Mesoporous Materials for Separation of Biomolecules

$40.00

Mesoporous Materials for Separation of Biomolecules

Vipul D. Prajapati, Princy Shrivastav

Mesoporous materials have gained significant attention as advanced tools for the separation and purification of biomolecules due to their distinctive structural features, including higher surface areas, tunable pore sizes, and customizable surface functionalities. This chapter explores the synthesis, modification, and application of mesoporous materials in the separation of biomolecules such as proteins, enzymes, and nucleic acids. It provides a detailed overview of how pore size, surface chemistry, and material morphology influence the selectivity and efficiency of separation processes. The discussion highlights the advantages of mesoporous materials over traditional separation techniques and emphasizes their potential in enhancing the scalability and efficiency of biotechnological and biomedical processes. Additionally, current challenges and future directions in the design of more efficient, selective, and biocompatible mesoporous materials are discussed, outlining the path forward for further advancements in this promising field.

Keywords
Mesoporous Materials, Biomolecule Separation, Protein Adsorption, Enzyme Purification, Nucleic Acid Separation, Surface Functionalization, Biotechnological Applications, Biomedical Applications

Published online 3/20/2025, 30 pages

Citation: Vipul D. Prajapati, Princy Shrivastav, Mesoporous Materials for Separation of Biomolecules, Materials Research Foundations, Vol. 173, pp 362-391, 2025

DOI: https://doi.org/10.21741/9781644903452-14

Part of the book on Mesoporous Materials

References
[1] G.L. Dignon, R.B. Best, J. Mittal, Biomolecular phase separation: From molecular driving forces to macroscopic properties, Annu. Rev. Phys. Chem. 71 (2020) 53–75. https://doi.org/10.1146/annurev-physchem-071819-113553.
[2] P.C. Singh, R.K. Singh, Choosing an appropriate bioseparation technique, Trends Food Sci. Technol. 7 (1996) 49–58. https://doi.org/10.1016/0924-2244(96)81328-8.
[3] F.I. Azmi, P.S. Goh, A.F. Ismail, N. Hilal, T.W. Wong, M. Misson, Biomolecule-enabled liquid separation membranes: Potential and recent progress, Membranes. 12 (2022) 1–14. https://doi.org/10.3390/membranes12020148.
[4] K.K.R. Tetala, M.A. Vijayalakshmi, A review on recent developments for biomolecule separation at analytical scale using microfluidic devices, Anal. Chim. Acta. 906 (2016) 7–21. https://doi.org/10.1016/j.aca.2015.11.037.
[5] H. Cölfen, X. Xu, Analytical ultracentrifugation, in: C. Contado (Ed.), Particle Separation Techniques, Elsevier Inc., United Kingdom, 2022, pp. 511–539. https://doi.org/10.1016/B978-0-323-85486-3.00016-0.
[6] S. Shil, M. Tsuruta, K. Kawauchi, D. Miyoshi, Biomolecular liquid–liquid phase separation for biotechnology, BioTech. 12 (2023) 1–26. https://doi.org/10.3390/biotech12020026.
[7] F.M. Bobonich, A.S. Kovalenko, Y.G. Voloshina, A.S. Korchev, V.N. Solomakha, A.P. Philippov, V.G. Il’in, Adsorptive properties of template-containing silica-based MCM-41 and MCM-50 materials, Adsorpt. Sci. Technol. 20 (2002) 595–605. https://doi.org/10.1260/026361702321039528.
[8] V.L. Zholobenko, A.Y. Khodakov, M.I. Clerc, D. Durand, I. Grillo, Initial stages of SBA-15 synthesis: An overview, Adv. Colloid Interface Sci. 142 (2008) 67–74. https://doi.org/10.1016/j.cis.2008.05.003.
[9] B. Liu, H. Li, K. Quan, J. Chen, H. Qiu, Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications, Trends Anal. Chem. 158 (2023) 1–16. https://doi.org/10.1016/j.trac.2022.116895.
[10] S. Kumar, A. Sharma, D. Gautam, S. Hooda, Characterization of mesoporous materials, in: A. Uthaman, S. Thomas, T. Li, H. Maria (Eds.), Advanced Functional Porous Materials, Springer Cham, Switzerland, 2022, pp. 175–204. https://doi.org/10.1007/978-3-030-85397-6_6.
