Advanced Mesoporous Materials Based Nanocomposites as High-performance Catalysts towards Electrochemical Sensing and Environmental Application

$40.00

Advanced Mesoporous Materials Based Nanocomposites as High-performance Catalysts towards Electrochemical Sensing and Environmental Application

Balaji Parasuraman, Nivetha Venkatesan, Shanmugam Paramasivam, Pazhanivel Thangavelu

Mesoporous materials have gained significant attention due to their unique properties such as high surface area, tunable pore size, and excellent chemical stability. These materials, when incorporated into nanocomposites, offer remarkable potential for high-performance catalytic applications in fields like electrochemical sensing and environmental applications. This review focuses on the development and utilization of advanced mesoporous material-based nanocomposites as catalysts in these applications, this chapter also covers their role in biosensors for detecting biological molecules and in environmental systems for water and air purification, highlighting their potential for scalable and sustainable solutions to global environmental and health-related issues.

Keywords
Nanotechnology, Mesoporous Materials, Electrochemical Sensing, Adsorption, Environmental Pollution

Published online 3/20/2025, 37 pages

Citation: Balaji Parasuraman, Nivetha Venkatesan, Shanmugam Paramasivam, Pazhanivel Thangavelu, Advanced Mesoporous Materials Based Nanocomposites as High-performance Catalysts towards Electrochemical Sensing and Environmental Application, Materials Research Foundations, Vol. 173, pp 265-301, 2025

DOI: https://doi.org/10.21741/9781644903452-10

Part of the book on Mesoporous Materials

References
[1] S. Mehdipour-Ataei, E. Aram, Mesoporous Carbon-Based Materials: A Review of Synthesis, Modification, and Applications, Catalysts 13 (2022) 2. https://doi.org/10.3390/catal13010002
[2] N.R. Khalili, M. Campbell, G. Sandi, J. Golaś, Production of micro- and mesoporous activated carbon from paper mill sludge, Carbon N Y 38 (2000) 1905-1915. https://doi.org/10.1016/S0008-6223(00)00043-9
[3] X. Zhang, S.-X. Guo, K.A. Gandionco, A.M. Bond, J. Zhang, Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design, Mater Today Adv 7 (2020) 100074. https://doi.org/10.1016/j.mtadv.2020.100074
[4] Y. Zhang, L. Han, L.-L. Hu, Y.-Q. Chang, R.-H. He, M.-L. Chen, Y. Shu, J.-H. Wang, Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release, J Mater Chem B 4 (2016) 5178-5184. https://doi.org/10.1039/C6TB00987E
[5] N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Enzymes immobilized in mesoporous silica: A physical-chemical perspective, Adv Colloid Interface Sci 205 (2014) 339-360. https://doi.org/10.1016/j.cis.2013.08.010
[6] L. Cui, X. Ren, M. Sun, H. Liu, L. Xia, Carbon Dots: Synthesis, Properties and Applications, Nanomaterials 11 (2021) 3419. https://doi.org/10.3390/nano11123419
[7] C. Liang, S. Dai, Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction, J Am Chem Soc 128 (2006) 5316-5317. https://doi.org/10.1021/ja060242k
[8] P. Xie, Z. Liu, S. Huang, J. Chen, Y. Yan, N. Li, M. Zhang, M. Jin, L. Shui, A sensitive electrochemical sensor based on wrinkled mesoporous carbon nanomaterials for rapid and reliable assay of 17β-estradiol, Electrochim Acta 408 (2022) 139960. https://doi.org/10.1016/j.electacta.2022.139960
[9] W. Wang, B. Ibarlucea, C. Huang, R. Dong, M. Al Aiti, S. Huang, G. Cuniberti, Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions, Nanoscale Horiz 9 (2024) 1432-1474. https://doi.org/10.1039/D4NH00140K
[10] M.L. Scala-Benuzzi, S.N. Fernández, G. Giménez, G. Ybarra, G.J.A.A. Soler-Illia, Ordered Mesoporous Electrodes for Sensing Applications, ACS Omega 8 (2023) 24128-24152. https://doi.org/10.1021/acsomega.3c02013
[11] H. Kaur, S.S. Siwal, G. Chauhan, A.K. Saini, A. Kumari, V.K. Thakur, Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants, Chemosphere 304 (2022) 135182. https://doi.org/10.1016/j.chemosphere.2022.135182
