Mesoporous Materials as Stationary Phases for Size Exclusion Chromatography

$40.00

Mesoporous Materials as Stationary Phases for Size Exclusion Chromatography

Vipul D. Prajapati, Princy Shrivastav

This chapter explores the innovative utilization of varieties of the mesoporous materials as the stationary phases in size exclusion chromatography (SEC). Mesoporous materials, characterized by their highly ordered pore structures and large surface areas, offer unique advantages for separating molecules based on size. We delve into the synthesis methods of these materials, emphasizing the control over pore size and distribution, which are critical for enhancing the performance of SEC. The chapter reviews recent advancements in the application of mesoporous materials, highlighting their superior resolution, selectivity, and capacity compared to traditional stationary phases. This chapter also discusses the underlying mechanisms that govern size exclusion in mesoporous matrices, supported by theoretical models and experimental data. Case studies demonstrate the reality practical utilities of these materials in biopolymer and nanoparticle separation. Finally, the chapter address the challenges and future prospects in the field, including the development of hybrid mesoporous structures and the integration of novel functionalities to further expand the capabilities of SEC. This comprehensive overview underscores the transformative potential of mesoporous materials in chromatographic science, paving the way for more efficient and versatile separation techniques.

Keywords
Mesoporous Materials, Size Exclusion Chromatography, Molecular Separation, Biopolymer Separation, Separation Techniques

Published online 3/20/2025, 29 pages

Citation: Vipul D. Prajapati, Princy Shrivastav, Mesoporous Materials as Stationary Phases for Size Exclusion Chromatography, Materials Research Foundations, Vol. 173, pp 311-339, 2025

DOI: https://doi.org/10.21741/9781644903452-12

Part of the book on Mesoporous Materials

References
[1] Y. He, Q. Pu, J. Zhang, S. Xie, X. Chen, L. Yuan, Chiral inorganic mesoporous materials used as the stationary phase in GC, Sep. Sci. Plus. 2 (2019) 432–439. https://doi.org/10.1002/sscp.201900067
[2] B. Liu, H. Li, K. Quan, J. Chen, H. Qiu, Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications, Trends Anal. Chem. 158 (2023) 1–16. https://doi.org/10.1016/j.trac.2022.116895
[3] A. M. Striegel, Size-exclusion chromatography, in: S. Fanali, B. Chankvetadze, P.R. Haddad, C.F. Poole, M.L. Riekkola (Eds.), Liquid Chromatography, Elsevier, 2023, pp. 509–537. https://doi.org/10.1016/B978-0-323-99968-7.00022-9
[4] D. Held, P. Kilz, Size-exclusion chromatography as a useful tool for the assessment of polymer quality and determination of macromolecular properties, Chem. Teach. Int. 3 (2021) 77–103. https://doi.org/10.1515/cti-2020-0024
[5] A.M. Striegel, Size-exclusion chromatography: A twenty-first century perspective, Chromatographia. 85 (2022) 307–313. https://doi.org/10.1007/s10337-022-04143-1
[6] T. Sun, R.R. Chance, W.W. Graessley, D.J. Lohse, A study of the separation principle in size exclusion chromatography, Macromolecules. 37 (2004) 4304–4312. https://doi.org/10.1021/ma030586k
[7] Y. Wang, I. Teraoka, F.Y. Hansen, G.H. Peters, O. Hassager, A theoretical study of the separation principle in size exclusion chromatography, Macromolecules. 43 (2010) 1651–1659. https://doi.org/10.1021/ma902377g
[8] A. Sepsey, I. Bacskay, A. Felinger, Molecular theory of size exclusion chromatography for wide pore size distributions, J. Chromatogr. A. 1331 (2014) 52–60. https://doi.org/10.1016/j.chroma.2014.01.017
