Mesoporous Materials for Enzyme Immobilization
Sreelekshmi, Athira A., K.M. Sreedhar, Beena Saraswathyamma
Over the years, mesoporous materials have garnered increasing research interest as versatile carriers and promising substrates for enzyme immobilization. A critical problem is to comprehend the impact of immobilization on enzymes to formulate circumstances that maximize enzyme activity. This chapter concludes with insights and perspectives regarding forthcoming obstacles and opportunities for their scale-up uses. The principal features of innovative mesoporous materials are exceptional biocatalytic performance, enhanced stability and repeatability, high loading capacity, and increased accessibility to catalytic sites. The chapter discusses different immobilization techniques employed on mesoporous materials, different characteristics of mesoporous materials influencing immobilization, correlation between advancements in mesoporous materials also their respective contributions to immobilized enzyme, along with applications of these materials for biocatalysis.
Keywords
Mesoporous Materials, Enzyme Immobilization, Entrapment, Encapsulation, Cross-Linking, Ordered Mesoporous Carbons
Published online 3/20/2025, 22 pages
Citation: Sreelekshmi, Athira A., K.M. Sreedhar, Beena Saraswathyamma, Mesoporous Materials for Enzyme Immobilization, Materials Research Foundations, Vol. 173, pp 340-361, 2025
DOI: https://doi.org/10.21741/9781644903452-13
Part of the book on Mesoporous Materials
References
[1] ALOthman, A. Zeid, A review: Fundamental aspects of silicate mesoporous materials, Mater. 5 (2012) 2874-2902. https://doi.org/10.3390/ma5122874
[2] K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials: Process Technology and Applications, Springer science & business media, 2013.
[3] M. Faraji, Y. Yamini, F. Noormohammadi, M. Adeli, Application of magnetic nanomaterials in environmental monitoring, in: M. Ahmadi, A. Afkhami, T. Madrakian (Eds.), Magnetic Nanomaterials in Analytical Chemistry, Elsevier, 2021, pp. 155-189. https://doi.org/10.1016/B978-0-12-822131-0.00005-4
[4] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97 (1997) 2373-2420. https://doi.org/10.1021/cr960406n
[5] M.V. Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery, Angew. Chem. -Int. Ed. 46 (2007) 7548-7558. https://doi.org/10.1002/anie.200604488
[6] S.E. Lehman, S.C. Larsen, Zeolite and mesoporous silica nanomaterials: Greener syntheses, environmental applications and biological toxicity, Environ. Sci.: Nano. (2014) 200-213. https://doi.org/10.1039/C4EN00031E
[7] H. Essa, E. Magner, J. Cooney, B.K. Hodnett, Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates, J. Mol. Catal. B: Enzym. 49 (2007) 61-68. https://doi.org/10.1016/j.molcatb.2007.07.005
[8] B.J. Melde, B.J. Johnson, Mesoporous materials in sensing: Morphology and functionality at the meso-interface, Anal. Bioanal. Chem. 398 (2010) 1565-1573. https://doi.org/10.1007/s00216-010-3688-6
[9] X. Yang, P. Qiu, J. Yang, Y. Fan, L. Wang, W. Jiang, X. Cheng, Y. Deng, W. Luo, Mesoporous materials-based electrochemical biosensors from enzymatic to nonenzymatic, Small. 17 (2021) 1904022. https://doi.org/10.1002/smll.201904022
[10] L. Wang, W. Ding, Y. Sun, The preparation and application of mesoporous materials for energy storage, Mater. Res. Bull. 83 (2016) 230-249. https://doi.org/10.1016/j.materresbull.2016.06.008
[11] B. Brena, P.G. Pombo, F.B. Viera, Immobilization of enzymes: A literature survey, Immobilization of Enzymes and Cells: Third Edition (2013): 15-31. https://doi.org/10.1007/978-1-62703-550-7_2