[12] M.L. Scala-Benuzzi, G.J.A.A. Soler-Illia, J. Raba, F. Battaglini, R.J. Schneider, S. V. Pereira, G.A. Messina, Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy, Journal of Electroanalytical Chemistry 897 (2021) 115604. https://doi.org/10.1016/j.jelechem.2021.115604
[13] A. Goux, M. Etienne, E. Aubert, C. Lecomte, J. Ghanbaja, A. Walcarius, Oriented Mesoporous Silica Films Obtained by Electro-Assisted Self-Assembly (EASA), Chemistry of Materials 21 (2009) 731-741. https://doi.org/10.1021/cm8029664
[14] T. Kimura, Evaporation-induced Self-assembly Process Controlled for Obtaining Highly Ordered Mesoporous Materials with Demanded Morphologies, The Chemical Record 16 (2016) 445-457. https://doi.org/10.1002/tcr.201500262
[15] F. Rechotnek, H.D.M. Follmann, R. Silva, Mesoporous silica decorated with L-cysteine as active hybrid materials for electrochemical sensing of heavy metals, J Environ Chem Eng 9 (2021) 106492. https://doi.org/10.1016/j.jece.2021.106492
[16] F. Mohamadpour, A.M. Amani, Photocatalytic systems: reactions, mechanism, and applications, RSC Adv 14 (2024) 20609-20645. https://doi.org/10.1039/D4RA03259D
[17] C. Cooper, R. Burch, Mesoporous materials for water treatment processes, Water Res 33 (1999) 3689-3694. https://doi.org/10.1016/S0043-1354(99)00095-0
[18] N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. García-Martínez, Mesoporous materials for clean energy technologies, Chem. Soc. Rev. 43 (2014) 7681-7717. https://doi.org/10.1039/C3CS60435G
[19] G. Fadillah, T.A. Saleh, Advances in mesoporous material for adsorption and photoconversion of CO2 in environmental pollution: Clean environment and clean energy, Sustain Chem Pharm 29 (2022) 100812. https://doi.org/10.1016/j.scp.2022.100812
[20] P. Haghighi, S. Alijani, A. Bazyari, L.T. Thompson, Visible light dye degradation over fluorinated mesoporous TiO2 − WO3 − Bi2O3/SiO2 nanocomposite photocatalyst-adsorbent using immersion well reactor, J Photochem Photobiol A Chem 426 (2022) 113790. https://doi.org/10.1016/j.jphotochem.2022.113790
[21] Z. Pei, H. Guo, L. Zhu, C. Li, Z. Fu, J. Xu, Photocatalytic degradation of various antibiotics under visible light irradiation by CdS-doped SiO2@BiOX (X = Br, Cl) prepared by mixed solvothermal method, Materials Science and Engineering: B 287 (2023) 116134. https://doi.org/10.1016/j.mseb.2022.116134
[22] X.-P. Kong, B.-H. Zhang, J. Wang, Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology: A Review, J Agric Food Chem 69 (2021) 6735-6754. https://doi.org/10.1021/acs.jafc.1c01091
[23] B. Cinlar, B.H. Shanks, Characterization of the acidic sites in organic acid functionalized mesoporous silica in an aqueous media, Appl Catal A Gen 396 (2011) 76-84. https://doi.org/10.1016/j.apcata.2011.01.044
[24] Y. Sakata, M. Azhar Uddin, A. Muto, Y. Kanada, K. Koizumi, K. Murata, Catalytic degradation of polyethylene into fuel oil over mesoporous silica (KFS-16) catalyst, J Anal Appl Pyrolysis 43 (1997) 15-25.. https://doi.org/10.1016/S0165-2370(97)00052-1
[25] M.A. Al-Nuaim, A.A. Alwasiti, Z.Y. Shnain, The photocatalytic process in the treatment of polluted water, Chemical Papers 77 (2023) 677-701. https://doi.org/10.1007/s11696-022-02468-7
[26] L. Mahoney, S. Rasalingam, C.-M. Wu, R. Koodali, Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania, Molecules 20 (2015) 21881-21895. https://doi.org/10.3390/molecules201219812
[27] A. Akinyemi, O. Agboola, E. Alagbe, E. Igbokwe, The role of catalyst in the adsorption of dye: Homogeneous catalyst, heterogeneous catalyst, and advanced catalytic activated carbon, critical review, Desalination Water Treat 320 (2024) 100780. https://doi.org/10.1016/j.dwt.2024.100780
[28] N.T.T. Ha, H.L. Ngo, T.B. Pham, N. Hoang Hao, C.T. Bui, T.L. Phung, L.M. Cam, N. Ngoc Ha, Comprehensive Study on the Adsorption and Degradation ofDichlorodiphenyltrichloroethane on Bifunctional Adsorption-Photocatalysis Material TiO 2 /MCM-41 Using Quantum Chemical Methods, ACS Omega (2024).
