Computational analysis of stress distribution in dental crowns: A review
Stuti BANSAL, Suruchi MAURYA, Rishika BHADANI, Aashika, Nathi Ram CHAUHAN, Pooja BHATI
Abstract. Stress analysis encompasses three primary methodologies: analytical, experimental, and computational. While analytical methods offer theoretical insights, they often fall short in addressing complex problems. Experimental approaches, though thorough, demand substantial time and resources. Computational analysis presents itself as a promising alternative as experiments can be simulated in a virtual environment using computer simulations with the added advantage of easy modification of material or shape properties. This paper presents a comprehensive study of the use of FEA in conducting computational stress analysis for static and fatigue stresses on dental crowns. This paper explains the methods used at each stage of conducting an FEA study.
Keywords
FEA, Stress Analysis, Human Tooth, Dental Crown, Static Analysis, Fatigue Analysis
Published online 3/1/2025, 12 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Stuti BANSAL, Suruchi MAURYA, Rishika BHADANI, Aashika, Nathi Ram CHAUHAN, Pooja BHATI, Computational analysis of stress distribution in dental crowns: A review, Materials Research Proceedings, Vol. 49, pp 559-570, 2025
DOI: https://doi.org/10.21741/9781644903438-56
The article was published as article 56 of the book Mechanical Engineering for Sustainable Development
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. M. S. S. S. Chaitanya, M. C. C. Rao, and P. G. Student, “MODELING AND ANALYSIS OF TOOTH CROWN WITH DIFFERENT MATERIALS USING FEM,” IJSDR1901013 International Journal of
[2] Scientific Development and Research, 2019, [Online]. Available: www.ijsdr.org68
[3] J. Joshi, N. Gariya, A. R. Manral, and P. Kumar, “Comparative analysis of a human tooth using different materials based on the finite element method,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 94–
[4] 98. doi: 10.1016/j.matpr.2020.06.021.
[5] S. Belli, O. Eraslan, and G. Eskitaşcıoğlu, “Effect of Different Treatment Options on Biomechanics of Immature Teeth: A Finite Element Stress Analysis Study,” J Endod, vol. 44, no. 3, pp. 475–479, Mar. 2018. https://doi.org/10.1016/j.joen.2017.08.037.
[6] T. Maravić et al., “Finite element and in vitro study on biomechanical behavior of endodontically treated premolars restored with direct or indirect composite restorations,” Sci Rep, vol. 12, no. 1, Dec. 2022. https://doi.org/10.1038/s41598-022-16480-0.
[7] N. Limjeerajarus et al., “Comparison of ultimate force revealed by compression tests on extracted first premolars and FEA with a true scale 3D multi-component tooth model based on a CBCT dataset,” Clin Oral Investig, vol. 24, no. 1, pp. 211–220, Jan. 2020. https://doi.org/10.1007/s00784-019-02919-8.
[8] A. Merdji et al., “Stress analysis in single molar tooth,” Materials Science and Engineering C, vol. 33, no. 2,
[9] pp. 691–698, Mar. 2013. https://doi.org/10.1016/j.msec.2012.10.020.
[10] K. Bataineh and M. Al janaideh, “Experimental and numerical fatigue investigations of CAD/CAM ceramic crowns under dynamic loads,” Inform Med Unlocked, vol. 26, Jan. 2021. https://doi.org/10.1016/j.imu.2021.100730.
[11] Q. Li and C. A. Rubin, “An expert system for 2D stress analysis of human teeth,” in Applied Mechanics and Materials, 2013, pp. 1611–1615. doi: 10.4028/www.scientific.net/AMM.284-287.1611.
[12] S. Mehkri, N. R. Abishek, K. S. Sumanth, and N. Rekha, “Study of the Tribocorrosion occurring at the
[13] implant and implant alloy Interface: Dental implant materials,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 157–165. doi: 10.1016/j.matpr.2020.08.550.
[14] M. I. El-Anwar and M. M. El-Zawahry, “A three dimensional finite element study on dental implant design,” Journal of Genetic Engineering and Biotechnology, vol. 9, no. 1, pp. 77–82, 2011. https://doi.org/10.1016/j.jgeb.2011.05.007.
