Role of machine learning in air pollution control and monitoring: A recent review
Vikas PARE, Ankur NAGORI, Athar KHAN
Abstract. Air pollution is a significant environmental and societal issue, causing significant health risks. Researchers are exploring machine learning techniques to control pollution, focusing on potential sources and mitigation strategies. The main causes of air pollution include emissions, transportation dispersion, transformation, and immisions. The study aims to understand and mitigate these issues to improve air quality and safety.Pollution in air comes from both exhaust and non-exhaust emission sources, affecting both indoor and outdoor environments. Exhaust emission pollutants include NOx, CO, CO2, SO2, particulate matter, and volatile organic compounds. Non-exhaust emission sources include road wear, tire wear, brake wear, and road dust resuspension. Air pollution negatively impacts human health, particularly respiratory disorders. Machine learning is a successful technique for predicting, detecting, and monitoring air pollutants for air quality control. Random Forest and other machine learning models have been utilized for predicting air quality control and monitoring. These models include LSTM, MLP, RF, BRT, SVR, XG Boost, GAM, Cubist, ANN, Logistic regression, Auto-regression, Hybrid interpretable predictive model, k-nearest neighbors, Naïve-Bayesian classifier, and decision tree models. Support Vector regression and ANN models have been proven to be more accurate than other models.
Keywords
Air Pollution, Mitigation, Sources, Pollutants, Strategies, Machine Learning, Neural Network
Published online 3/1/2025, 14 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Vikas PARE, Ankur NAGORI, Athar KHAN, Role of machine learning in air pollution control and monitoring: A recent review, Materials Research Proceedings, Vol. 49, pp 60-73, 2025
DOI: https://doi.org/10.21741/9781644903438-7
The article was published as article 7 of the book Mechanical Engineering for Sustainable Development
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Tauzia, X., Maiboom, A., & Shah, S. R. (2010). Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection diesel engine. Energy, 35(9), 3628-3639. https://doi.org/10.1016/j.energy.2010.05.007
[2] Lindsay, G., Macmillan, A., & Woodward, A. (2011). Moving urban trips from cars to bicycles: impact on health and emissions. Australian and New Zealand journal of public health, 35(1), 54-60. https://doi.org/10.1111/j.1753-6405.2010.00621.x
[3] Wu, Y., Wang, R., Zhou, Y., Lin, B., Fu, L., He, K., & Hao, J. (2011). On-road vehicle emission control in Beijing: past, present, and future. https://doi.org/10.1021/es1014289
[4] [4] Dedes, E. K., Hudson, D. A., &Turnock, S. R. (2012). Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy policy, 40, 204-218. https://doi.org/10.1016/j.enpol.2011.09.046
[5] Hoekman, S. K., & Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96, 237-249. https://doi.org/10.1016/j.fuproc.2011.12.036
[6] Park, S. H., & Lee, C. S. (2013). Combustion performance and emission reduction characteristics of automotive DME engine system. Progress in energy and combustion science, 39(1), 147-168. https://doi.org/10.1016/j.pecs.2012.10.002
[7] Mohan, B., Yang, W., & kiang Chou, S. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines-A review. Renewable and Sustainable Energy Reviews, 28, 664-676. https://doi.org/10.1016/j.rser.2013.08.051
[8] Fattah, I. R., Masjuki, H. H., Liaquat, A. M., Ramli, R., Kalam, M. A., &Riazuddin, V. N. (2013). Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renewable and Sustainable Energy Reviews, 18, 552-567. https://doi.org/10.1016/j.rser.2012.10.036
[9] Palash, S. M., Kalam, M. A., Masjuki, H. H., Masum, B. M., Fattah, I. R., &Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23, 473-490. https://doi.org/10.1016/j.rser.2013.03.003
[10] Kumar, P., Pirjola, L., Ketzel, M., & Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources-a review. Atmospheric Environment, 67, 252-277. https://doi.org/10.1016/j.atmosenv.2012.11.011