[29] S. Singh, A.K. Atri, I. Qadir, S. Sharma, U. Manhas, D. Singh, Role of Different Fuels and Sintering Temperatures in the Structural, Optical, Magnetic, and Photocatalytic Properties of Chromium-Containing Nickel Ferrite: Kinetic Study of Photocatalytic Degradation of Rhodamine B Dye, ACS Omega 8 (2023) 6302-6317. https://doi.org/10.1021/acsomega.2c06249
[30] D. Deng, Y. Li, M. Wu, Y. Song, Q. Huang, Y. Duan, Y. Chang, Y. Zhao, C. He, Electrocatalytic Degradation of Rhodamine B on the Sb-Doped SnO 2 /Ti Electrode in Alkaline Medium, ACS Omega 8 (2023) 48480-48490. https://doi.org/10.1021/acsomega.3c08391
[31] S. Rasalingam, R. Peng, R.T. Koodali, An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials, Appl Catal B 174-175 (2015) 49-59. https://doi.org/10.1016/j.apcatb.2015.02.040
[32] N. Pal, A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids, Adv Colloid Interface Sci 189-190 (2013) 21-41. https://doi.org/10.1016/j.cis.2012.12.002
[33] X. Deng, K. Chen, H. Tüysüz, Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides, Chemistry of Materials 29 (2017) 40-52. https://doi.org/10.1021/acs.chemmater.6b02645
[34] X. Li, H. Yoshikawa, K. Ishihara, K. Miyake, Y. Uchida, N. Nishiyama, Solvent-Free Soft-Template Synthesis of Highly Ordered Mesoporous Carbons via Self-Assembly Promoted by Mg(NO 3 ) 2, Langmuir 39 (2023) 2036-2042. https://doi.org/10.1021/acs.langmuir.2c03197
[35] A. Lolli, R. Amadori, C. Lucarelli, M.G. Cutrufello, E. Rombi, F. Cavani, S. Albonetti, Hard-template preparation of Au/CeO 2 mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Microporous and Mesoporous Materials 226 (2016) 466-475. https://doi.org/10.1016/j.micromeso.2016.02.014
[36] M. Ortega-Franqueza, S. Ivanova, M.I. Domínguez, M.Á. Centeno, Mesoporous Carbon Production by Nanocasting Technique Using Boehmite as a Template, Catalysts 11 (2021) 1132. https://doi.org/10.3390/catal11091132
[37] Z. Zhang, F. Zuo, P. Feng, Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution, J Mater Chem 20 (2010) 2206. https://doi.org/10.1039/b921157h
[38] A. Lolli, R. Amadori, C. Lucarelli, M.G. Cutrufello, E. Rombi, F. Cavani, S. Albonetti, Hard-template preparation of Au/CeO 2 mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Microporous and Mesoporous Materials 226 (2016) 466-475. https://doi.org/10.1016/j.micromeso.2016.02.014
[39] D.B. Emrie, Sol-Gel Synthesis of Nanostructured Mesoporous Silica Powder and Thin Films, J Nanomater 2024 (2024) 1-16. https://doi.org/10.1155/2024/6109770
[40] A.K. Dikshit, K. Chugh, S.K. Chaturvedi, B.N. Mohapatra, Synthesis of mesoporous phase materials via Sol-gel process using Indian cementitious raw material, Mater Today Proc 62 (2022) 1132-1138. https://doi.org/10.1016/j.matpr.2022.04.326
[41] N.I. Vazquez, Z. Gonzalez, B. Ferrari, Y. Castro, Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications, Boletín de La Sociedad Española de Cerámica y Vidrio 56 (2017) 139-145. https://doi.org/10.1016/j.bsecv.2017.03.002
[42] R. Ryoo, S.H. Joo, S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, J Phys Chem B 103 (1999) 7743-7746. https://doi.org/10.1021/jp991673a
[43] J.E.S. van der Hoeven, A. V. Shneidman, N.J. Nicolas, J. Aizenberg, Evaporation-Induced Self-Assembly of Metal Oxide Inverse Opals: From Synthesis to Applications, Acc Chem Res 55 (2022) 1809-1820. https://doi.org/10.1021/acs.accounts.2c00087
[44] A.A.S. Gonçalves, M. Jaroniec, Evaporation-induced self-assembly synthesis of nanostructured alumina-based mixed metal oxides with tailored porosity, J Colloid Interface Sci 537 (2019) 725-735. https://doi.org/10.1016/j.jcis.2018.11.044
[45] J. Fan, M. Guerrero, A. Carretero-Genevrier, M.D. Baró, S. Suriñach, E. Pellicer, J. Sort, Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO 2 thin films with tunable room temperature magnetic properties, J Mater Chem C Mater 5 (2017) 5517-5527. https://doi.org/10.1039/C7TC01128H
[46] J.-C. Seo, H. Kim, Y.-L. Lee, S. Nam, H.-S. Roh, K. Lee, S. Bin Park, One-Pot Synthesis of Full-Featured Mesoporous Ni/Al 2 O 3 Catalysts via a Spray Pyrolysis-Assisted Evaporation-Induced Self-Assembly Method for Dry Reforming of Methane, ACS Sustain Chem Eng 9 (2021) 894-904. https://doi.org/10.1021/acssuschemeng.0c07927
[47] M.H. Aboonasr Shiraz, M. Rezaei, F. Meshkani, Microemulsion synthesis method for preparation of mesoporous nanocrystalline γ-Al2O3 powders as catalyst carrier for nickel catalyst in dry reforming reaction, Int J Hydrogen Energy 41 (2016) 6353-6361. https://doi.org/10.1016/j.ijhydene.2016.03.017