[12] Brena BM, P. González-Pombo, Batista-Viera F, Immobilization of enzymes: A literature survey, Methods Mol Biol. 1051 (2013) 15-31. https://doi.org/10.1007/978-1-62703-550-7_2
[13] V.L. Sirisha, A. Jain, A. Jain, Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes, Adv. Food Nutr. Res. 79 (2016) 179-211. https://doi.org/10.1016/bs.afnr.2016.07.004
[14] Z. Zhou, M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev. 42 (2013) 3894-3912. https://doi.org/10.1039/c3cs60059a
[15] D.M. Liu, C. Dong, Recent advances in nano-carrier immobilized enzymes and their applications, Proc. Biochem. 92 (2020) 464-475. https://doi.org/10.1016/j.procbio.2020.02.005
[16] S. Hudson, E. Magner, J. Cooney, B.K. Hodnett, Methodology for the immobilization of enzymes onto mesoporous materials, J. Phys. Chem. B. 109 (2005) 19496-19506. https://doi.org/10.1021/jp052102n
[17] J. Fan, J. Lei, L. Wang, C. Yu, B. Tu, D. Zhao, Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies, Chem. Commun. 17 (2003) 2140-2141. https://doi.org/10.1039/b304391f
[18] J.F. Diaz, K.J. Balkus Jr., Enzyme immobilization in MCM-41 molecular sieve, J. Mol. Catal. B: Enzym. 2 (1996) 115-126. https://doi.org/10.1016/S1381-1177(96)00017-3
[19] M.R. Khan, Immobilized enzymes: A comprehensive review, Bull. Natl. Res. Cent. 45 (2021) 1-13. https://doi.org/10.1186/s42269-020-00453-2
[20] F.V. Oberhaus, D. Frense, D. Beckmann, Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: A review, Biosensors. 10 (2020) 45. https://doi.org/10.3390/bios10050045
[21] N.A. Mohidem, M. Mohamad, M.U. Rashid, M.N. Norizan, F. Hamzah, H.B. Mat, Recent advances in enzyme immobilisation strategies: An overview of techniques and composite carriers, J. Compos. Sci. 7 (2023) 488. https://doi.org/10.3390/jcs7120488
[22] S. Liu, M. Bilal, K. Rizwan, I. Gul, T. Rasheed, H.M. Iqbal, Smart chemistry of enzyme immobilization using various support matrices: A review. Int. J. Biol. Macromol. 190 (2021) 396-408. https://doi.org/10.1016/j.ijbiomac.2021.09.006
[23] Y.R. Maghraby, R.M. El-Shabasy, A.H. Ibrahim, H.M.S. Azzazy, Enzyme immobilization technologies and industrial applications, ACS Omega. 8 (2023) 5184-5196. https://doi.org/10.1021/acsomega.2c07560
[24] T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: A review, Adsorption. 20 (2014) 801-821. https://doi.org/10.1007/s10450-014-9623-y
[25] N. Bashir, M. Sood, J.D. Bandral, Enzyme immobilization and its applications in food processing: A review, Int. J. Chem. Stud. 8 (2020) 254-261. https://doi.org/10.22271/chemi.2020.v8.i2d.8779
[26] C. Ispas, I. Sokolov, S. Andreescu, Enzyme-functionalized mesoporous silica for bioanalytical applications, Anal. Bioanal. Chem. 393 (2009) 543-554. https://doi.org/10.1007/s00216-008-2250-2
[27] M.G. Bellino, A.E. Regazzoni, Immobilization of enzymes into self-assembled iron (III) hydrous oxide nano-scaffolds: A bio-inspired one-pot approach to hybrid catalysts, Appl. Catal. A: Gen. 408 (2011) 73-77. https://doi.org/10.1016/j.apcata.2011.09.008
[28] R. Das, D. Sen, A. Sarkar, S. Bhattacharyya, C. Bhattacharjee, A comparative study on the production of galacto-oligosaccharide from whey permeate in recycle membrane reactor and in enzymatic batch reactor, Ind. amp; Eng. Chem. Res. 50 (2011) 806-816. https://doi.org/10.1021/ie1016333
[29] M.C.R. Franssen, P. Steunenberg, E.L. Scott, H. Zuilhof, J.P.M. Sanders, Immobilised enzymes in biorenewables production, Chem. Soc. Rev. 42 (2013) 6491-6533. https://doi.org/10.1039/c3cs00004d
[30] B.D. Singh, Biotechnology Expanding Horizons, Fifth ed., Kalyani Publishers, 2007.