[11] Carslaw, D. C., & Rhys-Tyler, G. (2013). New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmospheric Environment, 81, 339-347. https://doi.org/10.1016/j.atmosenv.2013.09.026
[12] Yan, F., Bond, T. C., & Streets, D. G. (2014). Effectiveness of mitigation measures in reducing future primary particulate matter emissions from on-road vehicle exhaust. Environmental science & technology, 48(24), 14455-14463. https://doi.org/10.1021/es503197f
[13] Imtenan, S., Varman, M., Masjuki, H. H., Kalam, M. A., Sajjad, H., Arbab, M. I., & Fattah, I. R. (2014). Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Conversion and Management, 80, 329-356. https://doi.org/10.1016/j.enconman.2014.01.020
[14] Guan, B., Zhan, R., Lin, H., & Huang, Z. (2014). Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 66(1-2), 395-414. https://doi.org/10.1016/j.applthermaleng.2014.02.021
[15] Amato, F., Cassee, F. R., van der Gon, H. A. D., Gehrig, R., Gustafsson, M., Hafner, W., … & Querol, X. (2014). Urban air quality: the challenge of traffic non-exhaust emissions. Journal of hazardous materials, 275, 31-36. https://doi.org/10.1016/j.jhazmat.2014.04.053
[16] Gambhir, A., Lawrence, K. C., Tong, D., & Martinez-Botas, R. (2015). Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis. Applied Energy, 157, 905-917. https://doi.org/10.1016/j.apenergy.2015.01.018
[17] Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2015). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17, 15-27. https://doi.org/10.1007/s10098-014-0793-9
[18] Casals, L. C., Martinez-Laserna, E., García, B. A., & Nieto, N. (2016). Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. Journal of cleaner production, 127, 425-437. https://doi.org/10.1016/j.jclepro.2016.03.120
[19] Wu, Y., Zhang, S., Hao, J., Liu, H., Wu, X., Hu, J., … & Stevanovic, S. (2017). On-road vehicle emissions and their control in China: A review and outlook. Science of the Total Environment, 574, 332-349. https://doi.org/10.1016/j.scitotenv.2016.09.040
[20] Jia, T., Li, Q., & Shi, W. (2018). Estimation and analysis of emissions from on-road vehicles in Mainland China for the period 2011-2015. Atmospheric Environment, 191, 500-512 https://doi.org/10.1016/j.atmosenv.2018.08.037
[21] Krause, J., Thiel, C., Tsokolis, D., Samaras, Z., Rota, C., Ward, A., … &Verhoeve, W. (2020). EU road vehicle energy consumption and CO2 emissions by 2050-Expert-based scenarios. Energy Policy, 138, 111224. https://doi.org/10.1016/j.enpol.2019.111224
[22] Gao, C., Gao, C., Song, K., Xing, Y., & Chen, W. (2020). Vehicle emissions inventory in high spatial-temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis. Process Safety and Environmental Protection, 138, 236-245. https://doi.org/10.1016/j.psep.2020.03.027
[23] Huang, M. H., Huang, Y., Cao, J. J., & Tao, W. Q. (2021). Study on mitigation of automobile exhaust pollution in an urban street canyon: Emission reduction and air cleaning street lamps. Building and Environment, 193, 107651. https://doi.org/10.1016/j.buildenv.2021.107651
[24] Dev, S., Lafrance, S., Liko, B., & Guo, H. (2023). A study on effect of engine operating parameters on NOx emissions and exhaust temperatures of a heavy-duty diesel engine during idling. International Journal of Engine Research, 24(3), 982-998. https://doi.org/10.1177/14680874221076087
[25] Doppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2023). Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine. Renewable and Sustainable Energy Reviews, 174, 113123. https://doi.org/10.1016/j.rser.2022.113123
[26] Wu, C., Lv, S., Wang, F., Liu, X., Li, J., Liu, L., … & Wang, G. (2023). Ammonia in urban atmosphere can be substantially reduced by vehicle emission control: A case study in Shanghai, China. Journal of Environmental Sciences, 126, 754-760. https://doi.org/10.1016/j.jes.2022.04.043