[48] M. Bielec, A. Huang, Y. Xia, H. Dai, Microemulsion Synthesis of Mesoporous β-tricalcium Phosphate Powder with a Novel System, Journal of Wuhan University of Technology-Mater. Sci. Ed. 37 (2022) 773-778 https://doi.org/10.1007/s11595-022-2595-y
[49] R. Muthusami, A. Kesavan, V. Ramachandran, V. Vasudevan, K. Irena, R. Rangappan, Synthesis of mesoporous silica nanoparticles with a lychee-like morphology and dual pore arrangement and its application towards biomimetic activity via functionalization with copper(II) complex, Microporous and Mesoporous Materials 294 (2020) 109910. https://doi.org/10.1016/j.micromeso.2019.109910
[50] Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine 11 (2015) 313-327. https://doi.org/10.1016/j.nano.2014.09.014
[51] J.L. Vivero‐Escoto, I.I. Slowing, B.G. Trewyn, V.S. ‐Y. Lin, Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery, Small 6 (2010) 1952-1967. https://doi.org/10.1002/smll.200901789
[52] P. Shanmugam, S.M. Smith, S. Boonyuen, A. Luengnaruemitchai, In-situ development of boron doped g-C3N4 supported SBA-15 nanocomposites for photocatalytic degradation of tetracycline, Environ Res 224 (2023) 115496. https://doi.org/10.1016/j.envres.2023.115496
[53] Y.E. Kim, M.Y. Byun, K.-Y. Lee, M.S. Lee, Hydrothermal synthesis of mesoporous TiO2 using β-diketonate stabilizing agents for photocatalytic degradation of methyl violet 2B under visible light, Catal Today 411-412 (2023) 113954. https://doi.org/10.1016/j.cattod.2022.11.015
[54] Q. Li, J. Zhang, Q. Lu, J. Lu, J. Li, C. Dong, Q. Zhu, Hydrothermal synthesis and characterization of ordered mesoporous magnesium silicate-silica for dyes adsorption, Mater Lett 170 (2016) 167-170. https://doi.org/10.1016/j.matlet.2016.02.029
[55] H. Ahmed, S.S. Gomte, E. Prathyusha, P. A, M. Agrawal, A. Alexander, Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier, J Drug Deliv Sci Technol 76 (2022) 103729. https://doi.org/10.1016/j.jddst.2022.103729
[56] Y.E. Kim, M.Y. Byun, K.-Y. Lee, M.S. Lee, Hydrothermal synthesis of mesoporous TiO2 using β-diketonate stabilizing agents for photocatalytic degradation of methyl violet 2B under visible light, Catal Today 411-412 (2023) 113954. https://doi.org/10.1016/j.cattod.2022.11.015
[57] S.L. Suib, A Review of Recent Developments of Mesoporous Materials, The Chemical Record 17 (2017) 1169-1183. https://doi.org/10.1002/tcr.201700025
[58] M. Moritz, M. Geszke-Moritz, Mesoporous materials as multifunctional tools in biosciences: Principles and applications, Materials Science and Engineering: C 49 (2015) 114-151. https://doi.org/10.1016/j.msec.2014.12.079
[59] D. V. Wellia, Y. Kusumawati, L.J. Diguna, N. Pratiwi, R.A. Putri, M.I. Amal, Mesoporous Materials for Degradation of Textile Dyes, in: 2020: pp. 255-288. https://doi.org/10.1007/978-3-030-16427-0_10
[60] B. Nanda, D. Rath, K.M. Parida, M. Das, Fabrication of Mesoporous MnO 2 -MCM-41 Composite: A Promising Material for Photocatalytic Degradation of Organic Dyes Under Visible Light, Adv Sci Lett 20 (2014) 579-583. https://doi.org/10.1166/asl.2014.5403
[61] M.Z. Hussain, G.S. Pawar, Z. Huang, A.A. Tahir, R.A. Fischer, Y. Zhu, Y. Xia, Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: A correlational study, Carbon N Y 146 (2019) 348-363. https://doi.org/10.1016/j.carbon.2019.02.013
[62] S.M. Saleh, A.E.A.E. Albadri, M.A. Ben Aissa, A. Modwi, Fabrication of Mesoporous V2O5@g-C3N4 Nanocomposite as Photocatalyst for Dye Degradation, Crystals (Basel) 12 (2022) 1766. https://doi.org/10.3390/cryst12121766
[63] D.P. DePuccio, P. Botella, B. O’Rourke, C.C. Landry, Degradation of Methylene Blue Using Porous WO 3 , SiO 2 -WO 3 , and Their Au-Loaded Analogs: Adsorption and Photocatalytic Studies, ACS Appl Mater Interfaces 7 (2015) 1987-1996. https://doi.org/10.1021/am507806a
[64] D. Gogoi, P. Makkar, N.N. Ghosh, Solar Light-Irradiated Photocatalytic Degradation of Model Dyes and Industrial Dyes by a Magnetic CoFe 2 O 4 -gC 3 N 4 S-Scheme Heterojunction Photocatalyst, ACS Omega 6 (2021) 4831-4841. https://doi.org/10.1021/acsomega.0c05809
[65] B. Nanda, A.C. Pradhan, K.M. Parida, A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO 2 modified MCM-41 nanocomposite, Microporous and Mesoporous Materials 226 (2016) 229-242. https://doi.org/10.1016/j.micromeso.2015.12.027
[66] A.A. Ismail, M. Faisal, A. Al-Haddad, Mesoporous WO 3 -graphene photocatalyst for photocatalytic degradation of Methylene Blue dye under visible light illumination, Journal of Environmental Sciences 66 (2018) 328-337.. https://doi.org/10.1016/j.jes.2017.05.001
[67] H. Znad, K. Abbas, S. Hena, Md.R. Awual, Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media, J Environ Chem Eng 6 (2018) 218-227 https://doi.org/10.1016/j.jece.2017.11.077
