Mathematical analysis of heat transfer in inclined micro-jet impingement heat sink

Mathematical analysis of heat transfer in inclined micro-jet impingement heat sink

M. ZUNAID, Md Gulam MUSTAFA, Afzal HUSAIN, Himanshu Rao BHARTI, Arko SARDAR

Abstract. The growing need for more effective cooling techniques in electronic chip systems has increased the demand for viable approaches to address the difficulties linked with heat dispersion. This research thoroughly examines heat exchange within a microchannel using Ansys involving inclined micro-jet impacts. The objective is to investigate the heat-related properties of hexagonal cross-sectional jets, aiming to enhance the cooling efficiency for electronic chip applications. The angle of the jet’s inclination remains consistent at 45 degrees to the impact surface. Among the various configurations of microjet arrays studied, the heat sink employing inclined microjet impacts with 13 jets displays exceptional promise compared to alternative setups. This specific array design surpasses the others in terms of its cooling capabilities. The inclined configuration, combined with the optimal quantity of jets, facilitates the creation of potent impact forces, effectively promoting heat transfer at an elevated rate.

Keywords
Heat Transfer, Micro Jet impingement, Microchannel Heat Sink

Published online 3/1/2025, 12 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: M. ZUNAID, Md Gulam MUSTAFA, Afzal HUSAIN, Himanshu Rao BHARTI, Arko SARDAR, Mathematical analysis of heat transfer in inclined micro-jet impingement heat sink, Materials Research Proceedings, Vol. 49, pp 48-59, 2025

DOI: https://doi.org/10.21741/9781644903438-6

The article was published as article 6 of the book Mechanical Engineering for Sustainable Development

