Mesoporous Materials for the Removal of Volatile Organic Compounds
Meenu Mariam Jacob, Muthamilselvi Ponnuchamy
This chapter explores the use of mesoporous materials to remove volatile organic compounds, highlighting the structural characteristics and adsorption mechanisms of these materials. It discusses different mesoporous materials and their synthesis techniques. Surface area, pore size distribution, and surface functionalization three important variables that affect adsorption capacity are explored along with their applications. The chapter covers scalability and regeneration issues as well as potential research avenues, such as enhanced functionalization and environmentally friendly synthesis techniques. Effective methods for enhancing environmental health and air quality are provided by mesoporous materials.
Keywords
Mesoporous Materials, Volatile Organic Compounds, Adsorption
Published online 3/20/2025, 9 pages
Citation: Meenu Mariam Jacob, Muthamilselvi Ponnuchamy, Mesoporous Materials for the Removal of Volatile Organic Compounds, Materials Research Foundations, Vol. 173, pp 302-310, 2025
DOI: https://doi.org/10.21741/9781644903452-11
Part of the book on Mesoporous Materials
References
[1] B. Muir, M. Sobczyk, T. Bajda, Fundamental features of mesoporous functional materials influencing the efficiency of removal of VOCs from aqueous systems: A review, Sci. Total Environ. 784 (2021) 147121. https://doi.org/10.1016/j.scitotenv.2021.147121
[2] W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere. 218 (2019) 845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175
[3] Z. Du, J. Mo, Y. Zhang, Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China, Environ. Int. 73 (2014) 33–45. https://doi.org/10.1016/j.envint.2014.06.014
[4] H. Zheng, J. Csemezová, M. Loomans, S. Walker, F. Gauvin, W. Zeiler, Species profile of volatile organic compounds emission and health risk assessment from typical indoor events in daycare centers, Sci. Total Environ. 918 (2024) 170734. https://doi.org/10.1016/j.scitotenv.2024.170734
[5] L. Pál, S. Lovas, M. McKee, J. Diószegi, N. Kovács, S. Szűcs, Exposure to volatile organic compounds in offices and in residential and educational buildings in the European Union between 2010 and 2023: A systematic review and health risk assessment, Sci. Total Environ. 945 (2024) 173965. https://doi.org/10.1016/j.scitotenv.2024.173965
[6] W. Wang, J. Shen, Y. Chen, D. Zheng, L. Li, Identification and analysis of volatile organic compound and very volatile organic compound of MDF coated with different lacquers and their health risks to humans, J. Environ. Chem. Eng. 12 (2024) 112120. https://doi.org/10.1016/j.jece.2024.112120
[7] A. Mangotra, S.K. Singh, Volatile organic compounds: A threat to the environment and health hazards to living organisms – A review, J. Biotechnol. 382 (2024) 51–69. https://doi.org/10.1016/j.jbiotec.2023.12.013
[8] W. Gao, X. Tang, H. Yi, S. Jiang, Q. Yu, X. Xie, R. Zhuang, Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review, J. Environ. Sci. 125 (2023) 112–134. https://doi.org/10.1016/j.jes.2021.11.014
[9] S.W. Sherpa, M. Ponnuchamy, A. Kapoor, M.M. Jacob, P. Sivaraman, Facile removal of sulfamethoxazole antibiotic from contaminated water using bagasse-derived pyrolytic biocarbon: Parametric assessment, mechanistic insights and scale-up analysis, J. Water Process Eng. 60 (2024) 105110. https://doi.org/10.1016/j.jwpe.2024.105110
[10] M.M. Jacob, M. Ponnuchamy, A. Kapoor, P. Sivaraman, Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water, J. Environ. Chem. Eng. 8 (2020) 103904. https://doi.org/10.1016/j.jece.2020.103904
[11] M. Ponnuchamy, A. Kapoor, P. Senthil Kumar, D.-V.N. Vo, A. Balakrishnan, M. Mariam Jacob, P. Sivaraman, Sustainable adsorbents for the removal of pesticides from water: A review, Environ. Chem. Lett. 19 (2021) 2425–2463. https://doi.org/10.1007/s10311-021-01183-1
[12] A. Balakrishnan, M.M. Jacob, N. Dayanandan, M. Chinthala, M. Ponnuchamy, D.V.N. Vo, S. Appunni, A.S. Gajendhran, Chitosan/metal organic frameworks for environmental, energy, and bio-medical applications: A review, Mater. Adv. 4 (2023) 5920–5947. https://doi.org/10.1039/D3MA00413A
[13] M.M. Jacob, M. Ponnuchamy, A. Kapoor, P. Sivaraman, Adsorptive decontamination of organophosphate pesticide chlorpyrifos from aqueous systems using bagasse-derived biochar alginate beads: Thermodynamic, equilibrium, and kinetic studies, Chem. Eng. Res. Des. 186 (2022) 241–251. https://doi.org/10.1016/j.cherd.2022.07.043
[14] B. Han, T.H. Rupam, A. Chakraborty, B.B. Saha, A comprehensive review on VOCs sensing using different functional materials: Mechanisms, modifications, challenges and opportunities, Renew. Sustain. Energy Rev. 196 (2024) 114365. https://doi.org/10.1016/j.rser.2024.114365
[15] T.N. Tu, T.M. Pham, Q.H. Nguyen, N.T. Tran, V.N. Le, L.H. Ngo, K. Chang, J. Kim, Metal–organic frameworks for aromatic-based VOC capture, Sep. Purif. Technol. 333 (2024) 125883. https://doi.org/10.1016/j.seppur.2023.125883
[16] P. Zhang, M. He, W. Teng, F. Li, X. Qiu, K. Li, H. Wang, Ordered mesoporous materials for water pollution treatment: Adsorption and catalysis, Green Energy Environ. 9 (2024) 1239–1256. https://doi.org/10.1016/j.gee.2023.11.001
[17] J. Gao, Z. Li, S. Ma, Y. Zhang, F. Cheng, Novel process for facile preparation of mesoporous silica-based materials with controllable pore structure from coal fly ash, Particuology 91 (2024) 128–137. https://doi.org/10.1016/j.partic.2024.03.001