Magnetic Mesoporous Materials for Food Analysis

$40.00

Magnetic Mesoporous Materials for Food Analysis

Jülide Hızal

Food analyses are highly important in regards of meeting the requirements for legal standards, safety and quality assurance as well as determination of nutritional value and adulteration. Considering the fast development in ingredients and food manufacturing process, it is unavoidable that novel analytical or instrumental determination methods would arise. Various materials are being employed, particularly in the solid phase extraction approach, to detect different kinds of analytes. Recently, magnetic mesoporous materials stand out in many fields. They also incrementally find a use in food analyses. The utilization of magnetic mesoporous materials in the detection of any analytes in food matrices would give some advantages in terms of reducing cost, increasing sensitivity and higher selectivity.

Keywords
Foods, Analytical Techniques, Mesoporous Materials, Quality Insurance, Food Quality

Published online 3/20/2025, 21 pages

Citation: Jülide Hızal, Magnetic Mesoporous Materials for Food Analysis, Materials Research Foundations, Vol. 173, pp 392-412, 2025

DOI: https://doi.org/10.21741/9781644903452-15

Part of the book on Mesoporous Materials

References
[1] R. Kizil, J. Irudayaraj, Spectroscopic technique: Fourier transform raman (ft-raman) spectroscopy, in: D.W. Sun (Ed.), Sun Modern Techniques for Food Authentication, Academic Press, 2018, pp. 139-191. https://doi.org/10.1016/B978-0-12-814264-6.00005-0
[2] K. Gupta, V. Jain, S. Jain, K. Dhawan, G. Talwar, Analysis of food, in: B. Caballero (ed.), Encyclopedia of Food Sciences and Nutrition, Academic press, 2003, pp. 206-215. https://doi.org/10.1016/B0-12-227055-X/00044-4
[3] B. Jiang, R. Tsao, Y. Li, M. Miao, Food safety: Food analysis technologies/techniques, in: N.K.V. Alfen (Ed.), Encyclopedia of Agriculture and Food Systems, Academic Press, 2014, pp. 273-288. https://doi.org/10.1016/B978-0-444-52512-3.00052-8
[4] W.A. Khan, M.B. Arain, M. Soylak, Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity, Food Chem. Toxicol. 145 (2020) 111704. https://doi.org/10.1016/j.fct.2020.111704
[5] M.A. Farajzadeh, R. Safi, A. Yadeghari, Combination of QuEChERS extraction with magnetic solid phase extraction followed by dispersive liquid-liquid microextraction as an efficient procedure for the extraction of pesticides from vegetable, fruit, and nectar samples having high content of solids, Microchem. J. 147 (2019) 571-581. https://doi.org/10.1016/j.microc.2019.03.074
[6] J. Liu, X. Ma, S. Zhang, T. Wu, H. Liu, M. Xia, J. You, Cationic gemini surfactant templated magnetic cubic mesoporous silica and its application in the magnetic dispersive solid phase extraction of endocrine-disrupting compounds from the migrants of food contact materials, Microchem. J. 145 (2019) 606-613. https://doi.org/10.1016/j.microc.2018.11.013
[7] M. Faraji, Y. Yamini, Application of magnetic nanomaterials in food analysis, in: M. Ahmadi, A. Afkhami, T. Madrakian (Eds.), Magnetic Nanomaterials in Analytical Chemistry, Elsevier. 2021, pp. 87-120. https://doi.org/10.1016/B978-0-12-822131-0.00003-0
[8] B. Akça, M. Can, V. Değirmenci, A. Yilmaz, D. Üner, Single step synthesis of mesoporous Co-Pb/SBA-15 catalysts, in: K. Eguchi, M. Machida, I. Yamanaka (Eds.), Studies in Surface Science and Catalysis, Elsevier. 2007, pp. 317-320. https://doi.org/10.1016/B978-0-444-53202-2.50068-3
[9] W. Li, Synthesis and applications of mesoporous nanostructures, in: Y. Yin, Y. Lu, Y. Xia (Eds.), Encyclopedia of Nanomaterials, Elsevier. 2023, pp. 322-335. https://doi.org/10.1016/B978-0-12-822425-0.00054-3