[9] T. Bierig, G. Collu, A. Blanc, E. Poghosyan, R.M. Benoit, design, expression, purification, and characterization of a YFP-Tagged 2019-nCoV spike receptor-binding domain construct, Front. Bioeng. Biotechnol. 8 (2020) 1–10. https://doi.org/10.3389/fbioe.2020.618615
[10] E. Lubomirsky, A. Khodabandeh, J. Preis, M. Susewind, T. Hofe, E.F. Hilder, R.D. Arrua, Polymeric stationary phases for size exclusion chromatography: A review, Anal. Chim. Acta. 1151 (2021) 1–18. https://doi.org/10.1016/j.aca.2021.338244
[11] H.A. Alhazmi, M. Albratty, Analytical techniques for the characterization and quantification of monoclonal antibodies, Pharmaceuticals. 16 (2023) 1–30. https://doi.org/10.3390/ph16020291
[12] S. Luo, S. Wohl, W. Zheng, S. Yang, Biophysical and integrative characterization of protein intrinsic disorder as a prime target for drug discovery, Biomolecules. 13 (2023) 1–10. https://doi.org/10.3390/biom13030530
[13] M. Gavrilov, M.J. Monteiro, Derivation of the molecular weight distributions from size exclusion chromatography, Eur. Polym. J. 65 (2015) 191–196. https://doi.org/10.1016/j.eurpolymj.2014.11.018
[14] M.T.R. Laguna, R. Medrano, M.P. Plana, M.P. Tarazona, Polymer characterization by size-exclusion chromatography with multiple detection, J. Chromatogr. A. 919 (2001) 13–19. https://doi.org/10.1016/S0021-9673(01)00802-0
[15] H. Pasch, A. Ndiripo, P.S.E. Bungu, Multidimensional analytical protocols for the fractionation and analysis of complex polyolefins, J. Polym. Sci. 60 (2022) 1059–1078. https://doi.org/10.1002/pol.20210236
[16] F. Malz, J.H. Arndt, J. Balko, B. Barton, T. Büsse, D. Imhof, R. Pfaendner, K. Rode, R. Brüll, Analysis of the molecular heterogeneity of poly(lactic acid)/poly(butylene succinate-co-adipate) blends by hyphenating size exclusion chromatography with nuclear magnetic resonance and infrared spectroscopy, J. Chromatogr. A. 1638 (2021) 1–10. https://doi.org/10.1016/j.chroma.2020.461819
[17] J.B. Matson, A.Q. Steele, J.D. Mase, M.D. Schulz, Polymer characterization by size-exclusion chromatography with multi-angle light scattering (SEC-MALS): A tutorial review, Polym. Chem. 15 (2024) 127–142. https://doi.org/10.1039/D3PY01181J
[18] E.R.S. Kunji, M. Harding, P.J.G. Butler, P. Akamine, Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography, Methods. 46 (2008) 62–72. https://doi.org/10.1016/j.ymeth.2008.10.020
[19] H. Al Kader, H. Gill, T. Truong, Demineralisation and recovery of whey proteins from commercial full-fat salty Cheddar whey using size-exclusion chromatography, Food Chem. 405 (2023) 1–13. https://doi.org/10.1016/j.foodchem.2022.134831
[20] Y. Yan, T. Xing, A.P. Liu, Z. Zhang, S. Wang, N. Li, Post-column denaturation-assisted native size-exclusion chromatography–mass spectrometry for rapid and in-depth characterization of high molecular weight variants in therapeutic monoclonal antibodies, J. Am. Soc. Mass Spectrom. 32 (2021) 2885–2894. https://doi.org/10.1021/jasms.1c00289
[21] M. Valles, S. Pujals, L. Albertazzi, S. Sánchez, Enzyme purification improves the enzyme loading, self-propulsion, and endurance performance of micromotors, ACS Nano. 16 (2022) 5615–5626. https://doi.org/10.1021/acsnano.1c10520
[22] C.L. Effio, S.A. Oelmeier, J. Hubbuch, High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography, Vaccine. 34 (2016) 1259–1267. https://doi.org/10.1016/j.vaccine.2016.01.035