[27] Gajbhiye, M. D., Lakshmanan, S., Kumar, N., Bhattacharya, S., & Nishad, S. (2023). Effectiveness of India’s Bharat Stage mitigation measures in reducing vehicular emissions. Transportation Research Part D: Transport and Environment, 115, 103603. https://doi.org/10.1016/j.trd.2022.103603
[28] Alahmer, H., Alahmer, A., Alkhazaleh, R., &Alrbai, M. (2023). Exhaust emission reduction of a SI engine using acetone-gasoline fuel blends: Modeling, prediction, and whale optimization algorithm. Energy Reports, 9, 77-86. https://doi.org/10.1016/j.egyr.2022.10.360
[29] Gohlke, D., Kelly, J., Stephens, T., Wu, X., & Zhou, Y. (2023). Mitigation of emissions and energy consumption due to light-duty vehicle size increases. Transportation Research Part D: Transport and Environment, 114, 103543. https://doi.org/10.1016/j.trd.2022.103543
[30] Jia, S., Bi, L., Zhu, W., & Fang, T. (2023). System dynamics modeling for improving the policy effect of traffic energy consumption and CO2 emissions. Sustainable Cities and Society, 90, 104398. https://doi.org/10.1016/j.scs.2023.104398
[31] Pénard-Morand, C., &Annesi-Maesano, I. (2004). Air pollution: from sources of emissions to health effects. Breathe, 1(2), 108-119. https://doi.org/10.1183/18106838.0102.108
[32] Robinson, D. L. (2005). Air pollution in Australia: Review of costs, sources and potential solutions. Health Promotion Journal of Australia, 16(3), 213-220. https://doi.org/10.1071/HE05213
[33] Müller, D., Klingelhöfer, D., Uibel, S., &Groneberg, D. A. (2011). Car indoor air pollution-analysis of potential sources. Journal of Occupational Medicine and Toxicology, 6, 1-7. https://doi.org/10.1186/1745-6673-6-33
[34] Leung, D. Y. (2015). Outdoor-indoor air pollution in urban environment: challenges and opportunity. Frontiers in Environmental Science, 2, 69. https://doi.org/10.3389/fenvs.2014.00069
[35] Hime, N. J., Marks, G. B., & Cowie, C. T. (2018). A comparison of the health effects of ambient particulate matter air pollution from five emission sources. International journal of environmental research and public health, 15(6), 1206. https://doi.org/10.3390/ijerph15061206
[36] Usmani, R. S. A., Saeed, A., Abdullahi, A. M., Pillai, T. R., Jhanjhi, N. Z., & Hashem, I. A. T. (2020). Air pollution and its health impacts in Malaysia: a review. Air Quality, Atmosphere & Health, 13, 1093-1118. https://doi.org/10.1007/s11869-020-00867-x
[37] Almetwally, A. A., Bin-Jumah, M., & Allam, A. A. (2020). Ambient air pollution and its influence on human health and welfare: an overview. Environmental Science and Pollution Research, 27, 24815-24830. https://doi.org/10.1007/s11356-020-09042-2
[38] Tran, V. V., Park, D., & Lee, Y. C. (2020). Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. International journal of environmental research and public health, 17(8), 2927. https://doi.org/10.3390/ijerph17082927
[39] Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., & Chowdhury, S. (2023). Mortality attributable to ambient air pollution: A review of global estimates. GeoHealth, 7(1), e2022GH000711. https://doi.org/10.1029/2022GH000711
[40] Sicard, P., Agathokleous, E., Anenberg, S. C., De Marco, A., Paoletti, E., &Calatayud, V. (2023). Trends in urban air pollution over the last two decades: A global perspective. Science of The Total Environment, 858, 160064. https://doi.org/10.1016/j.scitotenv.2022.160064
[41] Cohen, S. (2021). The evolution of machine learning: Past, present, and future. In Artificial intelligence and deep learning in pathology (pp. 1-12). Elsevier.. https://doi.org/10.1016/B978-0-323-67538-3.00001-4
[42] Angra, S., & Ahuja, S. (2017, March). Machine learning and its applications: A review. In 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC) (pp. 57-60). IEEE. https://doi.org/10.1109/ICBDACI.2017.8070809
[43] Schapire, R. E. (2003). The boosting approach to machine learning: An overview. Nonlinear estimation and classification, 149-171. https://doi.org/10.1007/978-0-387-21579-2_9
[44] Ben-Hur, A., Horn, D., Siegelmann, H. T., &Vapnik, V. (2001). Support vector clustering. Journal of machine learning research, 2(Dec), 125-137.