[10] R. Brady, B. Woonton, M.L. Gee, A.J. O’Connor, Hierarchical mesoporous silica materials for separation of functional food ingredients: A review, Innov. Food Sci. Emerg. Technol. 9 (2008) 243-248. https://doi.org/10.1016/j.ifset.2007.10.002
[11] A. Bernardos, L. Kouřimská, Applications of mesoporous silica materials in food: A review, Czech J. Food Sci. 31 (2013) 99-107. https://doi.org/10.17221/240/2012-CJFS
[12] C.B. Sapiña, E.P. Castell, J. El Haskouri, E.F.S. Alfonso, P. Amorós, A.R.M. Aucejo, A type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples, J. Food Compos. Anal. 109 (2022) 104463. https://doi.org/10.1016/j.jfca.2022.104463
[13] P. Qin, Y. Yang, W. Li, J. Zhang, Q. Zhou, M. Lu, Amino-functionalized mesoporous silica nanospheres (MSN-NH2) as sorbent for extraction and concentration of synthetic dyes from foodstuffs prior to HPLC analysis, Anal. Methods. 11 (2019) 105-112. https://doi.org/10.1039/C8AY02215A
[14] I.M.M. Kenawy, Y.G.A. El-Reash, M.M. Hassanien, N.R. Alnagar, W.I. Mortada, Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury, Microporous Mesoporous Mater. 258 (2018) 217-227. https://doi.org/10.1016/j.micromeso.2017.09.021
[15] S. Ji, T. Li, W. Yang, C. Shu, D. Li, Y. Wang, L. Ding, A hollow porous molecularly imprinted polymer as a sorbent for the extraction of 7 macrolide antibiotics prior to their determination by HPLC-MS/MS, Mikrochim. Acta. 185 (2018) 203-212. https://doi.org/10.1007/s00604-018-2728-3
[16] H. Wang, Y. Liu, S. Yao, P. Zhu, Selective recognization of dicyandiamide in bovine milk by mesoporous silica SBA-15 supported dicyandiamide imprinted polymer based on surface molecularly imprinting technique, Food Chem. 240 (2018) 1262-1267. https://doi.org/10.1016/j.foodchem.2017.08.066
[17] J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. (Max) Lu, magnetic nanocomposites with mesoporous structures: Synthesis and applications, Small. 7 (2011) 425-443. https://doi.org/10.1002/smll.201001402
[18] B.S. Rodríguez, A.V.H. Herrera, M.A. Ramos, M.Á.R. Delgado, Recent applications of magnetic nanoparticles in food analysis, Processes. 8 (2020) 1140. https://doi.org/10.3390/pr8091140
[19] O. Plohl, S. Gyergyek, L.F. Zemljič, Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides, Microporous Mesoporous Mater. 310 (2021) 110663. https://doi.org/10.1016/j.micromeso.2020.110663
[20] J. Liang, H. Li, K. Huang, D. Ning, F. Yan, W. Chen, L. Xie, Y. Wang, C. Jiang, L. Tang, T. Li, X. Huang, Y. Ya, Pyrene-1-carboxaldehyde hydrazone modified mesoporous silica foam-based strategy for efficient and accurate electroanalysis of copper in food samples, J Food Compos. Anal. 134 (2024) 106587. https://doi.org/10.1016/j.jfca.2024.106587
[21] Y. Guo, B. Chen, Y. Zhao, T. Yang, Fabrication of the magnetic mesoporous silica Fe-MCM-41-A as efficient adsorbent: Performance, kinetics and mechanism, Sci. Rep. 11 (2021) 2612. https://doi.org/10.1038/s41598-021-81928-8
[22] N.I. Cuello, M.I. Oliva, C.E.R Torres, A. Tolley, V.R. Elías, G.A. Eimer, Study on magnetite nanoparticles embedded in mesoporous silica obtained by a straightforward and biocompatible method, J. Phys. Chem. Solids. 145 (2020) 109535. https://doi.org/10.1016/j.jpcs.2020.109535
[23] A. Gençer, B.U. Karataş, Ö. Topel, Önder, N. Kiraz, Nadir, Synthesis and characterization of surface-modified magnetic mesoporous silicate materials for phosphate adsorption, Turk. J. Chem. 48 (2024) 5. https://doi.org/10.55730/1300-0527.3638