[23] H. Bajaj, V.K. Sharma, D.S. Kalonia, A high-throughput method for detection of protein self-association and second virial coefficient using size-exclusion chromatography through simultaneous measurement of concentration and scattered light intensity, Pharm. Res. 24 (2007) 2071–2083. https://doi.org/10.1007/s11095-007-9345-x
[24] F. Almeida, Q. Cass, Affinity Selection Mass Spectrometry (AS-MS) as a tool for prospecting target ligands, Braz. J. Anal. Chem. (2023) 1–15. https://doi.org/10.30744/brjac.2179-3425.letter-almeida-cass
[25] A. Berezhnoy, C.A. Stewart, J.O. Mcnamara II, W. Thiel, P. Giangrande, G. Trinchieri, E. Gilboa, Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing, Mol. Ther. 20 (2012) 1242–1250. https://doi.org/10.1038/mt.2012.18
[26] C. Ren, A.O. Bailey, E. VanderPorten, A. Oh, W. Phung, M.M. Mulvihill, S.F. Harris, Y. Liu, G. Han, W. Sandoval, Quantitative determination of protein–ligand affinity by size exclusion chromatography directly coupled to high-resolution native mass spectrometry, Anal. Chem. 91 (2019) 903–911. https://doi.org/10.1021/acs.analchem.8b03829
[27] P.A. Wabnitz, J.A. Loo, Drug screening of pharmaceutical discovery compounds by micro‐size exclusion chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 16 (2002) 85–91. https://doi.org/10.1002/rcm.546
[28] S. Kumar, T.S. Savane, A.S. Rathore, Multiattribute monitoring of aggregates and charge variants of monoclonal antibody through native 2D-SEC-MS-WCX-MS, J. Am. Soc. Mass Spectrom. 34 (2023) 1263–1271. https://doi.org/10.1021/jasms.2c00325
[29] S. Chilakala, V. Mehtab, M. Tallapally, M. Vemula, A.S. Shaikh, S. Chenna, V. Upadhyayula, SEC-MS/MS determination of amino acids from mango fruits and application of the method for studying amino acid perturbations due to post harvest ripening, LWT. 138 (2021) 1–11. https://doi.org/10.1016/j.lwt.2020.110680
[30] A. Fossati, F. Frommelt, F. Uliana, C. Martelli, M. Vizovisek, L. Gillet, B. Collins, M. Gstaiger, R. Aebersold, System-wide profiling of protein complexes via size exclusion chromatography–mass spectrometry (SEC–MS), in: M. Carrera, J. Mateos (Eds.), Shotgun Proteomics: Methods and Protocols, 2021, pp. 269–294. https://doi.org/10.1007/978-1-0716-1178-4_18
[31] J. Höpfner, B. Mayerhöfer, C. Botha, D. Bouillaud, J. Farjon, P. Giraudeau, M. Wilhelm, Solvent suppression techniques for coupling of size exclusion chromatography and 1H NMR using benchtop spectrometers at 43 and 62 MHz, J. Magn. Reson. 323 (2021) 1–6. https://doi.org/10.1016/j.jmr.2020.106889
[32] M.A. Graewert, S. Da Vela, T.W. Gräwert, D.S. Molodenskiy, C.E. Blanchet, D.I. Svergun, C.M. Jeffries, Adding size exclusion chromatography (SEC) and light scattering (LS) devices to obtain high-quality small angle X-Ray scattering (SAXS) data, Crystals. 10 (2020) 975–980. https://doi.org/10.3390/cryst10110975
[33] T. Matsui, I. Rajkovic, B.H.M. Mooers, P. Liu, T.M. Weiss, Adaptable SEC‐SAXS data collection for higher quality structure analysis in solution, Protein Sci. 33 (2024) 1–9. https://doi.org/10.1002/pro.4946
[34] D. Lakayan, R. Haselberg, W.M.A. Niessen, G.W. Somsen, J. Kool, On-line coupling of surface plasmon resonance optical sensing to size-exclusion chromatography for affinity assessment of antibody samples, J. Chromatogr. A. 1452 (2016) 81–88. https://doi.org/10.1016/j.chroma.2016.05.033
[35] T. Graf, L. Naumann, L. Bonnington, J. Heckel, B. Spensberger, S. Klein, C. Brey, R. Nachtigall, M. Mroz, T.V. Hogg, C. McHardy, A. Martinez, R. Braaz, M. Leiss, Expediting online liquid chromatography for real-time monitoring of product attributes to advance process analytical technology in downstream processing of biopharmaceuticals, J. Chromatogr. A. 1729 (2024) 46–50. https://doi.org/10.1016/j.chroma.2024.465013