[11] A.M. Striegel, Size-exclusion chromatography, in: S. Fanali, B. Chankvetadze, P.R. Haddad, C.F. Poole, M.L. Riekkola (Eds.), Liquid Chromatography, Elsevier Inc., United Kingdom, 2023, pp. 509–537. https://doi.org/10.1016/B978-0-323-99968-7.00022-9.
[12] M.T.R. Laguna, R. Medrano, M.P. Plana, M.P. Tarazona, Polymer characterization by size-exclusion chromatography with multiple detection, J. Chromatogr. A. 919 (2001) 13–19. https://doi.org/10.1016/S0021-9673(01)00802-0.
[13] A.M. Striegel, Size-exclusion chromatography: A twenty-first century perspective, Chromatographia. 85 (2022) 307–313. https://doi.org/10.1007/s10337-022-04143-1.
[14] T. Nassivera, A.G. Eklund, C.C. Landry, Size-exclusion chromatography of low-molecular-mass polymers using mesoporous silica, J. Chromatogr. A. 973 (2002) 97–101. https://doi.org/10.1016/S0021-9673(02)01200-1.
[15] K. Robards, P.R. Haddad, P.E. Jackson, High-performance liquid chromatography—separations, in: K. Robards, D. Ryn (Eds.), Principles and Practice of Modern Chromatographic Methods, Elsevier Inc., New York, 2004, pp. 305–380. https://doi.org/10.1016/B978-0-08-057178-2.50009-1.
[16] K.W. Gallis, A.G. Eklund, S.T. Jull, J.T. Araujo, J.G. Moore, C.C. Landry, The use of mesoporous silica in liquid chromatography, in: Studies in Surface Science and Catalysis, Elsevier Inc., New York, 2000, pp. 747–755. https://doi.org/10.1016/S0167-2991(00)80279-7.
[17] A. Segaran, L.S. Chua, Review of recent applications and modifications of aqueous two-phase system for the separation of biomolecules, Int. J. Biol. Macromol. 276 (2024) 1–13. https://doi.org/10.1016/j.ijbiomac.2024.133856.
[18] O. Coskun, Separation techniques: Chromatography, North Clin. Istanb. (2016) 1–5. https://doi.org/10.14744/nci.2016.32757.
[19] D.A. Egas, M.J. Wirth, Fundamentals of protein separations: 50 years of nanotechnology, and growing, Annu. Rev. Anal. Chem. 1 (2008) 833–855. https://doi.org/10.1146/annurev.anchem.1.031207.112912.
[20] F.A. Vicente, I. Plazl, S.P.M. Ventura, P.Ž. Plazl, Separation and purification of biomacromolecules based on microfluidics, Green Chem. 22 (2020) 4391–4410. https://doi.org/10.1039/C9GC04362D.
[21] J.C. Scull, Nucleic acid extraction techniques, in: L.M. McManus, R.N. Mitchell (Eds.), Pathobiology of Human Disease, Elsevier Inc., New York, 2014, pp. 4059–4063. https://doi.org/10.1016/B978-0-12-386456-7.07701-7.
[22] B. Foxman, A primer of molecular biology, in: Molecular Tools and Infectious Disease Epidemiology, Elsevier Inc., New York, 2012, pp. 53–78. https://doi.org/10.1016/B978-0-12-374133-2.00005-8.
[23] J.L. Cole, Centrifugation: Analytical ultracentrifugation, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier Inc., New York, 2013, pp. 1–6. https://doi.org/10.1016/B978-0-12-409547-2.04422-X.
[24] Z. Xu, W. Wang, Y. Cao, B. Xue, Liquid-liquid phase separation: Fundamental physical principles, biological implications, and applications in supramolecular materials engineering, Supramol. Mater. 2 (2023) 100049. https://doi.org/10.1016/j.supmat.2023.100049.
[25] T.P. Fraccia, G. Zanchetta, Liquid–liquid crystalline phase separation in biomolecular solutions, Curr. Opin. Colloid Interface Sci. 56 (2021) 1–10. https://doi.org/10.1016/j.cocis.2021.101500.
[26] Y. Song, Liquid–liquid phase separation-inspired design of biomaterials, Biomater. Sci. 12 (2024) 1943–1949. https://doi.org/10.1039/D3BM02008H.