[24] S. Kamari, F. Ghorbani, Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM-41, Biomass Convers. Biorefinery. 11 (2021) 3001-3009. https://doi.org/10.1007/s13399-020-00637-w
[25] S. Zeb, N. Ali, Z. Ali, M. Bilal, B. Adalat, S. Hussain, S. Gul, F. Ali, R. Ahmad, S. Khan, H.M.N. Iqbal, Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices, J. Water Process Eng. 38 (2020) 101675. https://doi.org/10.1016/j.jwpe.2020.101675
[26] R.J. Zadeh, M.H. Sayadi, M.R. Rezaei, Synthesis of Thiol modified magMCM-41 nanoparticles with rice husk ash as a robust, high effective, and recycling magnetic sorbent for the removal of herbicides, J. Environ. Chem. Eng. 9 (2021) 104804. https://doi.org/10.1016/j.jece.2020.104804
[27] D. Li, Y. Wen, L. Hu, X. Xu, B.S. Spencer, S. Egodawatte, S.C. Larsen, Y. Tang, Phosphonate functionalized magnetic mesoporous silica for rare earth element recovery from citrate assisted solid waste extracts, Appl. Geochem. 162 (2024) 105900. https://doi.org/10.1016/j.apgeochem.2024.105900
[28] C. Comanescu, Recent advances in surface functionalization of magnetic nanoparticles, Coatings. 13 (2023) 1772. https://doi.org/10.3390/coatings13101772
[29] X.T. Peng, L. Jiang, Y. Gong, X.Z. Hu, L.J. Peng, Y.Q. Feng, Preparation of mesoporous ZrO2-coated magnetic microsphere and its application in the multi-residue analysis of pesticides and PCBs in fish by GC-MS/MS, Talanta. 132 (2015) 118-125. https://doi.org/10.1016/j.talanta.2014.08.069
[30] C. Yuan, R. Li, L. Wu, X. Hong, H. He, G. Yang, L. Wang, Y. You, H. Liu, Z. Chai, X. Lu, Optimization of a modified QuEChERS method by an n-octadecylamine-functionalized magnetic carbon nanotube porous nanocomposite for the quantification of pesticides, J. Food Compos. Anal. 102 (2021) 103980. https://doi.org/10.1016/j.jfca.2021.103980
[31] M. Wang, J. Wang, K. Wang, L. Zhang, X. Cao, C. Guo, J. Wang, B. Wu, Magnetic mesoporous material derived from MIL-88B modified by l-alanine as modified QuEChERS adsorbent for the determination of 6 pesticide residues in 4 vegetables by UPLC-MS/MS, Food Chem. 384 (2022) 132325. https://doi.org/10.1016/j.foodchem.2022.132325
[32] P. Qi, Z. Wang, G. Yang, C. Shang, H. Xu, X. Wang, H. Zhang, Q Wang, X.Wang, Removal of acidic interferences in multi-pesticides residue analysis of fruits using modified magnetic nanoparticles prior to determination via ultra-HPLC-MS/MS. Microchim. Acta. 182 (2015) 2521-2528. https://doi.org/10.1007/s00604-015-1615-4
[33] Z. Liu, P. Qi, X. Wang, Z. Wang, X. Xu, W. Chen, L. Wu, H. Zhang, Q. Wang, X. Wang, Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup, Food Chem. 230 (2017) 423-431. https://doi.org/10.1016/j.foodchem.2017.03.082
[34] G. Liu, L. Li, X. Huang, S. Zheng, D. Xu, X. Xu, Y. Zhang, H. Lin, Determination of triazole pesticides in aqueous solution based on magnetic graphene oxide functionalized MOF-199 as solid phase extraction sorbents, Microporous Mesoporous Mater. 270 (2018) 258-264. https://doi.org/10.1016/j.micromeso.2018.05.023
[35] L.F.S. Santos, R.A.D. Jesus, J.A.S. Costa, L.G.T. Gouveia, M.E.D. Mesquita, S. Navickiene, Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in soursop fruit (Annona muricata), Inorg. Chem. Commun. 101 (2019) 45-51. https://doi.org/10.1016/j.inoche.2019.01.013
[36] J.L. Chen, L. Gao, Q. Jiang, Q. Hou, Y. Hong, W. Shen, Y. Wang, J.H. Zhu, Fabricating efficient porous sorbents to capture organophosphorus pesticide in solution, Microporous Mesoporous Mater. 294 (2020) 109911. https://doi.org/10.1016/j.micromeso.2019.109911