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Singh Pawan Kumar, Naruka Dilip Singh, Seng Lee Poh, NUMERICAL_INVESTIGATION_OF_FLOW_AND_HEAT_TRANSFER_OF_NANOFLUIDS, International Journal of Energy for a Clean Environment 19 (2018) 19–35. https://doi.org/10.1615/InterJEnerCleanEnv.2018021099
[2] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Letters 2 (1981) 126–129. https://doi.org/10.1109/EDL.1981.25367
[3] Singh Gurpeet, Dasaroju Gangacharyulu, Bulasara Vijaya Kumar, EXPERIMENTAL_INVESTIGATION_OF_THE_EFFECT_OF_HEAT_TRANSFER_AND_P, International Journal of Energy for a Clean Environment 19 (2018) 1–17. https://doi.org/10.1615/InterJEnerCleanEnv.2018020996
[4] L.T. Yeh, Review of Heat Transfer Technologies in Electronic Equipment, J Electron Packag 117 (1995) 333–339. https://doi.org/10.1115/1.2792113
[5] H. Sadique, Q. Murtaza, Samsher, Heat transfer augmentation in microchannel heat sink using secondary flows: A review, Int J Heat Mass Transf 194 (2022). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2022.123063
[6] S. V Garimella, R.A. Rice, Confined and Submerged Liquid Jet Impingement Heat Transfer, J Heat Transfer 117 (1995) 871–877. https://doi.org/10.1115/1.2836304
[7] S. Wu, J. Mai, Y.C. Tai, C.M. Ho, Micro heat exchanger by using MEMS impinging jets, in: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), 1999: pp. 171–176. https://doi.org/10.1109/MEMSYS.1999.746799
[8] D.-Y. Lee, K. Vafai, Comparative analysis of jet impingement and microchannel cooling for high heat flux applications, Int J Heat Mass Transf 42 (1999) 1555–1568. https://doi.org/https://doi.org/10.1016/S0017-9310(98)00265-8
[9] G. Hetsroni, A. Mosyak, E. Pogrebnyak, L.P. Yarin, Fluid flow in micro-channels, Int J Heat Mass Transf 48 (2005) 1982–1998. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.019
[10] H.M. Ali, W. Arshad, Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids, Energy Convers Manag 106 (2015) 793–803. https://doi.org/https://doi.org/10.1016/j.enconman.2015.10.015
[11] M. Zunaid, A. Husain, B. Singh Chauhan, R. Sahu, Numerical analysis of inclined jet impingement heat transfer in microchannel, Mater Today Proc 43 (2021) 557–563. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.048
[12] M. Zunaid, H.M. Cho, A. Husain, A. Jindal, R. Kumar, B.S. Chauhan, Computational Analysis of Liquid Jet Impingement Micro-channel Cooling, Mater Today Proc 5 (2018) 27877–27883. https://doi.org/https://doi.org/10.1016/j.matpr.2018.10.026
[13] L. Liang, J. Hou, X. Fang, Y. Han, J. Song, L. Wang, Z. Deng, G. Xu, H. Wu, Flow characteristics and heat transfer performance in a Y-Fractal mini/microchannel heat sink, Case Studies in Thermal Engineering 15 (2019) 100522. https://doi.org/https://doi.org/10.1016/j.csite.2019.100522
[14] E.M. Abo-Zahhad, S. Ookawara, A. Radwan, M.F. Elkady, A.H. El-Shazly, Optimization of stepwise varying width microchannel heat sink for high heat flux applications, Case Studies in Thermal Engineering 18 (2020) 100587. https://doi.org/https://doi.org/10.1016/j.csite.2020.100587
[15] M.G. Mustafa, M. Zunaid, S. Gautam, Numerical Analysis and Moth Flame Optimization of Passive T-Micromixer with Twist and Bend mixing channel, Chemical Engineering and Processing – Process Intensification 190 (2023) 109436. https://doi.org/https://doi.org/10.1016/j.cep.2023.109436
[16] M.G. Mustafa, M. Zunaid, S. Gautam, A novel passive micromixer model computational analysis with twist and bend, J Phys Conf Ser 2484 (2023) 12041. https://doi.org/10.1088/1742-6596/2484/1/012041
[17] W. Duangthongsuk, S. Wongwises, An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures, Exp Therm Fluid Sci 87 (2017) 30–39. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2017.04.013
[18] R.K. Ajeel, W.S.-I. W. Salim, K. Hasnan, Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped, Case Studies in Thermal Engineering 12 (2018) 620–635. https://doi.org/https://doi.org/10.1016/j.csite.2018.08.002
[19] W. Arshad, H.M. Ali, Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid, Int J Heat Mass Transf 110 (2017) 248–256. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.032
[20] S. Kumar, A.D. Kothiyal, M.S. Bisht, A. Kumar, Numerical analysis of thermal hydraulic performance of Al2O3–H2O nanofluid flowing through a protrusion obstacles square mini channel, Case Studies in Thermal Engineering 9 (2017) 108–121. https://doi.org/https://doi.org/10.1016/j.csite.2017.01.004
[21] M.S. Baba, A.V.S.R. Raju, M.B. Rao, Heat transfer enhancement and pressure drop of Fe3O4 -water nanofluid in a double tube counter flow heat exchanger with internal longitudinal fins, Case Studies in Thermal Engineering 12 (2018) 600–607. https://doi.org/https://doi.org/10.1016/j.csite.2018.08.001