[27] V.C. Xie, M.J. Styles, B.C. Dickinson, Methods for the directed evolution of biomolecular interactions, Trends Biochem. Sci. 47 (2022) 403–416. https://doi.org/10.1016/j.tibs.2022.01.001.
[28] J. Černý, P. Hobza, Non-covalent interactions in biomacromolecules, Phys. Chem. Chem. Phys. 9 (2007) 1–34. https://doi.org/10.1039/b704781a.
[29] A. Bandyopadhyay, J. Gao, Targeting biomolecules with reversible covalent chemistry, Curr. Opin. Chem. Biol. 34 (2016) 110–116. https://doi.org/10.1016/j.cbpa.2016.08.011.
[30] Z. Guo, Y. Chen, S. Wang, J. Pang, Z. Liu, Dendritic mesoporous silica nanospheres: toward the ultimate minimum particle size for ultraefficient liquid chromatographic separation, ACS Appl. Mater. Interfaces. 13 (2021) 22970–22977. https://doi.org/10.1021/acsami.1c03985.
[31] F. Schüth, Superstructures of mesoporous silicas, Curr. Opin. Colloid Interface Sci. 3 (1998) 174–180. https://doi.org/10.1016/S1359-0294(98)80011-3.
[32] M. Raimondo, G. Perez, M. Sinibaldi, A. De Stefanis, A.A.G. Tomlinson, Mesoporous M41S materials in capillary gas chromatography, Chem. Commun. (1997) 1343–1344. https://doi.org/10.1039/a702849k.
[33] J.M. Kisler, A. Dähler, G.W. Stevens, A.J. O’Connor, Separation of biological molecules using mesoporous molecular sieves, Microporous Mesoporous Mater. 44–45 (2001) 769–774. https://doi.org/10.1016/S1387-1811(01)00259-1.
[34] Z. ALOthman, A review: Fundamental aspects of silicate mesoporous materials, Materials. 5 (2012) 2874–2902. https://doi.org/10.3390/ma5122874.
[35] D. Khan, Shaily, Synthesis and catalytic applications of organo‐functionalized MCM‐41 catalyst: A review, Appl. Organomet. Chem. 37 (2023) 35–43. https://doi.org/10.1002/aoc.7007.
[36] P. Verma, Y. Kuwahara, K. Mori, R. Raja, H. Yamashita, Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications, Nanoscale. 12 (2020) 11333–11363. https://doi.org/10.1039/D0NR00732C.
[37] K. Lan, D. Zhao, Functional ordered mesoporous materials: Present and future, Nano. Lett. 22 (2022) 3177–3179. https://doi.org/10.1021/acs.nanolett.2c00902.
[38] B. Szczęśniak, J. Choma, M. Jaroniec, Major advances in the development of ordered mesoporous materials, Chem. Commun. 56 (2020) 7836–7848. https://doi.org/10.1039/D0CC02840A.
[39] K. Lan, D. Zhao, Functional ordered mesoporous materials: Present and future, Nano. Lett. 22 (2022) 3177–3179. https://doi.org/10.1021/acs.nanolett.2c00902.
[40] M. Robertson, A.G. Obando, A. Barbour, P. Smith, A. Griffin, Z. Qiang, Direct synthesis of ordered mesoporous materials from thermoplastic elastomers, Nat. Commun. 14 (2023) 639–650. https://doi.org/10.1038/s41467-023-36362-x.
[41] L. Ruchomski, S. Pikus, T. Pikula, E. Mączka, M. Kosmulski, Synthesis and properties of Fe/SBA-15, Colloids Surf. A. Physicochem. Eng. Asp. 599 (2020) 12–22. https://doi.org/10.1016/j.colsurfa.2020.124922.
[42] S.P. Beltran, P.B. Balbuena, G.E.R. Caballero, Surface structure and acidity properties of mesoporous silica SBA-15 modified with aluminum and titanium: First-principles calculations, J. Phys. Chem. C. 120 (2016) 18105–18114. https://doi.org/10.1021/acs.jpcc.6b05630.