[15] N. Jayakumar, G. Senthilkumar, S. Aravinda Samy, V. Karthick, and T. Renganathan, “Comparison of stress analysis for dental crown (FPD) for various materials,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 7939–7950. doi: 10.1016/j.matpr.2020.12.838.
[16] S. Gali, “Mica glass ceramics for dental restorations,” Materials Technology, vol. 34, no. 1, pp. 2–11, Jan. 2019. https://doi.org/10.1080/10667857.2018.1494240.
[17] T. Srichumpong, P. Phokhinchatchanan, N. Thongpun, D. Chaysuwan, and K. Suputtamongkol, “Fracture toughness of experimental mica-based glass-ceramics and four commercial glass-ceramics restorative dental materials,” Dent Mater J, vol. 38, no. 3, pp. 378–387, 2019. https://doi.org/10.4012/dmj.2018-077.
[18] B. Dejak, A. Młotkowski, and C. Langot, “Three-dimensional finite element analysis of molars with thin- walled prosthetic crowns made of various materials,” Dental Materials, vol. 28, no. 4, pp. 433–441, Apr. 2012. https://doi.org/10.1016/j.dental.2011.11.019.
[19] E. Tsalouchou, M. J. Cattell, J. C. Knowles, P. Pittayachawan, and A. McDonald, “Fatigue and fracture properties of yttria partially stabilized zirconia crown systems,” Dental Materials, vol. 24, no. 3, pp. 308– 318, Mar. 2008. https://doi.org/10.1016/j.dental.2007.05.011.
[20] T. P. Chaturvedi, “An overview of the corrosion aspect of dental implants (titanium and its alloys),” Indian Journal of Dental Research, vol. 20, no. 1. pp. 91–98, Jan. 01, 2009. doi: 10.4103/0970-9290.49068.
[21] C. Aparicio, F. J. Gil, C. Fonseca, M. Barbosa, and A. Planell, “Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications,” 2003.
[22] M. Banko Glu Güngör and H. Yılmaz, “Evaluation of stress distributions occurring on zirconia and titanium implant-supported prostheses: A three-dimensional finite element analysis.”
[23] Özkurt, Z., & Kazazoğlu, E. (2011). Zirconia dental implants: a literature review. Journal of oral implantology, 37(3), 367-376.
[24] Depprich, R., Zipprich, H., Ommerborn, M., Naujoks, C., Wiesmann, H. P., Kiattavorncharoen, S., … & Handschel, J. (2008). Osseointegration of zirconia implants compared with titanium: an in vivo study. Head & face medicine, 4, 1-8.
[25] Kohal, R. J., Wolkewitz, M., & Tsakona, A. (2011). The effects of cyclic loading and preparation on the fracture strength of zirconium‐dioxide implants: an in vitro investigation. Clinical oral implants research, 22(8), 808-814.
[26] K. D. Ganvir* and N. D. Pachkawade*, “Analytical Assessment of Fatigue Strength of a Dental Crown,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 6, pp. 2689–2693, Mar. 2020. https://doi.org/10.35940/ijrte.F8398.038620.
[27] S. D. Heintze, A. Eser, D. Monreal, and V. Rousson, “Using a chewing simulator for fatigue testing of metal ceramic crowns,” J Mech Behav Biomed Mater, vol. 65, pp. 770–780, Jan. 2017. https://doi.org/10.1016/j.jmbbm.2016.09.002.
[28] R. Galante, C. G. Figueiredo-Pina, and A. P. Serro, “Additive manufacturing of ceramics for dental applications: A review,” Dental Materials, vol. 35, no. 6. Elsevier Inc., pp. 825–846, Jun. 01, 2019. doi: 10.1016/j.dental.2019.02.026.
[29] S. M. Fathy, “Three-Dimensional Finite Element Analysis of Lower Molar Tooth Restored with Fully Milled and Layered Zirconia Crowns,” J Dent Health Oral Disord Ther, vol. 1, no. 4, Aug. 2014. https://doi.org/10.15406/jdhodt.2014.01.00022.