[31] K. Szymańska, J. Bryjak, A.B. Jarzębski, Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts, Top. Catal. 52 (2009) 1030-1036. https://doi.org/10.1007/s11244-009-9261-x
[32] Q. Zhao , Y. Hou, G.H. Gong, M.A. Yu, L. Jiang, Characterization of Alcohol Dehydrogenase from Permeabilized Brewer’s Yeast Cells Immobilized on the Derived Attapulgite Nanofibers, Appl. Biochem. Biotechnol. 160 (2010) 2287-2299. https://doi.org/10.1007/s12010-009-8692-y
[33] P. Pachariyanon, E. Barth, D.W. Agar, Enzyme immobilisation in permselective microcapsules, J. Microencapsul. 28 (2011) 370-383. https://doi.org/10.3109/02652048.2011.576781
[34] T.A.C. Silva, P.S. Marques, C.R.F. Souza, S. Said, W.P.O.C. Silva, T. Alexandre, Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles, J. Microencapsul. 32 (2015) 16-21. https://doi.org/10.3109/02652048.2014.940013
[35] T. Man, C. Xu, X.Y. Liu, D. Li, C.K. Tsung, H. Pei, Y. Wan, L. Li, Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions, Nat. Commun. 13 (2022) 305. https://doi.org/10.1038/s41467-022-27983-9
[36] Y. Jiang, L. Shi, Y. Huang, J. Gao, X. Zhang, L. Zhou, Preparation of robust biocatalyst based on cross-linked enzyme aggregates entrapped in three-dimensionally ordered macroporous silica, ACS Appl. Mater. Interfaces. 6 (2014) 2622-2628. https://doi.org/10.1021/am405104b
[37] A.S. Sahutoglu, C. Akgul, Immobilisation of aspergillus oryzae α-amylase and aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates, Chem. Pap. 69 (2015) 433-439. https://doi.org/10.1515/chempap-2015-0031
[38] C.S. Sampaio, J.A.F. Angelotti, R.F. Lafuente, D.B. Hirata, Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects: A review, Int. J. Biol. Macromol. 215 (2022) 434-449. https://doi.org/10.1016/j.ijbiomac.2022.06.139
[39] L. Bayne, R.V. Ulijn, P.J. Halling, Effect of pore size on the performance of immobilised enzymes, Chem. Soc. Rev. 42 (2013) 9000-9010. https://doi.org/10.1039/c3cs60270b
[40] E. Serra, Á. Mayoral, Y. Sakamoto, R.M. Blanco, I. Díaz, Immobilization of lipase in ordered mesoporous materials: Effect of textural and structural parameters, Microporous Mesoporous Mater. 114 (2008) 201-213. https://doi.org/10.1016/j.micromeso.2008.01.005
[41] E. Magner, Immobilisation of enzymes on mesoporous silicate materials, Chem. Soc. Rev. 42 (2013) 6213-6222. https://doi.org/10.1039/c2cs35450k
[42] E. Weber, D. Sirim, T. Schreiber, B. Thomas, J. Pleiss, M. Hunger, R. Gläser, V.B. Urlacher, Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters, J. Mol. Catal. B: Enzym. 64 (2010) 29-37. https://doi.org/10.1016/j.molcatb.2010.01.020
[43] D. Zhao, Y. Wan, W. Zhou, Ordered Mesoporous Materials, John Wiley & Sons, 2012. https://doi.org/10.1002/9783527647866
[44] C. Liang, Z. Li, S. Dai, Mesoporous carbon materials: Synthesis and modification, Angew. Chem. Int. Ed. 47 (2008) 3696-3717. https://doi.org/10.1002/anie.200702046
[45] J. Li, J. Gu, H. Li, Y. Liang, Y. Hao, X. Sun, L. Wang, Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes, Microporous Mesoporous Mater. 128 (2010) 144-149. https://doi.org/10.1016/j.micromeso.2009.08.015