[68] H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, H. Li, Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal, Appl Catal B 174-175 (2015) 445-454.. https://doi.org/10.1016/j.apcatb.2015.03.037
[69] C.S. Katsiotis, M. Strømme, K. Welch, Processability of mesoporous materials in fused deposition modeling for drug delivery of a model thermolabile drug, Int J Pharm X 5 (2023) 100149. https://doi.org/10.1016/j.ijpx.2022.100149
[70] S.E. Moya, R.R. Hernández, P.C. Angelomé, Degradation of Mesoporous Silica Materials in Biological Milieu: The Gateway for Therapeutic Applications, Adv Nanobiomed Res (2024).. https://doi.org/10.1002/anbr.202400005
[71] M.W. Ibrahim, Y. Khane, Y.T. Mahmood, A. Schulz, H. Kosslick, Mesoporous aluminosilicate materials supported zinc oxide photocatalytic degradation of pharmaceutical pollutants, Desalination Water Treat 320 (2024) 100588. https://doi.org/10.1016/j.dwt.2024.100588
[72] B. Kaushik, G. Rao, D. Vaya, Photocatalytic Degradation of Drugs, in: Handbook of Green and Sustainable Nanotechnology, Springer International Publishing, Cham, 2023: pp. 797-825. https://doi.org/10.1007/978-3-031-16101-8_6
[73] M.A. Hassaan, M.A. El-Nemr, M.R. Elkatory, S. Ragab, V.-C. Niculescu, A. El Nemr, Principles of Photocatalysts and Their Different Applications: A Review, Top Curr Chem 381 (2023) 31. https://doi.org/10.1007/s41061-023-00444-7
[74] H.S. Naik, P.M. Sah, R.W. Raut, Nanotechnology-Based Photocatalytic Degradation of Pharmaceuticals, in: Modern Nanotechnology, Springer International Publishing, Cham, 2023: pp. 465-486. https://doi.org/10.1007/978-3-031-31111-6_19
[75] A. Ali, M. Shoeb, Y. Li, B. Li, M.A. Khan, Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation, J Mol Liq 324 (2021) 114696. https://doi.org/10.1016/j.molliq.2020.114696
[76] J. Feng, J. Yang, Y. Shen, W. Deng, W. Chen, Y. Ma, Z. Chen, S. Dong, Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: Properties and applications, Microporous and Mesoporous Materials 311 (2021) 110688. https://doi.org/10.1016/j.micromeso.2020.110688
[77] M. Šťastný, V. Štengl, J. Henych, J. Tolasz, P. Vomáčka, J. Ederer, Mesoporous manganese oxide for the degradation of organophosphates pesticides, J Mater Sci 51 (2016) 2634-2642. https://doi.org/10.1007/s10853-015-9577-9
[78] W. Yan, G. Hu, J. Xiao, Y. Liu, G. Tang, Z. Zhou, Y. Huang, X. Zhang, G. Yan, J. Wang, Y. Cao, Fabrication of Hollow Mesoporous Copper Sulfide Nanocapsules Loaded with Natural Photoactivated Pesticides for Sustainable Plant Disease Management, ACS Sustain Chem Eng 12 (2024) 1207-1220. https://doi.org/10.1021/acssuschemeng.3c04782
[79] M.V. Phanikrishna Sharma, V. Durga Kumari, M. Subrahmanyam, TiO2 supported over SBA-15: An efficient photocatalyst for the pesticide degradation using solar light, Chemosphere 73 (2008) 1562-1569. https://doi.org/10.1016/j.chemosphere.2008.07.081
[80] D.S. Conceição, C.A.L. Graça, D.P. Ferreira, A.M. Ferraria, I.M. Fonseca, A.M. Botelho do Rego, A.C.S.C. Teixeira, L.F. Vieira Ferreira, Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants, Microporous and Mesoporous Materials 253 (2017) 203-214. https://doi.org/10.1016/j.micromeso.2017.07.013
[81] A.S. Mohamed, M.R. Abukkhadra, E.A. Abdallah, A.M. El-Sherbeeny, R.K. Mahmoud, The photocatalytic performance of silica fume based Co3O4/MCM-41 green nanocomposite for instantaneous degradation of Omethoate pesticide under visible light, J Photochem Photobiol A Chem 392 (2020) 112434. https://doi.org/10.1016/j.jphotochem.2020.112434. https://doi.org/10.1016/j.jphotochem.2020.112434
[82] G. Li, B. Wang, W.Q. Xu, Y. Han, Q. Sun, Rapid TiO 2 /SBA-15 synthesis from ilmenite and use in photocatalytic degradation of dimethoate under simulated solar light, Dyes and Pigments 155 (2018) 265-275. https://doi.org/10.1016/j.dyepig.2018.03.058
[83] S. Merci, A. Saljooqi, T. Shamspur, A. Mostafavi, Investigation of photocatalytic chlorpyrifos degradation by a new silica mesoporous material immobilized by WS 2 and Fe 3 O 4 nanoparticles: Application of response surface methodology, Appl Organomet Chem 34 (2020). https://doi.org/10.1002/aoc.5343
[84] M.R. AbuKhadra, A.S. Mohamed, A.M. El-Sherbeeny, M.A. Elmeligy, Enhanced photocatalytic degradation of acephate pesticide over MCM-41/Co3O4 nanocomposite synthesized from rice husk silica gel and Peach leaves, J Hazard Mater 389 (2020) 122129. https://doi.org/10.1016/j.jhazmat.2020.122129
[85] M. Silva, M.J.F. Calvete, N.P.F. Gonçalves, H.D. Burrows, M. Sarakha, A. Fernandes, M.F. Ribeiro, M.E. Azenha, M.M. Pereira, Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides, J Hazard Mater 233-234 (2012) 79-88. https://doi.org/10.1016/j.jhazmat.2012.06.059