[30] S. Benazzi, O. Kullmer, I. R. Grosse, and G. W. Weber, “Using occlusal wear information and finite
[31] element analysis to investigate stress distributions in human molars,” J Anat, vol. 219, no. 3, pp. 259–272, Sep. 2011. https://doi.org/10.1111/j.1469-7580.2011.01396.x.
[32] S. A. Romeed, S. L. Fok, and N. H. F. Wilson, “A comparison of 2D and 3D finite element analysis of a restored tooth,” J Oral Rehabil, vol. 33, no. 3, pp. 209–215, Mar. 2006. https://doi.org/10.1111/j.1365- 2842.2005.01552.x.
[33] G. Thiagarajan et al., “Stress analysis of irradiated human tooth enamel using finite element methods,” Comput Methods Biomech Biomed Engin, vol. 20, no. 14, pp. 1533–1542, Oct. 2017. https://doi.org/10.1080/10255842.2017.1383401.
[34] B. Dejak, A. Młotkowski, and M. Romanowicz, “Finite element analysis of stresses in molars during clenching and mastication THE JOURNAL OF PROSTHETIC DENTISTRY 591,” 2003.
[35] M. Toparli and T. Aksoy, “Analysis of a restored maxillary second premolar tooth by using three- dimensional finite element method,” 1999.
[36] D. Arola, L. A. Galles, and M. F. Sarubin, “A comparison of the mechanical behavior of posterior teeth with amalgam and composite MOD restorations.” [Online]. Available: www.elsevier.com/locate/jdent
[37] V. Capobianco et al., “Post-fatigue fracture load, stress concentration and mechanical properties of feldspathic, leucite- and lithium disilicate-reinforced glass ceramics,” Heliyon, vol. 9, no. 7, Jul. 2023. https://doi.org/10.1016/j.heliyon.2023.e17787.
[38] C. Rubin, N. Krishnamurthy, E. Capilouto, and H. yi, “Clinical Science: Stress Analysis of the Human Tooth Using a Three-dimensional Finite Element Model,” J Dent Res, vol. 62, no. 2, pp. 82–86, 1983. https://doi.org/10.1177/00220345830620021701.
[39] J. P. M. Tribst et al., “The impact of restorative material and ceramic thickness on CAD\CAM endocrowns,”
[40] J Clin Exp Dent, vol. 11, no. 12, pp. 969–977, 2019. https://doi.org/10.4317/JCED.56002.
[41] K. Shemtov-Yona, D. Rittel, E. E. Machtei, and L. Levin, “Effect of dental implant diameter on fatigue performance. Part II: Failure analysis,” Clin Implant Dent Relat Res, vol. 16, no. 2, pp. 178–184, 2014. https://doi.org/10.1111/j.1708-8208.2012.00476.x.
[42] K. J. Anusavice, O. M. Jadaan, and J. F. Esquivel-Upshaw, “Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation,” Dental Materials, vol. 29, no. 11, pp. 1132–1138, Nov. 2013. https://doi.org/10.1016/j.dental.2013.08.206.
[43] Bankole. I. Oladapo, S. Abolfazl Zahedi, F. Vahidnia, O. M. Ikumapayi, and M. U. Farooq, “Three-
[44] dimensional finite element analysis of a porcelain crowned tooth,” Beni Suef Univ J Basic Appl Sci, vol. 7, no. 4, pp. 461–464, Dec. 2018. https://doi.org/10.1016/j.bjbas.2018.04.002.
[45] H. Chai, “On the mechanical properties of tooth enamel under spherical indentation,” Acta Biomater, vol. 10, no. 11, pp. 4852–4860, Nov. 2014. https://doi.org/10.1016/j.actbio.2014.07.003.
[46] A. J. Keown, J. J. W. Lee, and M. B. Bush, “Fracture behavior of human molars,” J Mater Sci Mater Med, vol. 23, no. 12, pp. 2847–2856, Dec. 2012. https://doi.org/10.1007/s10856-012-4756-6.
[47] Z. Zhang, T. Sornsuwan, C. Rungsiyakull, W. Li, Q. Li, and M. V. Swain, “Effects of design parameters on fracture resistance of glass simulated dental crowns,” Dental Materials, vol. 32, no. 3, pp. 373–384, Mar. 2016. https://doi.org/10.1016/j.dental.2015.11.018.