[45] Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415
[46] Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122. https://doi.org/10.1561/2200000016
[47] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1-127. https://doi.org/10.1561/2200000006
[48] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer. https://doi.org/10.1007/978-0-387-84858-7
[49] Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam‐Thong, T., … & Zhang, J. D. (2020). An introduction to machine learning. Clinical pharmacology & therapeutics, 107(4), 871-885. https://doi.org/10.1002/cpt.1796
[50] Nozari, H., & Sadeghi, M. E. (2021). Artificial intelligence and Machine Learning for Real-world problems (A survey). International Journal of Innovation in Engineering, 1(3), 38-47. https://doi.org/10.59615/ijie.1.3.38
[51] Méndez, M., Merayo, M. G., &Núñez, M. (2023). Machine learning algorithms to forecast air quality: a survey. Artificial Intelligence Review, 1-36. https://doi.org/10.1007/s10462-023-10424-4
[52] Gryech, I., Assad, C., Ghogho, M., &Kobbane, A. (2024). Applications of machine learning and IoT for Outdoor Air Pollution Monitoring and Prediction: A Systematic Literature Review. arXiv preprint arXiv:2401.01788. https://doi.org/10.1016/j.engappai.2024.109182
[53] Ravindiran, G., Hayder, G., Kanagarathinam, K., Alagumalai, A. and Sonne, C., 2023. Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam. Chemosphere, 338, p.139518. https://doi.org/10.1016/j.chemosphere.2023.139518
[54] Gu, Y., Li, B., & Meng, Q. (2022). Hybrid interpretable predictive machine learning model for air pollution prediction. Neurocomputing, 468, 123-136. Zhao, X., Zhang, R., Wu, J. L., & Chang, P. C. (2018). A Deep Recurrent Neural Network for Air Quality Classification. J. Inf. Hiding Multim. Signal Process., 9(2), 346-354. https://doi.org/10.1016/j.neucom.2021.09.051
[55] Mohurle, S. V., Purohit, R., & Patil, M. (2018). A study of fuzzy clustering concept for measuring air pollution index. Int. J. Adv. Sci, 3, 43-45.
