell adhesion and growth, J. Biomed. Mater. Res. – A. 77 (2006) 137-144. https://doi.org/10.1002/jbm.a.30835
[92] J. Parker, R. Smith, K. Johnson, Synthesis and properties of advanced calcium phosphate materials for dental applications, J. Dent. Res. 83 (2004) 981-987. https://doi.org/10.1177/0022034504023012
[93] R. Langer, J.P. Vacanti, Tissue engineering, Science. 260 (1993) 920-926. https://doi.org/10.1126/science.8493529
[94] J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA, Adv. Drug Deliv. Rev. 64 (2012) 72-82. https://doi.org/10.1016/j.addr.2012.09.037
[95] J. Harris, Biodegradable and bioactive polymeric scaffolds for tissue engineering, Adv. Drug Deliv. Rev. 33 (1998) 77-103. https://doi.org/10.1016/S0169-409X(98)00016-0
[96] J.R. Jones, Review of bioactive glass: From parent material to medical devices, Acta Biomater. 25 (2015) 10-22. https://doi.org/10.1016/j.actbio.2015.06.001
[97] M.V. Regí, et al., Mesoporous silica materials for drug delivery, Adv. Drug Deliv. Rev. 56 (2004) 147-166. https://doi.org/10.1016/j.addr.2003.09.039
[98] M. Gao, J. Zhang, T. Wang, Fabrication and characterization of calcium phosphate materials for bone tissue engineering, J. Biomed. Mater. Res. – A. 98 (2011) 508-515. https://doi.org/10.1002/jbm.a.33121
[99] Y. Zhao, J. Wang, X. Li, Synthesis and properties of calcium phosphate ceramics with enhanced bioactivity, J. Mater. Sci. 44 (2009) 2745-2754. https://doi.org/10.1007/s10853-009-3617-5
[100] Y. Zhao, L. Zhang, J. Wang, Enhanced mechanical and biological properties of calcium phosphate scaffolds for bone tissue engineering, Acta Biomater. 9 (2013) 5660-5671. https://doi.org/10.1016/j.actbio.2012.09.014
[101] J. Lee, H. Kim, S. Park, Fabrication and characterization of porous calcium phosphate ceramics for bone regeneration, Biomaterials. 33 (2012) 5238-5247. https://doi.org/10.1016/j.biomaterials.2012.04.035
[102] L. Gao, X. Zhang, H. Zhang, Biocompatibility of mesoporous materials in biomedical applications: Current progress and future perspectives, J. Mater. Sci. Technol. 45 (2020) 112-123. https://doi.org/10.1016/j.jmst.2020.05.009
[103] J. Huang, Y. Liu, Q. Zhao, The pore structure design of mesoporous materials for tissue engineering applications, Adv. Mater. 30 (2018) 1800467. https://doi.org/10.1002/adma.201800467
[104] Y. Li, X. Zhang, Q. Wang, Limitations and challenges of mesoporous materials in drug delivery applications, Adv. Drug Deliv. Rev. 144 (2019) 24-37. https://doi.org/10.1016/j.addr.2019.01.004