[46] X. Song, H. Ren, J. Ding, C. Wang, X. Yin, H. Wang, One-step nanocasting synthesis of sulfur and nitrogen co-doped ordered mesoporous carbons as efficient electrocatalysts for oxygen reduction, Mater. Lett. 159 (2015) 280-283. https://doi.org/10.1016/j.matlet.2015.06.112
[47] Savic, Slavica, et al., Hard template synthesis of nanomaterials based on mesoporous silica, Metall. Mater. Eng. 24 (2018). https://doi.org/10.30544/400
[48] A. Ramesh, R. Manigandan, B.M. Ali, K. Dhandapani, C.T. Da, M.T.N. Le, Selective oxidation of benzyl alcohol over sulphated zirconia incorporated ordered mesoporous carbon by a hard template method, J. Alloys Compd. 918 (2022) 165729. https://doi.org/10.1016/j.jallcom.2022.165729
[49] Q. Wang, W. Zhang, Y. Mu, L. Zhong, Y. Meng, Y. Sun, Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via soft-template method, Microporous Mesoporous Mater. 197 (2014) 109-115. https://doi.org/10.1016/j.micromeso.2014.05.025
[50] Z. Zhang, G. Wang, Y. Li, X. Zhang, N. Qiao, J. Wang, J. Zhou, Z. Liu, Z. Hao, A new type of ordered mesoporous carbon/polyaniline composites prepared by a two-step nanocasting method for high performance supercapacitor applications, J. Mater. Chem. A. 2 (2014) 16715-16722 https://doi.org/10.1039/C4TA03351E
[51] L. Xu, L. Sun, J. Feng, L. Qi, I. Muhammad, J. Maher, X. Cheng, W. Song, Nanocasting synthesis of an iron nitride-ordered mesopore carbon composite as a novel electrode material for supercapacitors, RSC Adv. 7 (2017) 44619-44625. https://doi.org/10.1039/C7RA08704G
[52] J. Wang, Y. Xu, B. Ding, Z. Chang, X. Zhang, Y. Yamauchi, K.C.W. Wu, Confined self‐assembly in two‐dimensional interlayer space: Monolayered mesoporous carbon nanosheets with in‐plane orderly arranged mesopores and a highly graphitized framework, Angew. Chem. Int. Ed. 57 (2018) 2894-2898. https://doi.org/10.1002/anie.201712959
[53] S. Tian, J. Wu, X. Zhang, K.K. Ostrikov, Z. Zhang, Capacitive deionization with nitrogen-doped highly ordered mesoporous carbon electrodes, Chem. Eng. J. 380 (2020) 122514. https://doi.org/10.1016/j.cej.2019.122514
[54] H. Wang, C. Zhang, Z. Chen, H.K. Liu, Z. Guo, Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries, Carbon. 81 (2015) 782-787. https://doi.org/10.1016/j.carbon.2014.10.024
[55] H. Lu, W. Dai, M. Zheng, N. Li, G. Ji, J. Cao, Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes, J. Power Sources. 209 (2012) 243-250. https://doi.org/10.1016/j.jpowsour.2012.02.041
[56] M. Guo, H. Wang, D. Huang, Z. Han, Q. Li, X. Wang, J. Chen, Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix, Sci. Technol. Adv. Mater. 15 (2014) 035005. https://doi.org/10.1088/1468-6996/15/3/035005
[57] J.C. Ndamanisha, L.P. Guo, Ordered mesoporous carbon for electrochemical sensing: A review, Anal. Chim. Acta. 747 (2012) 19-28. https://doi.org/10.1016/j.aca.2012.08.032
[58] T. Zhu, Y. Lu, S. Zheng, Y. Chen, H. Guo, Influence of nitric acid acitivation on structure and capacitive performances of ordered mesoporous carbon, Electrochim. Acta. 152 (2015) 456-463. https://doi.org/10.1016/j.electacta.2014.11.161
[59] A. Walcarius, Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes, TrAC Trends Anal. Chem. 38 (2012) 79-97. https://doi.org/10.1016/j.trac.2012.05.003