[37] S.H. Jangi, A. Khoobi, Detection of cadmium heavy metal ions using a nanostructured green sensor in food, biological and environmental samples, Food Chem. 458 (2024) 140307. https://doi.org/10.1016/j.foodchem.2024.140307
[38] N. Ncube, Y. Tancu, N. Mketo, A greener, rapid and accurate microwave-assisted hydrogen peroxide digestion method for ICP-OES determination of heavy metals in pet food samples, J. Food Compos. Anal. 131 (2024) 106201. https://doi.org/10.1016/j.jfca.2024.106201
[39] J. Gao, J. Yin, G. Wang, X. Wang, J. Zhang, B. Sun, D. He, H. Suo, C. Zhao, A novel electrode for simultaneous detection of multiple heavy metal ions without pre-enrichment in food samples, Food Chem. 448 (2024) 138994. https://doi.org/10.1016/j.foodchem.2024.138994
[40] Y. Zhang, Y. Xu, Y. Ma, H. Luo, J. Hou, C. Hou, D. Huo, Ultra-sensitive electrochemical sensors through self-assembled MOF composites for the simultaneous detection of multiple heavy metal ions in food samples, Anal. Chim. Acta. 1289 (2024) 342155. https://doi.org/10.1016/j.aca.2023.342155
[41] Z.M. Karazan, M. Roushani, S.J. Hoseini, Simultaneous electrochemical sensing of heavy metal ions (Zn2+, Cd2+, Pb2+, and Hg2+) in food samples using a covalent organic framework/carbon black modified glassy carbon electrode, Food Chem. 442 (2024) 138500. https://doi.org/10.1016/j.foodchem.2024.138500
[42] S. Shariati, N. Parto, E. Bozorgzadeh, P. Zanjanchi, S. Rahnama, Magnetic solid phase preconcentration of cadmium in water samples using sulfonic acid functionalized Kit-6 magnetite mesoporous nanocomposites followed by flame atomic absorption spectrometry, J. Iran. Chem. Soc. 17 (2020) 3375-338. https://doi.org/10.1007/s13738-020-01995-y
[43] R. Sedghi, M. Shojaee, M. Behbahani, M.R. Nabid, Application of magnetic nanoparticles modified with poly(2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices, RSC Adv. 5 (2015) 67418-67426. https://doi.org/10.1039/C5RA11561B
[44] F. Aboufazeli, H.R. L.Z. Zhad, O. Sadeghi, M. Karimi, E. Najafi, Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ons in food samples, Food Chem. 141 (2013) 3459-3465. https://doi.org/10.1016/j.foodchem.2013.06.062
[45] Z. Dahaghin, H.Z. Mousavi, S.M. Sajjadi, A novel magnetic ion imprinted polymer as a selective magnetic solid phase for separation of trace lead(II) ions from agricultural products, and optimization using a Box-Behnken design, Food Chem. 237 (2017) 275-281. https://doi.org/10.1016/j.foodchem.2017.05.118
[46] Z. Chen, Z. He, X. Luo, F. Wu, S. Tang, J. Zhang, Synthesis of MOF@COF hybrid magnetic adsorbent for microextraction of sulfonamides in food and environmental samples, Food Anal. Methods. 13 (2020) 1346-1356. https://doi.org/10.1007/s12161-020-01750-2
[47] L. Wang, Y. Xiu, B. Han, L. Liu, X. Niu, H. Wang, Magnetic mesoporous carbon material based electrochemical sensor for rapid detection of penicillin sodium in milk, J. Food Sci. 85 (2020) 2435-2442. https://doi.org/10.1111/1750-3841.15328
[48] K. Yang, Y. Kang, Q. Zhang, D. Wu, J. Shen, Y. Wei, C. Wang, Nitrogen-doped magnetic porous carbon nanospheres derived from dual templates-induced mesoporous polydopamine coated Fe3O4 for efficient extraction and sensitive determination of volatile nitrosamines by gas chromatography-mass spectroscopy, Talanta. 276 (2024) 126235. https://doi.org/10.1016/j.talanta.2024.126235
[49] C.F. Poole, Application of thin-layer chromatography to the analysis of saccharides. in: C.F. Poole (Ed.), Instrumental Thin-Layer Chromatography, Elsevier, 2023, pp. 413-435. https://doi.org/10.1016/B978-0-323-99970-0.00020-X