[36] M.N.S. Pedro, M. Isaksson, J.G. Fons, M.H.M. Eppink, B. Nilsson, M. Ottens, Real‐time detection of mAb aggregates in an integrated downstream process, Biotechnol. Bioeng. 120 (2023) 2989–3000. https://doi.org/10.1002/bit.28466
[37] M. Navaziya, HPLC hyphenations in advanced analytical world, J. Phys. Chem. Biophys. 12 (2022) 1–5. https://doi.org/10.35248/2161-0487-22.12.328
[38] E.D. Montes, Dextran: Sources, structures, and properties, Polysaccharides. 2 (2021) 554–565. https://doi.org/10.3390/polysaccharides2030033
[39] M. Ghebremedhin, S. Seiffert, T.A. Vilgis, Physics of agarose fluid gels: Rheological properties and microstructure, Curr. Res. Food Sci. 4 (2021) 436–448. https://doi.org/10.1016/j.crfs.2021.06.003
[40] M.I. Voronova, O.V. Surov, A.V. Afineevskii, A.G. Zakharov, Properties of polyacrylamide composites reinforced by cellulose nanocrystals, Heliyon. 6 (2020) 29–35. https://doi.org/10.1016/j.heliyon.2020.e05529
[41] T. Krawczyk, M. Zalewski, A. Janeta, P. Hodurek, SEC separation of polysaccharides using macroporous spherical silica gel as a stationary phase, Chromatographia. 81 (2018) 1365–1372. https://doi.org/10.1007/s10337-018-3582-5
[42] C.C.L. Schuurmans, A.J. Brouwer, J.A.W. Jong, G.J.P.H. Boons, W.E. Hennink, T. Vermonden, Hydrolytic (In)stability of methacrylate esters in covalently cross-linked hydrogels based on chondroitin sulfate and hyaluronic acid methacrylate, ACS Omega. 6 (2021) 26302–26310. https://doi.org/10.1021/acsomega.1c03395
[43] C.W. Huck, G.K. Bonn, Poly(Styrene‐Divinylbenzene) based media for liquid chromatography, Chem. Eng. Technol. 28 (2005) 1457–1472. https://doi.org/10.1002/ceat.200500265
[44] G.B. Irvine, High-performance size-exclusion chromatography of peptides, J. Biochem. Biophys. Methods. 56 (2003) 233–242. https://doi.org/10.1016/S0165-022X(03)00061-7
[45] B. Yu, T. Xu, H. Cong, Q. Peng, M. Usman, Preparation of porous poly(styrene-divinylbenzene) microspheres and their modification with diazoresin for mix-mode HPLC separations, Materials. 10 (2017) 440–445. https://doi.org/10.3390/ma10040440
[46] H. Cong, J. Xing, X. Ding, S. Zhang, Y. Shen, B. Yu, Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation, Talanta. 210 (2020) 11–20. https://doi.org/10.1016/j.talanta.2019.120586
[47] E.M. Borges, Silica, Hybrid Silica, Hydride silica and non-silica stationary phases for liquid chromatography, J. Chromatogr. Sci. 53 (2015) 580–597. https://doi.org/10.1093/chromsci/bmu090
[48] T. Zhang, Y. Yu, S. Han, H. Cong, C. Kang, Y. Shen, B. Yu, Preparation and application of UPLC silica microsphere stationary phase:A review, Adv. Colloid Interface Sci. 323 (2024) 1–10. https://doi.org/10.1016/j.cis.2023.103070
[49] Y. Zhang, Z. Deng, D. Lou, Y. Wang, R. Wang, R. Hu, X. Zhang, Q. Zhu, Y. Chen, F. Liu, High-efficiency separation of extracellular vesicles from lipoproteins in plasma by agarose gel electrophoresis, Anal. Chem. 92 (2020) 7493–7499. https://doi.org/10.1021/acs.analchem.9b05675
[50] D. Josić, H. Baumann, W. Reutter, Size-exclusion high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins: A comparison, Anal. Biochem. 142 (1984) 473–479. https://doi.org/10.1016/0003-2697(84)90492-5
[51] K. Kathirgamanathan, W. Grigsby, N.R. Edmonds, J. Al Hakkak, Molecular weight fractionation of high polydispersity native celluloses, Cellulose. 24 (2017) 5261–5265. https://doi.org/10.1007/s10570-017-1422-7
[52] T. Yao, J. Song, Y. Gan, L. Qiao, K. Du, Preparation of cellulose-based chromatographic medium for biological separation: A review, J. Chromatogr. A. 1 (2022) 1–16. https://doi.org/10.1016/j.chroma.2022.463297