[60] M.I.G. Sánchez, H. Khadhraoui, R.J. Pérez, J. Iniesta, E. Valero, Non-enzymatic glucose sensor using mesoporous carbon screen-printed electrodes modified with cobalt phthalocyanine by phase inversion, Microchem. J. 200 (2024) 110314. https://doi.org/10.1016/j.microc.2024.110314
[61] Z. Han, X. Wang, X. Zhao, F. Shen, B. Shen, X. Qi, Efficient isomerization of glucose into fructose by MgO-doped lignin-derived ordered mesoporous carbon, Int. J. Biol. Macromol. 267 (2024) 131471. https://doi.org/10.1016/j.ijbiomac.2024.131471
[62] T. Nasir, G. Herzog, M. Hébrant, C. Despas, L. Liu, A. Walcarius, Mesoporous silica thin films for improved electrochemical detection of paraquat, ACS Sens. 3 (2018) 484-493. https://doi.org/10.1021/acssensors.7b00920
[63] A. Gaber, S. Bilge, D. Bayramoğlu, Y.O. Donar, A. Sınağ, Synthesis and characterization of ordered mesoporous carbon-based materials for electrochemical detection of environmental pollutants, Trends Environ. Anal. Chem. (2024) e00233. https://doi.org/10.1016/j.teac.2024.e00233
[64] B. Shao, Z. Liu, G. Zeng, Y. Liu, X. Yang, C. Zhou, M. Chen, Y. Liu, Y. Jiang, M. Yan, Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, J. Hazard. Mater. 362 (2019) 318-326. https://doi.org/10.1016/j.jhazmat.2018.08.069
[65] Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang, Z. Li, C. Liu, X. Lei, M. Wu, P. Ren, Z. Liu, M. Chen, G. Xie, Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds, Bioresour. Technol. 115 (2012) 21-26. https://doi.org/10.1016/j.biortech.2011.11.015
[66] J. Wang, L. Tang, P. Somasundaran, W. Fan, G. Zeng, Y. Deng, Y. Zhou, J. Wang, Y. Shen, Highly effective antibacterial activity by the synergistic effect of three-dimensional ordered mesoporous carbon-lysozyme composite, J. Colloid Interface Sci. 503 (2017) 131-141. https://doi.org/10.1016/j.jcis.2017.05.014
[67] C. You, X. Xu, B. Tian, J. Kong, D. Zhao, B. Liu, Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions, Talanta. 78 (2009) 705-710. https://doi.org/10.1016/j.talanta.2008.12.032
[68] K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu, W. Xing, Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15, Electrochim. Acta. 54 (2009) 4626-4630. https://doi.org/10.1016/j.electacta.2009.02.097
[69] C. Lv, et al, Enhanced performance of bioelectrodes made with amination-modified glucose oxidase immobilized on carboxyl-functionalized ordered mesoporous carbon, Nanomater. 11 (2021) 3086. https://doi.org/10.3390/nano11113086
[70] D. Stradomska, et al, Lipase immobilized on MCFs as biocatalysts for kinetic and dynamic kinetic resolution of sec-alcohols, Catalysts. 11 (2021) 518. https://doi.org/10.3390/catal11040518
[71] W.H. Yu, et al, Immobilization of Candida rugosa lipase on hexagonal mesoporous silicas and selective esterification in nonaqueous medium, Biochem. Eng. J. 70 (2013) 97-105. https://doi.org/10.1016/j.bej.2012.10.005
[72] A. Kandelbauer, et al, Study of dye decolorization in an immobilized laccase enzyme‐reactor using online spectroscopy, Biotechnol. Bioeng. 87 (2004) 552-563. https://doi.org/10.1002/bit.20162
[73] L. Lu, M. Zhao, Y. Wang, Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization, World J. Microbiol. Biotechnol. 23 (2007) 159-166. https://doi.org/10.1007/s11274-006-9205-6