[48] M. Shahmoradi, B. Wan, Z. Zhang, T. Wilson, M. Swain, and Q. Li, “Monolithic crowns fracture analysis: The effect of material properties, cusp angle and crown thickness,” Dental Materials, vol. 36, no. 8, pp. 1038–1051, Aug. 2020. https://doi.org/10.1016/j.dental.2020.04.022.
[49] “Finite Element Analysis of Ti−6Al−4V ELI and Alumina Bio-inert Material Used in Molar Tooth Dental Implant Applications.”
[50] E. Pala, I. Ozdemir, T. Grund, and T. Lampke, “The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method,” Crystals (Basel), vol. 14, no. 1, Jan. 2024. https://doi.org/10.3390/cryst14010020.
[51] Y. Xiong et al., “Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application,” Mater Des, vol. 195, Oct. 2020. https://doi.org/10.1016/j.matdes.2020.108994.
[52] “Stress Analysis of Human Tooth Using Ansys,” 2016. https://doi.org/10.4010/2016.1005.
[53] O. Kayabaşi, E. Yüzbasioǧlu, and F. Erzincanli, “Static, dynamic and fatigue behaviors of dental implant using finite element method,” Advances in Engineering Software, vol. 37, no. 10, pp. 649–658, 2006. https://doi.org/10.1016/j.advengsoft.2006.02.004.
[54] W. Li, M. V. Swain, Q. Li, J. Ironside, and G. P. Steven, “Fibre reinforced composite dental bridge. Part II: Numerical investigation,” Biomaterials, vol. 25, no. 20, pp. 4995–5001, Sep. 2004. https://doi.org/10.1016/j.biomaterials.2004.01.011.
[55] Z. Zhang, S. Zhou, Q. Li, W. Li, and M. V. Swain, “Sensitivity analysis of bi-layered ceramic dental restorations,” Dental Materials, vol. 28, no. 2, Feb. 2012. https://doi.org/10.1016/j.dental.2011.11.012.
[56] E. Homaei, X. Z. Jin, E. H. N. Pow, J. P. Matinlinna, J. K. H. Tsoi, and K. Farhangdoost, “Numerical fatigue analysis of premolars restored by CAD/CAM ceramic crowns,” Dental Materials, vol. 34, no. 7, pp. e149–e157, Jul. 2018. https://doi.org/10.1016/j.dental.2018.03.017.
[57] L. M. Campaner et al., “Influence of polymeric restorative materials on the stress distribution in posterior fixed partial dentures: 3D finite element analysis,” Polymers (Basel), vol. 13, no. 5, pp. 1–11, Mar. 2021. https://doi.org/10.3390/polym13050758.
[58] R. C. van Staden, H. Guan, and Y. C. Loo, “Application of the finite element method in dental implant research,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 9, no. 4. pp. 257–270, 2006. doi: 10.1080/10255840600837074.
[59] R. E. Campos et al., “In vitro study of fracture load and fracture pattern of ceramic crowns: A finite element and fractography analysis,” Journal of Prosthodontics, vol. 20, no. 6, pp. 447–455, Aug. 2011. https://doi.org/10.1111/j.1532-849X.2011.00744.x.
[60] R. W. Thresher and G. E. Saito, “THE STRESS ANALYSIS OF HUMAN TEETH”,” Pergamon Press, 1973.
[61] E. Homaei, K. Farhangdoost, J. K. H. Tsoi, J. P. Matinlinna, and E. H. N. Pow, “Static and fatigue
[62] mechanical behavior of three dental CAD/CAM ceramics,” J Mech Behav Biomed Mater, vol. 59, pp. 304– 313, Jun. 2016. https://doi.org/10.1016/j.jmbbm.2016.01.023.
[63] O. Röhrle, H. Saini, and D. C. Ackland, “Occlusal loading during biting from an experimental and
[64] simulation point of view,” Dental Materials, vol. 34, no. 1. Elsevier Inc., pp. 58–68, Jan. 01, 2018. doi: 10.1016/j.dental.2017.09.005.