[53] M. Moritz, M.G. Moritz, Mesoporous materials as multifunctional tools in biosciences: Principles and applications, Mater. Sci. Eng. C. 49 (2015) 114–151. https://doi.org/10.1016/j.msec.2014.12.079
[54] Y. Luo, B. Wang, L. Yi, C.F. Ding, C. Deng, Y. Yan, Mesoporous materials for glycopeptide separation, Trends Anal. Chem. 167 (2023) 1–17. https://doi.org/10.1016/j.trac.2023.117234
[55] M.M. Rahman, M.G. Ara, M.A. Alim, M.S. Uddin, A. Najda, G.M. Albadrani, A.A. Sayed, S.A. Mousa, M.M.A. Daim, Mesoporous carbon: A versatile material for scientific applications, Int. J. Mol. Sci. 22 (2021) 1–10. https://doi.org/10.3390/ijms22094498
[56] D. Wang, X. Chen, J. Feng, M. Sun, Recent advances of ordered mesoporous silica materials for solid-phase extraction, J. Chromatogr. A. 1675 (2022) 1–13. https://doi.org/10.1016/j.chroma.2022.463157
[57] A. Elgendy, N.M. El Basiony, F.E.T. Heakal, A.E. Elkholy, Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode active material for high-performance supercapacitors, J. Power Sources. 466 (2020) 20–28. https://doi.org/10.1016/j.jpowsour.2020.228294
[58] B. Szczęśniak, J. Choma, M. Jaroniec, Major advances in the development of ordered mesoporous materials, Chem. Commun. 56 (2020) 7836–7848. https://doi.org/10.1039/D0CC02840A
[59] P. Shen, B. Zhang, Y. Wang, X. Liu, C. Yu, T. Xu, S.S. Mofarah, Y. Yu, Y. Liu, H. Sun, H. Arandiyan, Nanoscale niobium oxides anode for electrochemical lithium and sodium storage: A review of recent improvements, J. Nanostructure Chem. 11 (2021) 33–68. https://doi.org/10.1007/s40097-020-00367-5
[60] Z. Yu, S. Zhu, L. Zhang, S. Watanabe, Mesoporous single crystal titanium oxide microparticles for enhanced visible light photodegradation, Opt. Mater. (Amst). 127 (2022) 1–12. https://doi.org/10.1016/j.optmat.2022.112297
[61] Y. Jiao, X. Zhang, H. Yang, H. Ma, J. Zou, Mesoporous tantalum oxide nanomaterials induced cardiovascular endothelial cell apoptosis via mitochondrial-endoplasmic reticulum stress apoptotic pathway, Drug Deliv. 30 (2023) 108–120. https://doi.org/10.1080/10717544.2022.2147251
[62] M. Raimondo, G. Perez, M. Sinibaldi, A. De Stefanis, A.A.G. Tomlinson, Mesoporous M41S materials in capillary gas chromatography, Chem. Commun. (1997) 1343–1344. https://doi.org/10.1039/a702849k
[63] L.D. Bonifacio, B.V. Lotsch, G.A. Ozin, Periodic mesoporous materials: Holes filled with opportunities, in: Comprehensive Nanoscience and Technology, Elsevier, 2011, pp. 69–125. https://doi.org/10.1016/B978-0-12-374396-1.00049-0
[64] P.V.D. Voort, D. Esquivel, E. De Canck, F. Goethals, I.V. Driessche, F.J.R. Salguero, Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications, Chem. Soc. Rev. 42 (2013) 3913–3955. https://doi.org/10.1039/C2CS35222B
[65] S. Ba, B. Luo, Z. Li, J. He, F. Lan, Y. Wu, Mesoporous covalent organic framework microspheres with dual-phase separation strategy for high-purity glycopeptide enrichment, J. Chromatogr. A. 1684 (2022) 1–10. https://doi.org/10.1016/j.chroma.2022.463575
[66] D. Khan, Shaily, Synthesis and catalytic applications of organo‐functionalized MCM‐41 catalyst: A review, Appl. Organomet. Chem. 37 (2023) 35–43. https://doi.org/10.1002/aoc.7007
[67] E.D. Tekkaya, Y. Yürüm, Mesoporous MCM-41 material for hydrogen storage: A short review, Int. J. Hydrogen Energy. 41 (2016) 9789–9795. https://doi.org/10.1016/j.ijhydene.2016.03.050