[74] P. Galliker, et al, Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds, J. Colloid Interface Sci. 349 (2010) 98-105. https://doi.org/10.1016/j.jcis.2010.05.031
[75] M. Mohammadi, et al, Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds, Int. J. Biol. Macromol. 109 (2018) 443-447. https://doi.org/10.1016/j.ijbiomac.2017.12.102
[76] M. Dreifke, F.J. Brieler, M. Fröba, Immobilization of alcohol dehydrogenase from E. coli onto mesoporous silica for application as a cofactor recycling system, ChemCatChem. 9 (2017) 1197-1210. https://doi.org/10.1002/cctc.201601288
[77] A. Basso, S. Serban, Overview of immobilized enzymes’ applications in pharmaceutical, chemical, and food industry, Methods Mol. Biol. (2020) 27-63. https://doi.org/10.1007/978-1-0716-0215-7_2
[78] G. Yaohua, et al, Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole, J. Hazard Mater. 365 (2018) 118-124. https://doi.org/10.1016/j.jhazmat.2018.10.076
[79] X. Lou, et al, Construction of co-immobilized laccase and mediator based on MOFs membrane for enhancing organic pollutants removal, Chem. Eng. J. 451 (2023) 138080. https://doi.org/10.1016/j.cej.2022.138080
[80] P. Snehangshu, et al, Design of Laccase-Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces. 8 (2016) 20012-20022. https://doi.org/10.1021/acsami.6b05289
[81] C.M. Wei, et al, Mushroom tyrosinase immobilized in metal-organic frameworks as an excellent catalyst for both catecholic product synthesis and phenolic wastewater treatment, J. Chem. Technol. Biotechnol. 97 (2022) 962-972. https://doi.org/10.1002/jctb.6984
[82] X.F. Lü, et al, Tyrosinase@ HKUST-1: A super stable biocatalyst efficient for catecholic product synthesis, Bioresour. Bioprocess. 8 (2021) 1-12. https://doi.org/10.1186/s40643-021-00462-7
[83] E.P. Cipolatti, et al, Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil, Mol. Catal. 505 (2021) 111529. https://doi.org/10.1016/j.mcat.2021.111529
[84] D. Jung, M. Hartmann, Oxidation of indole with CPO and GOx immobilized on mesoporous molecular sieves, Catal. Today. 157 (2010) 378-383. https://doi.org/10.1016/j.cattod.2010.03.004
[85] D. Jung, M. Hartmann, Oxidation of Indole with CPO and GOx Immobilized on SBA-15, Stud. Surf. Sci. Catal. 174 (2008) 1045-1050. https://doi.org/10.1016/S0167-2991(08)80067-5
[86] F. Casadonte, et al, Smart trypsin adsorption into N‐(2‐aminoethyl)‐3‐aminopropyl‐modified mesoporous silica for ultra fast protein digestion, Chem. – Eur. J. 30 (2010) 8998-9001. https://doi.org/10.1002/chem.201000120
[87] Q. Min, et al, Size-selective proteolysis on mesoporous silica-based trypsin nanoreactor for low-MW proteome analysis, Chem. Commun. 46 (2010) 6144-6146. https://doi.org/10.1039/c0cc00619j
[88] Y. Wang, et al, Core-shell silica microsphere-based trypsin nanoreactor for low molecular-weight proteome analysis, Anal. Chim. Acta. 985 (2017) 194-201. https://doi.org/10.1016/j.aca.2017.07.012
[89] Q. Min, et al, Size-selective proteolysis on mesoporous silica-based trypsin nanoreactor for low-MW proteome analysis, Chem. Commun. 46 (2010) 6144-6146. https://doi.org/10.1039/c0cc00619j