[86] M. Silva, M.E. Azenha, M.M. Pereira, H.D. Burrows, M. Sarakha, C. Forano, M.F. Ribeiro, A. Fernandes, Immobilization of halogenated porphyrins and their copper complexes in MCM-41: Environmentally friendly photocatalysts for the degradation of pesticides, Appl Catal B 100 (2010) 1-9. https://doi.org/10.1016/j.apcatb.2010.07.033
[87] C. Feng, Y. Li, X. Liu, Photocatalytic Degradation of Imidacloprid by Phosphotungstic Acid Supported on a Mesoporous Sieve MCM‐41, Chin J Chem 30 (2012) 127-132. https://doi.org/10.1002/cjoc.201180453
[88] M.L. Scala-Benuzzi, S.N. Fernández, G. Giménez, G. Ybarra, G.J.A.A. Soler-Illia, Ordered Mesoporous Electrodes for Sensing Applications, ACS Omega 8 (2023) 24128-24152. https://doi.org/10.1021/acsomega.3c02013
[89] A. Walcarius, Mesoporous materials and electrochemistry, Chem Soc Rev 42 (2013) 4098. https://doi.org/10.1039/c2cs35322a
[90] M.L. Scala-Benuzzi, S.N. Fernández, G. Giménez, G. Ybarra, G.J.A.A. Soler-Illia, Ordered Mesoporous Electrodes for Sensing Applications, ACS Omega 8 (2023) 24128-24152. https://doi.org/10.1021/acsomega.3c02013
[91] R. Yahya, A. Shah, T. Kokab, N. Ullah, M.K. Hakeem, M. Hayat, A. Haleem, I. Shah, Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye, ACS Omega 7 (2022) 34154-34165. https://doi.org/10.1021/acsomega.2c03472
[92] M. Irfan, A. Shah, F.J. Iftikhar, M. Hayat, M.N. Ashiq, I. Shah, Electrochemical Sensing Platform Based on Functionalized Multi-Walled Carbon Nanotubes and Metal Oxide for the Detection and Degradation Studies of Orange II Dye, ACS Omega 7 (2022) 32302-32312. https://doi.org/10.1021/acsomega.2c03641
[93] A. Ganash, L. Alajlani, E. Ganash, A. Al-Moubaraki, Efficient electrochemical degradation of congo red dye by Pt/CuNPs electrode with its attractive performance, energy consumption, and mechanism: Experimental and theoretical approaches, Journal of Water Process Engineering 56 (2023) 104497. https://doi.org/10.1016/j.jwpe.2023.104497
[94] S.N. Azizi, S. Ghasemi, A. Samadi-Maybodi, M. Ranjbar-Azad, A new modified electrode based on Ag-doped mesoporous SBA-16 nanoparticles as a non-enzymatic sensor for hydrogen peroxide, Sens Actuators B Chem 216 (2015) 271-278. https://doi.org/10.1016/j.snb.2015.03.078
[95] X. Zhang, S. Duan, X. Xu, S. Xu, C. Zhou, Electrochemical behavior and simultaneous determination of dihydroxybenzene isomers at a functionalized SBA-15 mesoporous silica modified carbon paste electrode, Electrochim Acta 56 (2011) 1981-1987. https://doi.org/10.1016/j.electacta.2010.11.048
[96] T. Zhong, Q. Guo, X. Zhu, R. Liu, S. Huang, Based on Gold Nanoparticles-l-Tyr-Amino Functionalized Mesoporous Materials-Polyphenol Oxidase Modified Biosensor for the Detection of Resorcinol, Analytical Sciences 37 (2021) 817-823. https://doi.org/10.2116/analsci.20P288
[97] K. Wang, H. Ren, N. Li, X. Tan, F. Dang, Ratiometric fluorescence sensor based on cholesterol oxidase-functionalized mesoporous silica nanoparticle@ZIF-8 core-shell nanocomposites for detection of cholesterol, Talanta 188 (2018) 708-713. https://doi.org/10.1016/j.talanta.2018.06.019
[98] H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, C. Karaman, Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples, Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907
[99] Z. Karimi, M. Shamsipur, M.A. Tabrizi, S. Rostamnia, A highly sensitive electrochemical sensor for the determination of methanol based on PdNPs@SBA-15-PrEn modified electrode, Anal Biochem 548 (2018) 32-37. https://doi.org/10.1016/j.ab.2018.01.033
[100] X. Zheng, S. Duan, S. Liu, M. Wei, F. Xia, D. Tian, C. Zhou, Sensitive and simultaneous method for the determination of naphthol isomers by an amino-functionalized, SBA-15-modified carbon paste electrode, Analytical Methods 7 (2015) 3063-3071. https://doi.org/10.1039/C5AY00027K
[101] R. Gupta, P.K. Rastogi, U. Srivastava, V. Ganesan, P.K. Sonkar, D.K. Yadav, Methylene blue incorporated mesoporous silica microsphere-based sensing scaffold for the selective voltammetric determination of riboflavin, RSC Adv 6 (2016) 65779-65788. https://doi.org/10.1039/C6RA12336H
[102] T. Nasir, G. Herzog, M. Hébrant, C. Despas, L. Liu, A. Walcarius, Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat, ACS Sens 3 (2018) 484-493. https://doi.org/10.1021/acssensors.7b00920
[103] M. Vallet‐Regí, F. Balas, D. Arcos, Mesoporous Materials for Drug Delivery, Angewandte Chemie International Edition 46 (2007) 7548-7558. https://doi.org/10.1002/anie.200604488