[68] T. Berestok, C. Diestel, N. Ortlieb, J. Buettner, J. Matthews, P.S.C. Schulze, J.C. Goldschmidt, S.W. Glunz, A. Fischer, High‐efficiency monolithic photosupercapacitors: Smart integration of a perovskite solar cell with a mesoporous carbon double‐layer capacitor, Sol. RRL. 5 (2021) 1–15. https://doi.org/10.1002/solr.202100662
[69] L. Zu, W. Zhang, L. Qu, L. Liu, W. Li, A. Yu, D. Zhao, Mesoporous materials for electrochemical energy storage and conversion, Adv. Energy Mater. 10 (2020) 1–7. https://doi.org/10.1002/aenm.202002152
[70] K.A. Kilian, T. Böcking, J.J. Gooding, The importance of surface chemistry in mesoporous materials: Lessons from porous silicon biosensors, Chem. Commun. (2009) 630–640. https://doi.org/10.1039/B815449J
[71] M. Xu, T. Wang, L. Zhou, D. Hua, Fluorescent conjugated mesoporous polymers with N,N-diethylpropylamine for the efficient capture and real-time detection of volatile iodine, J. Mater. Chem. A. Mater. 8 (2020) 1966–1974. https://doi.org/10.1039/C9TA11446G
[72] J. Liu, B. Wang, S.B. Hartono, T. Liu, P. Kantharidis, A.P.J. Middelberg, G.Q. (Max) Lu, L. He, S.Z. Qiao, Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake, Biomaterials. 33 (2012) 970–978. https://doi.org/10.1016/j.biomaterials.2011.10.001
[73] H. Luo, Y.V. Kaneti, Y. Ai, Y. Wu, F. Wei, J. Fu, J. Cheng, C. Jing, B. Yuliarto, M. Eguchi, J. Na, Y. Yamauchi, S. Liu, Nanoarchitectured porous conducting polymers: From controlled synthesis to advanced applications, Adv. Mater. 33 (2021) 1–13. https://doi.org/10.1002/adma.202007318
[74] T. Nassivera, A.G. Eklund, C.C. Landry, Size-exclusion chromatography of low-molecular-mass polymers using mesoporous silica, J. Chromatogr. A. 973 (2002) 97–101. https://doi.org/10.1016/S0021-9673(02)01200-1
[75] X. Li, Y.R. Lee, K.H. Row, Synthesis of mesoporous siliceous materials in choline chloride deep eutectic solvents and the application of these materials to high-performance size exclusion chromatography, Chromatographia. 79 (2016) 375–382. https://doi.org/10.1007/s10337-016-3051-y
[76] F. Liu, Z. Xu, H. Wan, Y. Wan, S. Zheng, D. Zhu, Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon, Environ. Toxicol. Chem. 30 (2011) 793–800. https://doi.org/10.1002/etc.450
[77] W. Qin, M.E. Silvestre, F. Kirschhöfer, G.B. Weiss, M. Franzreb, Insights into chromatographic separation using core–shell metal–organic frameworks: Size exclusion and polarity effects, J. Chromatogr. A. 1411 (2015) 77–83. https://doi.org/10.1016/j.chroma.2015.07.120
[78] Y. Yang, Y. Wang, S. Wei, C. Zhou, J. Yu, G. Wang, W. Wang, L. Zhao, Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma, J. Transl. Med. 19 (2021) 1–10. https://doi.org/10.1186/s12967-021-02775-9
[79] S. L. Suib, A review of recent developments of mesoporous materials, Chem. Rec. 17 (2017) 1169–1183. https://doi.org/10.1002/tcr.201700025
[80] N. Linares, A.M.S. Albero, E. Serrano, J.S. Albero, J.G. Martínez, Mesoporous materials for clean energy technologies, Chem. Soc. Rev. 43 (2014) 7681–7717. https://doi.org/10.1039/C3CS60435G
[81] M. Keshavarz, N. Ahmad, Characterization and modification of mesoporous silica nanoparticles prepared by sol-gel, J. Nanoparticles. 2013 (2013) 1–4. https://doi.org/10.1155/2013/102823
[82] O.A. Saputra, W.A. Lestari, V. Kurniansyah, W.W. Lestari, T. Sugiura, R.R. Mukti, R. Martien, F.R. Wibowo, Organically surface engineered mesoporous silica nanoparticles control the release of quercetin by pH stimuli, Sci. Rep. 12 (2022) 1–12. https://doi.org/10.1038/s41598-022-25095-4
[83] H. Zhang, F. Feng, Y. Zhao, B. Zhao, L. Li, D. Zheng, X. Li, Fabrication of a micro gas chromatography column via the layer-by-layer deposition of mesoporous silica as the stationary phase, J. Chromatogr. A. 1673 (2022) 30–46. https://doi.org/10.1016/j.chroma.2022.463082