[43] Q.N.K. Nguyen, N.T. Yen, N.D. Hau, H.L. Tran, Synthesis and characterization of mesoporous silica SBA-15 and ZnO/SBA-15 photocatalytic materials from the ash of brickyards, J. Chem. 2020 (2020) 1–8. https://doi.org/10.1155/2020/8456194.
[44] M.B. Bahari, C.R. Mamat, A.A. Jalil, N.S. Hassan, W. Nabgan, H.D. Setiabudi, D.V.N. Vo, B.T.P. Thuy, Mesoporous alumina: A comprehensive review on synthesis strategies, structure, and applications as support for enhanced H2 generation via CO2-CH4 reforming, Int. J. Hydrogen Energy. 47 (2022) 41507–41526. https://doi.org/10.1016/j.ijhydene.2021.12.145.
[45] S. Tang, X. Huang, X. Chen, N. Zheng, Hollow mesoporous zirconia nanocapsules for drug delivery, Adv. Funct. Mater. 20 (2010) 2442–2447. https://doi.org/10.1002/adfm.201000647.
[46] D. Pan, Q. Xu, Z. Dong, S. Chen, F. Yu, X. Yan, B. Fan, R. Li, Facile synthesis of highly ordered mesoporous cobalt–alumina catalysts and their application in liquid phase selective oxidation of styrene, RSC Adv. 5 (2015) 98377–98390. https://doi.org/10.1039/C5RA20531J.
[47] A. Ramesh, D. Rajesh, K. Shanthi, P.B. Bhargav, M.T. Nguyen-Le, Catalytic conversion of glucose to 5-hydroxymethylfurfural productions over sulphated Ti-Al2O3 catalysts, Biomass Bioenergy. 154 (2021) 10–32. https://doi.org/10.1016/j.biombioe.2021.106261.
[48] E. Özkan, A. Hofmann, M. Votsmeier, W. Wang, X. Huang, C. Kübel, F. Badaczewski, K. Turke, S. Werner, B.M. Smarsly, Comprehensive characterization of a mesoporous cerium oxide nanomaterial with high surface area and high thermal stability, Langmuir. 37 (2021) 2563–2574. https://doi.org/10.1021/acs.langmuir.0c02747.
[49] P. Shen, B. Zhang, Y. Wang, X. Liu, C. Yu, T. Xu, S.S. Mofarah, Y. Yu, Y. Liu, H. Sun, H. Arandiyan, Nanoscale niobium oxides anode for electrochemical lithium and sodium storage: A review of recent improvements, J. Nanostructure Chem. 11 (2021) 33–68. https://doi.org/10.1007/s40097-020-00367-5.
[50] Y. Jiao, X. Zhang, H. Yang, H. Ma, J. Zou, Mesoporous tantalum oxide nanomaterials induced cardiovascular endothelial cell apoptosis via mitochondrial-endoplasmic reticulum stress apoptotic pathway, Drug Deliv. 30 (2023) 108–120. https://doi.org/10.1080/10717544.2022.2147251.
[51] M.M. Rahman, M.G. Ara, M.A. Alim, M.S. Uddin, A. Najda, G.M. Albadrani, A.A. Sayed, S.A. Mousa, M.M.A. Daim, Mesoporous carbon: A versatile material for scientific applications, Int. J. Mol. Sci. 22 (2021) 1–10. https://doi.org/10.3390/ijms22094498.
[52] S.M. Ataei, E. Aram, Mesoporous carbon-based materials: A review of synthesis, modification, and applications, Catalysts. 13 (2022) 1–15. https://doi.org/10.3390/catal13010002.
[53] A. Rajendran, H.X. Fan, W.Y. Li, Synthesis of mesoporous materials, in: A. Uthaman, S. Thomas, T. Li, H. Maria (Eds.), Advanced Functional Porous Materials, from Macro to Nano Scale Lengths, Springer Cham, Switzerland, 2022, pp. 113–173. https://doi.org/10.1007/978-3-030-85397-6_5.
[54] L.D. Bonifacio, B.V. Lotsch, G.A. Ozin, Periodic mesoporous materials: Holes filled with opportunities, in: D.L. Andrews, G.D. Scholes, G.P. Wiederrecht (Eds.), Comprehensive Nanoscience and Technology, Elsevier, Academic Press, New York, 2011, pp. 69–125. https://doi.org/10.1016/B978-0-12-374396-1.00049-0.