[50] X. Zhao, J. Dong, Y. Zhang, T. Wu, Z. Bie, Y. Chen, Magnetic dendritic mesoporous silica nanoparticles based integrated platform for rapid and efficient analysis of saccharides, Anal. Chim. Acta. 1288 (2024) 342166. https://doi.org/10.1016/j.aca.2023.342166
[51] L.C. Salazar, D.A.N. Tapia, K.D.A. Justo, A.A. Izazaga, C.S. Leyva, M.H. Martinez, S.V. Comonfort, N.N. Tito, Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges, Life Sci. 308 (2022) 120932. https://doi.org/10.1016/j.lfs.2022.120932
[52] J.C. Xue, S. Yuan, H. Meng, X.T. Hou, J. Li, H.M. Zhang, L.L. Chen, C.H. Zhang, Q.G. Zhang, The role and mechanism of flavonoid herbal natural products in ulcerative colitis, Biomed. Pharmacother. 158 (2023) 114086. https://doi.org/10.1016/j.biopha.2022.114086
[53] A.Y. Tesio, S.N. Robledo, Analytical determinations of luteolin, BioFactors. 47 (2021) 141-164. https://doi.org/10.1002/biof.1720
[54] J. Li, Y. Li, Y. Yang, P. Zhao, J. Fei, Y. Xie, Detection of luteolin in food using a novel electrochemical sensor based on cobalt-doped microporous/mesoporous carbon encapsulated peanut-like FeOx composite, Food Chem. 435 (2024) 137651. https://doi.org/10.1016/j.foodchem.2023.137651
[55] S. Cao, Z. Liu, L. Zhang, C. Xi, X. Li, G.R. Wang, M.Z. Yuan, Development of an HPLC-MS/MS method for the simultaneous analysis of six kinds of parabens in food, Anal. Methods. 5 (2013) 1016-1023. https://doi.org/10.1039/C2AY26283E
[56] Y.G. Ontiveros, I.M. Ruiz, L. Rodrigo, M. Aguilera, A. Rivas, A.Z. Gómez, Presence of parabens and bisphenols in food commonly consumed in Spain, Foods. 10 (2021) 92. https://doi.org/10.3390/foods10010092
[57] G. Yusakul, C.T. Buranachai, S. Poorahong, S. Sakamoto, F. Makkliang, An eco-friendly method using deep eutectic solvents immobilized in a microcrystal cellulose-polyvinyl alcohol sponge for parabens analysis in food samples, Microchem. J. 191 (2023) 108758. https://doi.org/10.1016/j.microc.2023.108758
[58] A. Mehdinia, M. Bahrami, S.A. Mozaffari, Comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens, J. Iran. Chem. Soc. 12 (2015)1543-1552. https://doi.org/10.1007/s13738-015-0626-8
[59] Z.Y. Chu, X.J. Zi, Network toxicology and molecular docking for the toxicity analysis of food contaminants: A case of Aflatoxin B1, Food Chem. Toxic. 188 (2024) 114687. https://doi.org/10.1016/j.fct.2024.114687
[60] C. Rui, J. He, Y. Li, Y. Liang, L. You, L. He, K. Li, S. Zhang, Selective extraction and enrichment of aflatoxins from food samples by mesoporous silica FDU-12 supported aflatoxins imprinted polymers based on surface molecularly imprinting technique, Talanta. 201 (2019,)342-349. https://doi.org/10.1016/j.talanta.2019.04.019
[61] E.P. Castell, C.B. Sapiña, V.J. Borràs, P. Amorós, J. El Haskouri, J.M.H. Martínez, A.R.M. Aucejo, Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS, Microchim. Acta. 186 (2019) 792. https://doi.org/10.1007/s00604-019-3958-8
[62] X. Feng, Y. Sun, T. Zhang, J. Li, Ha. Zhao, W. Zhao, G. Xiang, L. He, Ionic liquid-functionalized mesoporous multipod silica for simultaneously effective extraction of aflatoxin B1 and its two precursors from grain, Anal. Chim. Acta. 1303 (2024) 342544. https://doi.org/10.1016/j.aca.2024.342544
[63] M.E. Stack, Aflatoxins and mycotoxins, thin-layer (planar) chromatography, in: I.D. Wilson (Ed.), Encyclopedia of Separation Science, Academic Press, 2000, pp. 1888-1895. https://doi.org/10.1016/B0-12-226770-2/02581-3
[64] G. Galaverna, C. Dall’Asta, Sampling techniques for the determination of mycotoxins in food matrices, in: J. Pawliszyn (Ed.), Comprehensive Sampling and Sample Preparation, Academic Press, 2012, pp. 381-403. https://doi.org/10.1016/B978-0-12-381373-2.00140-X