[22] Y. Hou, J. Yang, W. Zhang, Numerical Study of Enhanced Heat Transfer of MicroChannel Heat Sink with Nanofluids, IOP Conf Ser Mater Sci Eng 721 (2020) 12052. https://doi.org/10.1088/1757-899X/721/1/012052
[23] R.C. Al-Zuhairy, Z.S. Kareem, A.A. Abdulhadi, Al2O3-water nanofluid heat transfer enhancement of a twin impingement jet, Case Studies in Thermal Engineering 19 (2020) 100626. https://doi.org/https://doi.org/10.1016/j.csite.2020.100626
[24] A.G. Fedorov, R. Viskanta, Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging, Int J Heat Mass Transf 43 (2000) 399–415. https://doi.org/https://doi.org/10.1016/S0017-9310(99)00151-9
[25] M.M.R. Kiran K. Ambatipudi, ANALYSIS OF CONJUGATE HEAT TRANSFER IN MICROCHANNEL HEAT SINKS, Numeri Heat Transf A Appl 37 (2000) 711–731. https://doi.org/10.1080/104077800274046
[26] D. Liu, S. V Garimella, Analysis and optimization of the thermal performance of microchannel heat sinks, Int J Numer Methods Heat Fluid Flow 15 (2005) 7–26. https://doi.org/10.1108/09615530510571921
[27] W. Qu, I. Mudawar, Analysis of three-dimensional heat transfer in micro-channel heat sinks, Int J Heat Mass Transf 45 (2002) 3973–3985. https://doi.org/https://doi.org/10.1016/S0017-9310(02)00101-1
[28] W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Int J Heat Mass Transf 45 (2002) 2549–2565. https://doi.org/https://doi.org/10.1016/S0017-9310(01)00337-4
[29] A. Husain, K.-Y. Kim, Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling, IEEE Transactions on Components and Packaging Technologies 31 (2008) 322–330. https://doi.org/10.1109/TCAPT.2008.916791
[30] G.J. Michna, E.A. Browne, Y. Peles, M.K. Jensen, Single-Phase Microscale Jet Stagnation Point Heat Transfer, J Heat Transfer 131 (2009). https://doi.org/10.1115/1.3154750
[31] Roy Abin, Sreekanth Uddala, Ashirvadam Joel, Shaik Saboor, Behura Arun Kumar, Bibin B S, HEAT_TRANSFER_AND_PRESSURE_DROP_MECHANISMS_IN_WAVY_FINS_HAVING_, International Journal of Energy for a Clean Environment 25 (2024) 79–92. https://doi.org/10.1615/InterJEnerCleanEnv.2024047540
[32] A. Husain, S.-M. Kim, K.-Y. Kim, Performance analysis and design optimization of micro-jet impingement heat sink, Heat and Mass Transfer 49 (2013) 1613–1624. https://doi.org/10.1007/s00231-013-1202-3
[33] M.L. De Paz, B.A. Jubran, Numerical modeling of multi micro jet impingement cooling of a three dimensional turbine vane, Heat and Mass Transfer 47 (2011) 1561–1579. https://doi.org/10.1007/s00231-011-0819-3
[34] A. Husain, J.-H. Kim, K.-Y. Kim, Performance Characterization of Laminar Flow in Multiple Microjet Impingement Heat Sinks, J Thermophys Heat Trans 28 (2014) 133–141. https://doi.org/10.2514/1.T4176
[35] T. Muszynski, R. Andrzejczyk, Heat transfer characteristics of hybrid microjet – Microchannel cooling module, Appl Therm Eng 93 (2016) 1360–1366. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2015.08.085
[36] A. Husain, M. Ariz, N.Z.H. Al-Rawahi, Mohd.Z. Ansari, Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink, Appl Therm Eng 102 (2016) 989–1000. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2016.03.048
[37] P. Naphon, S. Wiriyasart, T. Arisariyawong, L. Nakharintr, ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink, Int J Heat Mass Transf 131 (2019) 329–340. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.073
[38] R. Kempers, J. Colenbrander, W. Tan, R. Chen, A.J. Robinson, Experimental characterization of a hybrid impinging microjet-microchannel heat sink fabricated using high-volume metal additive manufacturing, International Journal of Thermofluids 5–6 (2020) 100029. https://doi.org/https://doi.org/10.1016/j.ijft.2020.100029
[39] M. Peng, L. Chen, W. Ji, W. Tao, Numerical study on flow and heat transfer in a multi-jet microchannel heat sink, Int J Heat Mass Transf 157 (2020) 119982. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.119982
[40] R. Kumar, S. Krishnapillai, G. Venkatarathnam, OPTIMIZATION OF FLOW PATHS OF AIR-COOLED HEAT EXCHANGERS, International Journal of Energy for a Clean Environment 24 (2023).
[41] R. Abdelmaksoud, T. Wang, Recent Advances in Heat Transfer Applications Using Sweeping Jet Fluidic Oscillators, International Journal of Energy for a Clean Environment 24 (2023).
[42] A. Husain, S.M. Kim, K.Y. Kim, Performance analysis and design optimization of micro-jet impingement heat sink, Heat and Mass Transfer/Waerme- Und Stoffuebertragung 49 (2013) 1613–1624. https://doi.org/10.1007/s00231-013-1202-3