[55] P.V.D. Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, F.J. R.Salguero, Periodic mesoporous organosilicas: From simple to complex bridges; A comprehensive overview of functions, morphologies and applications, Chem. Soc. Rev. 42 (2013) 3913–3955. https://doi.org/10.1039/C2CS35222B.
[56] A.V. Nomoev, S.P. Bardakhanov, M. Schreiber, D.G. Bazarova, N.A. Romanov, B.B. Baldanov, B.R. Radnaev, V.V Syzrantsev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation, Beilstein J. Nanotechnol. 6 (2015) 874–880. https://doi.org/10.3762/bjnano.6.89.
[57] N. Masoumifard, R.G. Nicolas, F. Kleitz, Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core–shell materials, Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201704439.
[58] T. Krawczyk, M. Zalewski, A. Janeta, P. Hodurek, SEC separation of polysaccharides using macroporous spherical silica gel as a stationary phase, Chromatographia. 81 (2018) 1365–1372. https://doi.org/10.1007/s10337-018-3582-5.
[59] G.B. Irvine, High-performance size-exclusion chromatography of peptides, J. Biochem. Biophys. Methods. 56 (2003) 233–242. https://doi.org/10.1016/S0165-022X(03)00061-7.
[60] C. Kip, K.Ö. Hamaloğlu, C. Demir, A. Tuncel, Recent trends in sorbents for bioaffinity chromatography, J. Sep. Sci. 44 (2021) 1273–1291. https://doi.org/10.1002/jssc.202001117.
[61] L. Zhao, H. Qin, R. Wu, H. Zou, Recent advances of mesoporous materials in sample preparation, J. Chromatogr. A. 1228 (2012) 193–204. https://doi.org/10.1016/j.chroma.2011.09.051.
[62] M.V. Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery, Angew. Chem., Int. Ed. 46 (2007) 7548–7558. https://doi.org/10.1002/anie.200604488.
[63] K.A. Kilian, T. Böcking, J.J. Gooding, The importance of surface chemistry in mesoporous materials: Lessons from porous silicon biosensors, Chem. Commun. (2009) 630–640. https://doi.org/10.1039/B815449J.
[64] J. Wu, L. Tan, Y. Li, X. Wu, Y. Liang, Highly ordered molecularly imprinted mesoporous silica for selective removal of bisphenol A from wastewater, J. Sep. Sci. 43 (2020) 987–995. https://doi.org/10.1002/jssc.201900957.
[65] A.A. Alotaibi, A.K. Shukla, M.H. Mrad, A.M. Alswieleh, K.M. Alotaibi, Fabrication of polysulfone-surface functionalized mesoporous silica nanocomposite membranes for removal of heavy metal ions from wastewater, Membranes. 11 (2021) 1–10. https://doi.org/10.3390/membranes11120935.
[66] M. Moritz, M.G. Moritz, Mesoporous materials as multifunctional tools in biosciences: Principles and applications, Mater. Sci. Eng. C. 49 (2015) 114–151. https://doi.org/10.1016/j.msec.2014.12.079.
[67] B. Karimi, S. Emadi, A.A. Safari, M. Kermanian, Immobilization, stability and enzymatic activity of albumin and trypsin adsorbed onto nanostructured mesoporous SBA-15 with compatible pore sizes, RSC Adv. 4 (2014) 4387–4394. https://doi.org/10.1039/C3RA46002A.
[68] C. Oh, J.H. Lee, Y.G. Lee, Y.H. Lee, J.W. Kim, H.H. Kang, S.G. Oh, New approach to the immobilization of glucose oxidase on non-porous silica microspheres functionalized by (3-aminopropyl)trimethoxysilane (APTMS), Colloids Surf. B. Biointerfaces. 53 (2006) 225–232. https://doi.org/10.1016/j.colsurfb.2006.09.007.
[69] E. Magner, Immobilisation of enzymes on mesoporous silicate materials, Chem. Soc. Rev. 42 (2013) 1–10. https://doi.org/10.1039/c2cs35450k.
[70] S.S. Ding, J. P. Zhu, Y. Wang, Y. Yu, Z. Zhao, Recent progress in magnetic nanoparticles and mesoporous materials for enzyme immobilization: An update, Braz. J. Biol. 82 (2022) 1–10. https://doi.org/10.1590/1519-6984.244496.