[65] Z. Guo, L. Gao, L. Yin, M. Arslan, H.R. El-Seedi, X. Zou, Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone, Food Chem. 403 (2023) 134384. https://doi.org/10.1016/j.foodchem.2022.134384
[66] A. Farzin, S.A. Etesami, J. Quint, A. Memic, A. Tamayol, Magnetic nanoparticles in cancer therapy and diagnosis, Adv. Healthc Mater. 9 (2020) e1901058. https://doi.org/10.1002/adhm.201901058
[67] J. Zhou, X. Lv, Y. Gui, J. He, F. Xie, J. Cai, Passion fruit-inspired dendritic mesoporous silica nanospheres-enriched quantum dots coupled with magnetism-controllable aptasensor enable sensitive detection of ochratoxin A in food products, Food Chem. 425 (2023) 136445. https://doi.org/10.1016/j.foodchem.2023.136445
[68] H. Huang, G. Zhao, W. Dou, Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay, Biosens. Bioelectron. 107 (2018) 266-271. https://doi.org/10.1016/j.bios.2018.02.027
[69] M. Yin, C. Liu, R. Ge, Y. Fang, J.Wei, X. Chen, Q. Chen, X. Chen, Paper-supported near-infrared-light-triggered photoelectrochemical platform for monitoring Escherichia coli O157:H7 based on silver nanoparticles-sensitized-upconversion nanophosphors, Biosens. Bioelectron. 203 (2022) 114022. https://doi.org/10.1016/j.bios.2022.114022
[70] X. Wang, W. Li, S. Dai, M. Dou, S. Jiao, J. Yang, W. Li, Y. Su, Q. Li, J. Li, High-throughput, highly sensitive and rapid SERS detection of Escherichia coli O157:H7 using aptamer-modified Au@macroporous silica magnetic photonic microsphere array, Food Chem. 424 (2023) 136433. https://doi.org/10.1016/j.foodchem.2023.136433
[71] F. Mi, M. Guan, Y. Wang, G. Chen, P.F. Geng, A SERS biosensor based on aptamer-based Fe3O4@SiO2@Ag magnetic recognition and embedded SERS probes for ultrasensitive simultaneous detection of Staphylococcus aureus and Escherichia coli, Microchem. J. 190 (2023) 108605. https://doi.org/10.1016/j.microc.2023.108605
[72] Q. Zhou, M. Lei, Y. Liu, Y. Wu, Y. Yuan, Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography, Talanta. 175 (2017) 194-199. https://doi.org/10.1016/j.talanta.2017.07.043
[73] Y. Wang, H. Chen, J. Tang, G. Ye, H. Ge, X. Hu, Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry, Food Chem. 181 (2015) 191-197. https://doi.org/10.1016/j.foodchem.2015.02.080
[74] Z. Hasani, A. Shahsavani, Z. Aladaghlo, A. Fakhari, Application of magnetic nanoparticles modified with poly(8-hydroxyquinoline) as a nanosorbent for magnetic dispersive micro-solid phase extraction of copper in vegetable, water, and soil samples, J. Food Compos. Anal. 132 (2024) 106333. https://doi.org/10.1016/j.jfca.2024.106333
[75] P. Sricharoen, N. Limchoowong, Y. Areerob, P. Nuengmatcha, S. Techawongstien, S. Chanthai, Fe3O4/hydroxyapatite/graphene quantum dots as a novel nano-sorbent for preconcentration of copper residue in Thai food ingredients: Optimization of ultrasound-assisted magnetic solid phase extraction, Ultrason. Sonochemistry. 37 (2017) 83-93. https://doi.org/10.1016/j.ultsonch.2016.12.037
[76] L. Li, F. Nian, Y. Xu, Y. Li, S. Zhang, One-step grafting of phenyl functionalized magnetic mesoporous nanocomposites for magnetic dispersive solid-phase extraction and determination of triazole fungicide residues in strawberry fruits, Microchem. J. 201 (2024) 110635. https://doi.org/10.1016/j.microc.2024.110635
[77] S.F. Farzam, F. Shemirani, S. Karimi, Synthesis of imidazolium ionic liquid immobilized on magnetic mesoporous silica: A sorbent material in a green micro-solid phase extraction of multiclass pesticides in water, Talanta. 272 (2024) 125744. https://doi.org/10.1016/j.talanta.2024.125744