[84] J.A. Cecilia, R.M. Tost, M.R. Millán, Mesoporous materials: From synthesis to applications, Int. J. Mol. Sci. 20 (2019) 1–13. https://doi.org/10.3390/ijms20133213
[85] Y. Zhao, J. Wang, Y. Yang, Q. Fu, Y. Ke, Pseudomorphic synthesis of bimodal porous silica microspheres for size-exclusion chromatography of small molecules, J. Chromatogr. A. 1664 (2022) 12–27. https://doi.org/10.1016/j.chroma.2021.462757
[86] J. Deischter, F. Müller, B. Bong, C. Maurer, S.S. Hartmann, R. Palkovits, separation by size exclusion: Selective liquid-phase adsorption of l-lysine from lysine–glucose mixtures on zeolites, ACS Sustain. Chem. Eng. 10 (2022) 10211–10222. https://doi.org/10.1021/acssuschemeng.2c01874
[87] Y. Ahn, S.Y. Kwak, Functional mesoporous silica with controlled pore size for selective adsorption of free fatty acid and chlorophyll, Microporous Mesoporous Mater. 306 (2020) 1–10. https://doi.org/10.1016/j.micromeso.2020.110410
[88] J. Wu, L. Tan, Y. Li, X. Wu, Y. Liang, Highly ordered molecularly imprinted mesoporous silica for selective removal of bisphenol A from wastewater, J. Sep. Sci. 43 (2020) 987–995. https://doi.org/10.1002/jssc.201900957
[89] Y. Yan, R. Han, Y. Hou, H. Zhang, J. Yu, W. Gao, L. Xu, K. Tang, Bowl-like mesoporous polydopamine with size exclusion for highly selective recognition of endogenous glycopeptides, Talanta. 233 (2021) 1–12. https://doi.org/10.1016/j.talanta.2021.122468
[90] J. Song, Q. Meng, J. Wang, X. Guo, P. Wei, J. Dong, Q. Shi, Length exclusion separation of acetone/butanol using ZIF-302 derivatives with adjustable ellipsoidal cage sizes, Sep. Purif. Technol. 312 (2023) 12–23. https://doi.org/10.1016/j.seppur.2023.123371
[91] A. Irfan, W. Feng, K. Liu, K. Habib, Q. Qu, L. Yang, TiO2-modified fibrous core-shell mesoporous material to selectively enrich endogenous phosphopeptides with proteins exclusion prior to CE-MS analysis, Talanta. 235 (2021) 1–10. https://doi.org/10.1016/j.talanta.2021.122737
[92] A.A. Alotaibi, A.K. Shukla, M.H. Mrad, A.M. Alswieleh, K.M. Alotaibi, Fabrication of polysulfone-surface functionalized mesoporous silica nanocomposite membranes for removal of heavy metal ions from wastewater, Membranes. 11 (2021) 1–10. https://doi.org/10.3390/membranes11120935
[93] Y. Liu, W. Ma, Y. He, Z. Chen, Z. Lin, Facile synthesis of hydrophilic magnetic mesoporous silica microspheres for selective enrichment of glycopeptides and glycans, Anal. Lett. 54 (2021) 966–978. https://doi.org/10.1080/00032719.2020.1789161
[94] S.C. Moldoveanu, V. David, Stationary phases and columns for size exclusion, in: Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 377–386. https://doi.org/10.1016/B978-0-12-803684-6.00011-1
[95] M.R. Schure, R.E. Moran, Size exclusion chromatography with superficially porous particles, J. Chromatogr. A. 1480 (2017) 11–19. https://doi.org/10.1016/j.chroma.2016.12.016
[96] M. Rbaa, R. Hsissou, K. Dahmani, M. Oubaaqa, B. Tüzün, E. Berdimurodov, Z. Rouifi, A. Zarrouk, R. Seghiri, Carbon dots in stationary phase of chromatography, enhanced crop yield, and stationary phase of chromatography, in: E. Berdimurodov, D.K. Verma, L. Guo (Eds.), Carbon Dots, 2024, pp. 361–377. https://doi.org/10.1021/bk-2024-1465.ch015
[97] J. Engelke, J. Brandt, C.B. Kowollik, A. Lederer, Strengths and limitations of size exclusion chromatography for investigating single chain folding – current status and future perspectives, Polym. Chem. 10 (2019) 3410–3425. https://doi.org/10.1039/C9PY00336C