[104] H. El-Desoky, M. Abdel-Galeil, A. Khalifa, Mesoporous SiO2 (SBA-15) modified graphite electrode as highly sensitive sensor for ultra trace level determination of Dapoxetine hydrochloride drug in human plasma, Journal of Electroanalytical Chemistry 846 (2019) 113157. https://doi.org/10.1016/j.jelechem.2019.05.039
[105] M. Ghalkhani, E. Sohouli, Z.S. Dehkordi, Electrochemical sensor based on mesoporous g-C3N4/N-CNO/gold nanoparticles for measuring oxycodone, Sci Rep 14 (2024) 17221. https://doi.org/10.1038/s41598-024-68310-0
[106] H.-S. Wang, T.-H. Li, W.-L. Jia, H.-Y. Xu, Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode, Biosens Bioelectron 22 (2006) 664-669. https://doi.org/10.1016/j.bios.2006.02.007
[107] R.T. Kachoosangi, G.G. Wildgoose, R.G. Compton, Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode, Anal Chim Acta 618 (2008) 54-60. https://doi.org/10.1016/j.aca.2008.04.053
[108] B.-R. Adhikari, M. Govindhan, A. Chen, Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds, Sensors 15 (2015) 22490-22508. https://doi.org/10.3390/s150922490
[109] N.A. Martinez, G.A. Messina, F.A. Bertolino, E. Salinas, J. Raba, Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations, Sens Actuators B Chem 133 (2008) 256-262. https://doi.org/10.1016/j.snb.2008.02.025
[110] G.-T. Liu, H.-F. Chen, G.-M. Lin, P. Ye, X.-P. Wang, Y.-Z. Jiao, X.-Y. Guo, Y. Wen, H.-F. Yang, One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection, Biosens Bioelectron 56 (2014) 26-32. https://doi.org/10.1016/j.bios.2014.01.005
[111] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode, Anal Chim Acta 709 (2012) 47-53. https://doi.org/10.1016/j.aca.2011.10.025
[112] U. Yogeswaran, S. Thiagarajan, S.-M. Chen, Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid, Anal Biochem 365 (2007) 122-131. https://doi.org/10.1016/j.ab.2007.02.034
[113] M. Elfiky, N. Salahuddin, Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2-ZnO hybrids, Microchemical Journal 170 (2021) 106582. https://doi.org/10.1016/j.microc.2021.106582
[114] S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, Preparation of nanocrystalline praseodymium oxide with different shapes via a simple thermal decomposition route, Journal of Materials Science: Materials in Electronics 27 (2016) 998-1006. https://doi.org/10.1007/s10854-015-3844-z
[115] F. Mazzara, B. Patella, G. Aiello, A. O’Riordan, C. Torino, A. Vilasi, R. Inguanta, Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors, Electrochim Acta 388 (2021) 138652. https://doi.org/10.1016/j.electacta.2021.138652
[116] S.Z. Mohammadi, H. Asadollahzadeh, F. Emambakhsh, Sensitive electrochemical determination of Sudan I in food products by using a modified-screen printed electrode, Journal of Materials Science: Materials in Electronics 34 (2023) 2239. https://doi.org/10.1007/s10854-023-11664-4
[117] Z. Zhou, C. Gu, C. Chen, P. Zhao, Y. Xie, J. Fei, An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene /mercapto-β-cyclodextrin /Au nanoparticles composite film, Sens Actuators B Chem 288 (2019) 88-95. https://doi.org/10.1016/j.snb.2019.02.105
[118] Z. Liu, B. Lu, Y. Gao, T. Yang, R. Yue, J. Xu, L. Gao, Facile one-pot preparation of Pd-Au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection, RSC Adv 6 (2016) 89157-89166. https://doi.org/10.1039/C6RA16488A
[119] Y. Chen, W. Huang, K. Chen, T. Zhang, Y. Wang, J. Wang, A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: The outstanding analytical performance towards chlorogenic acid, Talanta 196 (2019) 85-91. https://doi.org/10.1016/j.talanta.2018.12.033
[120] C. Yin, Q. Zhuang, Q. Xiao, Y. Wang, J. Xie, Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea, Analytical Methods 13 (2021) 1154-1163. https://doi.org/10.1039/D1AY00028D
[121] A. Puangjan, S. Chaiyasith, An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants, Electrochim Acta 211 (2016) 273-288. https://doi.org/10.1016/j.electacta.2016.04.185
[122] S. Alipour, P.A. Azar, S.W. Husain, H.R. Rajabi, Determination of Rosmarinic acid in plant extracts using a modified sensor based on magnetic imprinted polymeric nanostructures, Sens Actuators B Chem 323 (2020) 128668. https://doi.org/10.1016/j.snb.2020.128668
[123] A.S. Barreto, A. Aquino, S.C.S. Silva, M.E. de Mesquita, M.J. Calhorda, M.S. Saraiva, S. Navickiene, A novel application of mesoporous silica material for extraction of pesticides, Mater Lett 65 (2011) 1357-1359. https://doi.org/10.1016/j.matlet.2011.01.082
[124] A. Badiei, H. Goldooz, G.M. Ziarani, A. Abbasi, One pot synthesis of functionalized SBA-15 by using an 8-hydroxyquinoline-5-sulfonamide-modified organosilane as precursor, J Colloid Interface Sci 357 (2011) 63-69. https://doi.org/10.1016/j.jcis.2011.01.049