[78] Y. Zhou, J. Zhu, J. Yang, Y. Lv, Y. Zhu, W. Bi, X. Yang, D.D.Y. Chen, Magnetic nanoparticles speed up mechanochemical solid phase extraction with enhanced enrichment capability for organochlorines in plants, Anal. Chim. Acta. 1066 (2019) 49-57. https://doi.org/10.1016/j.aca.2019.03.049
[79] Y. Jia, Y. Wang, M. Yan, Q. Wang, H. Xu, X. Wang, H. Zhou, Y. Hao, M. Wang, Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples, J. Chromatogr. A. 1615 (2020) 460766. https://doi.org/10.1016/j.chroma.2019.460766
[80] I.A. Senosy, H.M. Guo, M.N. Ouyang, Z.H. Lu, Z.H. Yang, J.H. Li, Magnetic solid-phase extraction based on nano-zeolite imidazolate framework-8-functionalized magnetic graphene oxide for the quantification of residual fungicides in water, honey and fruit juices, Food Chem. 325 (2020) 126944. https://doi.org/10.1016/j.foodchem.2020.126944
[81] A. Ghiasi, A. Malekpour, S. Mahpishanian, Metal-organic framework MIL101 (Cr)-NH2 functionalized magnetic graphene oxide for ultrasonic-assisted magnetic solid phase extraction of neonicotinoid insecticides from fruit and water samples, Talanta. 217 (2020) 121120. https://doi.org/10.1016/j.talanta.2020.121120
[82] X. Yang, S.M. Ying, S. Zhang, J. Dai, W. Gao, T.Q. Wang, J.Q. Qiao, H.Z. Lian, L. Mao, CoFe2O4 decorated graphene/C18-functionalized mesoporous silica nanocomposites prepared for magnetic enrichment and electrochemical detection of promethazine in beef, Chin. Chem. Lett. 35 (2024) 108674. https://doi.org/10.1016/j.cclet.2023.108674
[83] J. Feng, X. She, X. He, J. Zhu, Y. Li, C. Deng, Synthesis of magnetic graphene/mesoporous silica composites with boronic acid-functionalized pore-walls for selective and efficient residue analysis of aminoglycosides in milk, Food Chem. 239 (2018) 612-621. https://doi.org/10.1016/j.foodchem.2017.06.052
[84] F. Omidi, M. Behbahani, M.K. Bojdi, S.J. Shahtaheri, Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica, J. Magn. Magn. Mater. 395 (2015) 213-220. https://doi.org/10.1016/j.jmmm.2015.07.093
[85] X. Zhao, X. Liu, J. Wang, Y. Liu, T. Zhang, J. Chen, Q. Li, Y. Wie, X. Xi, Determination of polymer additives in foods and drinks packed with plastic by amino group modified magnetic mesoporous silica microspheres coupled with high performance liquid chromatography, J. Liq. Chromatogr. Relat. Technol. 44 (2021) 244-254. https://doi.org/10.1080/10826076.2021.1895219
[86] R.Z. Dorabei, M.S. Darbandsari, A. Moghimi, M.S. Tehrani, S. Nazerdeylami, Synthesis, characterization and application of cyclam-modified magnetic SBA-15 as a novel sorbent and its optimization by central composite design for adsorption and determination of trace amounts of lead ions, RSC Adv. 6 (2016) 108477-108487. https://doi.org/10.1039/C6RA21895D
[87] M. Behbahani, V. Zarezade, A. Veisi, F. Omidi, S. Bagheri, Modification of magnetized MCM-41 by pyridine groups for ultrasonic-assisted dispersive micro-solid-phase extraction of nickel ions, Int. J. Environ. Sci. Technol. 16 (2019) 6431-6440. https://doi.org/10.1007/s13762-018-2052-9
[88] R. Molaei, H. Tajik, M. Moradi, Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product; Kashk, Food Control. 101 (2019) 1-8. https://doi.org/10.1016/j.foodcont.2019.02.011
[89] H. Sahebi, A.J. Talaei, E. Abdollahi, F.H. Baltork, S.V. Zade, B. Jannat, N. Sadeghi, Rapid determination of multiclass antibiotics and their metabolites in milk using ionic liquid-modified magnetic chitosan nanoparticles followed by UPLC-MS/MS, Talanta. 253 (2023) 124091. https://doi.org/10.1016/j.talanta.2022.124091