[65] J. Singh and A. Kohli, “Stress analysis of second molar tooth,” Comput Aided Des Appl, vol. 10, no. 4, pp. 701–709, 2013. https://doi.org/10.3722/cadaps.2013.701-709.
[66] K. Jayasudha, M. Hemanth, R. Baswa, H. P. Raghuveer, B. Vedavathi, and C. Hegde, “Traumatic impact loading on human maxillary incisor: A Dynamic finite element analysis,” Journal of Indian Society of Pedodontics and Preventive Dentistry, vol. 33, no. 4, pp. 302–306, Oct. 2015. https://doi.org/10.4103/0970- 4388.165680.
[67] N. Al Mortadi, K. Bataineh, and M. Al Janaideh, “Fatigue failure load of molars with thin-walled prosthetic crowns made of various materials: A 3D-FEA theoretical study,” Clin Cosmet Investig Dent, vol. 12, pp. 581–593, 2020. https://doi.org/10.2147/ccide.s286826.
[68] D. A. Abuelenain, R. Ajaj, E. I. M. F. El-Bab, and M. M. I. Hammouda, “Comparison of Stresses Generated within the Supporting Structures of Mandibular Second Molars Restored with Different Crown Materials: 3- D Finite Element Analysis (FEA),” Journal of Prosthodontics, vol. 24, no. 6, pp. 484–493, Aug. 2015. https://doi.org/10.1111/jopr.12240.
[69] K. Nakamura et al., “Critical considerations on load-to-failure test for monolithic zirconia molar crowns,” J Mech Behav Biomed Mater, vol. 87, pp. 180–189, Nov. 2018. https://doi.org/10.1016/j.jmbbm.2018.07.034.
[70] P. Ausiello, P. Franciosa, M. Martorelli, and D. C. Watts, “Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth,” Dental Materials, vol. 27, no. 5, pp. 423–430, May 2011. https://doi.org/10.1016/j.dental.2010.12.001.
[71] J. Ni, L. Xu, Y. Lin, D. Lai, and X. Huang, “Effects on different full-coverage designs and materials of crack propagation in first mandibular molar: an extended finite element method study,” Front Bioeng Biotechnol, vol. 11, 2023. https://doi.org/10.3389/fbioe.2023.1222060.
[72] A. Pérez-González, J. L. Iserte-Vilar, and C. González-Lluch, “Interpreting finite element results for brittle materials in endodontic restorations,” Biomed Eng Online, vol. 10, Jun. 2011. https://doi.org/10.1186/1475-925X-10- 44.
[73] S. U. Musa, Y. A. Abdu, and S. Sharma, “Structural and Thermal Analysis of Dental Restoration Materials using FEA Software,” Journal of Material Science and Mechanical Engineering, vol. 2, no. 9, pp. 77–81, [Online]. Available: http://www.krishisanskriti.org/jmsme.html
[74] I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,”
[75] Biomaterials, vol. 28, no. 7, pp. 1317–1326, Mar. 2007. https://doi.org/10.1016/j.biomaterials.2006.10.035.
[76] B. T. Rafferty et al., “Design features of a three-dimensional molar crown and related maximum principal stress. A finite element model study,” Dental Materials, vol. 26, no. 2, pp. 156–163, Feb. 2010. https://doi.org/10.1016/j.dental.2009.09.009.
[77] B. Dejak, A. Mlotkowski, and M. Romanowicz, “Clinical Implications Strength estimation of different designs of ceramic inlays and onlays in molars based on the Tsai-Wu failure criterion.”
[78] G. M. Loughran, A. Versluis, and W. H. Douglas, “Evaluation of sub-critical fatigue crack propagation in a restorative composite,” Dental Materials, vol. 21, no. 3, pp. 252–261, Mar. 2005. https://doi.org/10.1016/j.dental.2004.04.005.
[79] T. Yu, F. Wang, Y. Liu, T. Wu, Z. Deng, and J. Chen, “Fracture behaviors of monolithic lithium disilicate ceramic crowns with different thicknesses,” RSC Adv, vol. 7, no. 41, pp. 25542–25548, 2017. https://doi.org/10.1039/c6ra28847b.