[56] Aditya, C. R., Deshmukh, C. R., Nayana, D. K., &Vidyavastu, P. G. (2018). Detection and prediction of air pollution using machine learning models. International journal of engineering trends and technology (IJETT), 59(4), 204-207. https://doi.org/10.14445/22315381/IJETT-V59P238
[57] Zhang, S., Li, X., Li, Y., & Mei, J. (2018, June). Prediction of urban pm 2.5 concentration based on wavelet neural network. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 5514-5519). IEEE. https://doi.org/10.1109/CCDC.2018.8408092
[58] Amado, T. M., & Cruz, J. C. D. (2018, October). Development of machine learning-based predictive models for air quality monitoring and characterization. In TENCON 2018-2018 IEEE Region 10 Conference (pp. 0668-0672). IEEE. https://doi.org/10.1109/TENCON.2018.8650518
[59] Shawabkeh, A., Al-Beqain, F., Redan, A., & Salem, M. (2018, November). Benzene air pollution monitoring model using ann and svm. In 2018 Fifth HCT Information Technology Trends (ITT) (pp. 197-204). IEEE. https://doi.org/10.1109/CTIT.2018.8649497
[60] Kang, G. K., Gao, J. Z., Chiao, S., Lu, S., & Xie, G. (2018). Air quality prediction: Big data and machine learning approaches. Int. J. Environ. Sci. Dev, 9(1), 8-16. https://doi.org/10.18178/ijesd.2018.9.1.1066
[61] Martínez, N. M., Montes, L. M., Mura, I., & Franco, J. F. (2018, November). Machine learning techniques for PM 10 levels forecast in Bogotá. In 2018 ICAI Workshops (ICAIW) (pp. 1-7). IEEE. https://doi.org/10.1109/ICAIW.2018.8554995
[62] Kumar, K. and Pande, B.P., 2023. Air pollution prediction with machine learning: a case study of Indian cities. International Journal of Environmental Science and Technology, 20(5), pp.5333-5348. https://doi.org/10.1007/s13762-022-04241-5
[63] Gupta, N.S., Mohta, Y., Heda, K., Armaan, R., Valarmathi, B. and Arulkumaran, G., 2023. Prediction of air quality index using machine learning techniques: a comparative analysis. Journal of Environmental and Public Health, 2023, pp.1-26. https://doi.org/10.1155/2023/4916267
[64] Maltare, N.N. and Vahora, S., 2023. Air Quality Index prediction using machine learning for Ahmedabad city. Digital Chemical Engineering, 7, p.100093. https://doi.org/10.1016/j.dche.2023.100093
[65] Ravindra, K., Bahadur, S.S., Katoch, V., Bhardwaj, S., Kaur-Sidhu, M., Gupta, M. and Mor, S., 2023. Application of machine learning approaches to predict the impact of ambient air pollution on outpatient visits for acute respiratory infections. Science of The Total Environment, 858, p.159509. https://doi.org/10.1016/j.scitotenv.2022.159509
[66] Varade, H.P., Bhangale, S.C., Thorat, S.R., Khatkale, P.B., Sharma, S.K. and William, P., 2023, May. Framework of air pollution assessment in smart cities using IoT with machine learning approach. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (pp. 1436-1441). IEEE. https://doi.org/10.1109/ICAAIC56838.2023.10140834
[67] Rahardja, U., Aini, Q., Manongga, D., Sembiring, I. and Sanjaya, Y.P.A., 2023. Enhancing machine learning with low-cost p m2. 5 air quality sensor calibration using image processing. APTISI Transactions on Management, 7(3), pp.201-209. https://doi.org/10.33050/atm.v7i3.2062
[68] William, P., Paithankar, D.N., Yawalkar, P.M., Korde, S.K., Rajendra, A. and Rakshe, D.S., 2023, January. Divination of air quality assessment using ensembling machine learning approach. In 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF) (pp. 1-10). IEEE. https://doi.org/10.1109/ICECONF57129.2023.10083751
[69] Zhu, J.J., Yang, M. and Ren, Z.J., 2023. Machine learning in environmental research: common pitfalls and best practices. Environmental Science & Technology, 57(46), pp.17671-17689. https://doi.org/10.1021/acs.est.3c00026
[70] Karimian, H., Li, Y., Chen, Y. and Wang, Z., 2023. Evaluation of different machine learning approaches and aerosol optical depth in PM2. 5 prediction. Environmental Research, 216, p.114465. https://doi.org/10.1016/j.envres.2022.114465
[71] Natarajan, S.K., Shanmurthy, P., Arockiam, D., Balusamy, B. and Selvarajan, S., 2024. Optimized machine learning model for air quality index prediction in major cities in India. Scientific Reports, 14(1), p.6795. https://doi.org/10.1038/s41598-024-54807-1