[71] C.H. Lee, T.S. Lin, C.Y. Mou, Mesoporous materials for encapsulating enzymes, Nano Today. 4 (2009) 165–179. https://doi.org/10.1016/j.nantod.2009.02.001.
[72] J. Kim, R.J. Desch, S.W. Thiel, V.V. Guliants, N.G. Pinto, Adsorption of biomolecules on mesostructured cellular foam silica: Effect of acid concentration and aging time in synthesis, Microporous Mesoporous Mater. 149 (2012) 60–68. https://doi.org/10.1016/j.micromeso.2011.08.031.
[73] M. Quirós, A.B. García, M.A.M. Morán, Influence of the support surface properties on the protein loading and activity of lipase/mesoporous carbon biocatalysts, Carbon. 49 (2011) 406–415. https://doi.org/10.1016/j.carbon.2010.09.037.
[74] I. Slowing, J. Viveroescoto, C. Wu, V. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Deliv. Rev. 60 (2008) 1278–1288. https://doi.org/10.1016/j.addr.2008.03.012.
[75] J.L. Steinbacher, C.C. Landry, Adsorption and release of siRNA from porous silica, Langmuir. 30 (2014) 4396–4405. https://doi.org/10.1021/la402850m.
[76] S.M. Solberg, C.C. Landry, Adsorption of DNA into mesoporous silica, J. Phys. Chem. B. (2006) 15261–15268. https://doi.org/10.1021/jp061691.
[77] J. Liu, B. Wang, S.B. Hartono, T. Liu, P. Kantharidis, A.P.J. Middelberg, G.Q. (Max) Lu, L. He, S.Z. Qiao, Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake, Biomaterials. 33 (2012) 970–978. https://doi.org/10.1016/j.biomaterials.2011.10.001.
[78] D. Wang, X. Chen, J. Feng, M. Sun, Recent advances of ordered mesoporous silica materials for solid-phase extraction, J. Chromatogr. A. 1675 (2022) 1–13. https://doi.org/10.1016/j.chroma.2022.463157.
[79] K. Delińska, P.W. Rakowska, A. Kloskowski, Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives, Trends Anal. Chem. 143 (2021) 1–15. https://doi.org/10.1016/j.trac.2021.116386.
[80] H. Bai, G. Teng, C. Zhang, J. Yang, W. Yang, F. Tian, Magnetic materials as adsorbents for the pre‐concentration and separation of active ingredients from herbal medicine, J. Sep. Sci. 47 (2024) 1–20. https://doi.org/10.1002/jssc.202400274.
[81] N. Haroon, K.J. Stine, Electrochemical detection of hormones using nanostructured electrodes, Coatings. 13 (2023) 1–62. https://doi.org/10.3390/coatings13122040.
[82] A. Grela, J. Kuc, T. Bajda, A review on the application of zeolites and mesoporous silica materials in the removal of non-steroidal anti-inflammatory drugs and antibiotics from water, Materials. 14 (2021) 1–24. https://doi.org/10.3390/ma14174994.
[83] M. Andrunik, T. Bajda, Removal of pesticides from waters by adsorption: Comparison between synthetic zeolites and mesoporous silica materials. A review, Materials. 14 (2021) 1–39. https://doi.org/10.3390/ma14133532.
[84] H. Gao, J. Lu, Y. Jiang, Y. Fang, Y. Tang, Z. Yu, W. Zhang, F. Xin, M. Jiang, Material‐mediated cell immobilization technology in the biological fermentation process, Biofuels Bioprod. Biorefining. 15 (2021) 1160–1173. https://doi.org/10.1002/bbb.2219.
[85] Y. Luo, B. Wang, L. Yi, C.F. Ding, C. Deng, Y. Yan, Mesoporous materials for glycopeptide separation, Trends Anal. Chem. 167 (2023) 1–17. https://doi.org/10.1016/j.trac.2023.117234.
[86] Y. Lu, H. Zhang, Y. Zhu, P.J. Marriott, H. Wang, Emerging homochiral porous materials for enantiomer separation, Adv. Funct. Mater. 31 (2021) 1–88. https://doi.org/10.1002/adfm.202101335.