[125] Š. Korent Urek, N. Frančič, M. Turel, A. Lobnik, Sensing Heavy Metals Using Mesoporous‐Based Optical Chemical Sensors, J Nanomater 2013 (2013). https://doi.org/10.1155/2013/501320
[126] N.A.I.M. Mokhtar, R.M. Zawawi, W.M. Khairul, N.A. Yusof, Electrochemical and optical sensors made of composites of metal-organic frameworks and carbon-based materials. A review, Environ Chem Lett 20 (2022) 3099-3131. https://doi.org/10.1007/s10311-022-01403-2
[127] Y. Xu, H. Guo, Y. Wei, H. Feng, Y. Yang, Y. Lu, Y. Wei, J. Su, Y. Ben, J. Yuan, X. Liu, X. Zhang, Detection of heavy metal Pb2+ by electrochemical sensor based on ZIF-8@GO composite, J Appl Electrochem 54 (2024) 1397-1407. https://doi.org/10.1007/s10800-023-02042-3
[128] Š. Korent Urek, N. Frančič, M. Turel, A. Lobnik, Sensing Heavy Metals Using Mesoporous‐Based Optical Chemical Sensors, J Nanomater 2013 (2013). https://doi.org/10.1155/2013/501320
[129] G. Manasa, C.S. Rout, Versatile MXenes as electrochemical sensors for heavy metal ions and phenolic moiety-containing industrial chemicals: recent development and prospects, Mater Adv 5 (2024) 83-122. https://doi.org/10.1039/D3MA00362K
[130] S.F. Sulthana, U.M. Iqbal, S.B. Suseela, R. Anbazhagan, R. Chinthaginjala, D. Chitathuru, I. Ahmad, T. Kim, Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review, ACS Omega 9 (2024) 25493-25512. https://doi.org/10.1021/acsomega.4c00933
[131] S.F. Sulthana, U.M. Iqbal, S.B. Suseela, R. Anbazhagan, R. Chinthaginjala, D. Chitathuru, I. Ahmad, T. Kim, Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review, ACS Omega 9 (2024) 25493-25512. https://doi.org/10.1021/acsomega.4c00933
[132] W. Li, J. Tang, Z. Wang, Micro-/Mesoporous Fluorescent Polymers and Devices for Visual Pesticide Detection with Portability, High Sensitivity, and Ultrafast Response, ACS Appl Mater Interfaces 14 (2022) 5815-5824. https://doi.org/10.1021/acsami.1c21658
[133] C. Gu, Q. Wang, L. Zhang, P. Yang, Y. Xie, J. Fei, Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide @ mesoporous carbon composite, Sens Actuators B Chem 305 (2020) 127478. https://doi.org/10.1016/j.snb.2019.127478
[134] Md.A. Rashed, M. Faisal, S.A. Alsareii, M. Alsaiari, M. Jalalah, F.A. Harraz, Highly sensitive and selective electrochemical sensor for detecting imidacloprid pesticide using novel silver nanoparticles/mesoporous carbon/hematite ore ternary nanocomposite, J Environ Chem Eng 10 (2022) 108364. https://doi.org/10.1016/j.jece.2022.108364
[135] R. Jemai, M.A. Djebbi, N. Hussain, B. Yang, M. Hirtz, V. Trouillet, H. Ben Rhaiem, A. Ben Haj Amara, Activated porous carbon supported Pd and ZnO nanocatalysts for trace sensing of carbaryl pesticide in water and food products, New Journal of Chemistry 46 (2022) 13880-13895. https://doi.org/10.1039/D2NJ01844F
[136] N. Karuppusamy, R. Sakthivel, S.-M. Chen, S.B. Prasanna, R.-J. Chung, Template-assisted synthesis of Co1Zn0.5-P/CoO/ZnO core-shell heterostructure for the electrochemical detection of carbofuran and diuron, Chemical Engineering Journal 473 (2023) 145305. https://doi.org/10.1016/j.cej.2023.145305
[137] T. Teshome, S.A. Kitte, G. Gonfa, A. Gure, Electrochemical determination of endrin from fruit juice samples based on Fe-doped ZnO nanomaterial modified glassy carbon electrode, J Appl Electrochem 54 (2024) 865-877. https://doi.org/10.1007/s10800-023-01985-x
[138] L. Gurusamy, R.-W. Cheng, S. Anandan, C.-H. Liu, J.J. Wu, Detection of Environmentally Harmful Malathion Pesticides Using a Bimetallic Oxide of CuO Nanoparticles Dispersed over a 3D ZnO Nanoflower, Materials 16 (2023) 7065. https://doi.org/10.3390/ma16227065
[139] M.R. de Barros, J.P. Winiarski, F. de Matos Morawski, R.G. Marim, E.S. Chaves, A. Blacha-Grzechnik, C.L. Jost, A high-performance electrochemical sensor based on a mesoporous silica/titania material and cobalt(II) phthalocyanine for sensitive pentachlorophenol determination, Microchimica Acta 189 (2022) 269. https://doi.org/10.1007/s00604-022-05360-z
[140] K. Wang, Q. Liu, L. Dai, J. Yan, C. Ju, B. Qiu, X. Wu, A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite, Anal Chim Acta 695 (2011) 84-88. https://doi.org/10.1016/j.aca.2011.03.042
[141] C. Gu, Q. Wang, L. Zhang, P. Yang, Y. Xie, J. Fei, Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide @ mesoporous carbon composite, Sens Actuators B Chem 305 (2020) 127478. https://doi.org/10.1016/j.snb.2019.127478
[142] C. Zhai, Y. Guo, X. Sun, Y. Zheng, X. Wang, An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide, Enzyme Microb Technol 58-59 (2014) 8-13. https://doi.org/10.1016/j.enzmictec.2014.02.004