[87] C.A. McCarthy, R.J. Ahern, R. Dontireddy, K.B. Ryan, A.M. Crean, Mesoporous silica formulation strategies for drug dissolution enhancement: A review, Expert Opin. Drug Deliv. 13 (2016) 93–108. https://doi.org/10.1517/17425247.2016.1100165.
[88] S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B.S. Varnamkhasti, A.A. Saboury, Mesoporous silica nanoparticles for therapeutic/diagnostic applications, Biomed. Pharmacother. 109 (2019) 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167.
[89] M. Moritz, M.G. Moritz, Mesoporous materials as elements of modern drug delivery systems for anti-inflammatory agents: A review of recent achievements, Pharmaceutics. 14 (2022) 1–15. https://doi.org/10.3390/pharmaceutics14081542.
[90] V. Cauda, G. Canavese, Mesoporous materials for drug delivery and theranostics, Pharmaceutics. 12 (2020) 1–3. https://doi.org/10.3390/pharmaceutics12111108.
[91] M.V. Regí, M. Colilla, I.I. Barba, M. Manzano, Mesoporous silica nanoparticles for drug delivery: Current insights, Molecules. 23 (2017) 1–10. https://doi.org/10.3390/molecules23010047.
[92] W. Zhang, H. Liu, X. Qiu, F. Zuo, B. Wang, Mesoporous silica nanoparticles as a drug delivery mechanism, Open Life Sci. 19 (2024) 16–24. https://doi.org/10.1515/biol-2022-0867.
[93] J.A. Cecilia, R.M. Tost, M.R. Millán, Mesoporous materials: From synthesis to applications, Int. J. Mol. Sci. 20 (2019) 1–13. https://doi.org/10.3390/ijms20133213.
[94] D. Schrag, M. Corbier, S. Raimondi, Size exclusion-high-performance liquid chromatography (SEC-HPLC), in: V. Ossipow, N. Fischer (Eds.), Monoclonal Antibodies: Methods and Protocols, Humana Totowa, New Jersey, 2014, pp. 507–512. https://doi.org/10.1007/978-1-62703-992-5_31.
[95] S.C. Moldoveanu, V. David, Stationary phases and columns for size exclusion, in: Selection of the HPLC Method in Chemical Analysis, Elsevier Inc., United Kingdom, 2017, pp. 377–386. https://doi.org/10.1016/B978-0-12-803684-6.00011-1.
[96] M. Navaziya, HPLC hyphenations in advanced analytical world, J. Phys. Chem. Biophys. 12 (2022) 1–5. https://doi.org/10.35248/2161-0487-22.12.328.
[97] J. Zhao, F. Gao, Y. Fu, W. Jin, P. Yang, D. Zhao, Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography, Chem. Commun. (2002) 752–753. https://doi.org/10.1039/b110637f.
[98] R. Brady, B. Woonton, M.L. Gee, A.J. O’Connor, Hierarchical mesoporous silica materials for separation of functional food ingredients — A review, Innov. Food Sci. Emerg. Technol. 9 (2008) 243–248. https://doi.org/10.1016/j.ifset.2007.10.002.
[99] S.A. Kitte, T.H. Fereja, M.I. Halawa, B. Lou, H. Li, G. Xu, Recent advances in nanomaterial‐based capillary electrophoresis, Electrophoresis. 40 (2019) 2050–2057. https://doi.org/10.1002/elps.201800534.
[100] P. Minakshi, M. Ghosh, B. Brar, K. Ranjan, H.S. Patki, R. Kumar, Separation techniques with nanomaterials, in: H.M. Chaudhery (Eds.), Handbook of Nanomaterials in Analytical Chemistry, Elsevier Inc., United Kingdom, 2020, pp. 99–158. https://doi.org/10.1016/B978-0-12-816699-4.00006-2.
[101] Z. Song, J. Li, W. Lu, B. Li, G. Yang, Y. Bi, M. Arabi, X. Wang, J. Ma, L. Chen, Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations, Trends Anal. Chem. 146 (2022) 1–16. https://doi.org/10.1016/j.trac.2021.116504.
[102] M. Hartmann, Ordered mesoporous materials for bioadsorption and biocatalysis, Chem. Mater. 17 (2005) 4577–4593. https://doi.org/10.1021/cm0485658.