A review on microfluidic-based electrowetting on dielectric (EWOD) in state-of-the-art adaptive electronic cooling
Amit SAHU, Mohammad ZUNAID, Rajesh KUMAR
Abstract. The perpetual growth of efficient computing devices, desktop computers, and power electronic systems obliges the development of effective cooling solutions capable of efficiently dissipating high heat flux and addressing hot spots at the microscales. Electrowetting (EW) cooling is compact and responds to adaptive temperature control of electronic devices. Electrowetting on dielectric (EWOD) devices are excellent for electronic cooling in Lab-on-a-Chip technology. These devices are candid, have no moving parts, and provide precise control over movement. Micro manufacturing of cooling devices enables heat transfer efficiently as compared to conventional cooling devices. This article surveys the efforts of microfluidic-based cooling devices using the electrowetting principle with single and multiple arrayed water droplet jets on hydrophobic or superhydrophobic surfaces. It discusses the suitable surface treatment methods and materials to improve the performance of electronic devices and high computing systems.
Keywords
Electronic Cooling, Electrowetting, Microfluidics, Surface Treatment, Micromanufacturing
Published online 3/1/2025, 9 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Amit SAHU, Mohammad ZUNAID, Rajesh KUMAR, A review on microfluidic-based electrowetting on dielectric (EWOD) in state-of-the-art adaptive electronic cooling, Materials Research Proceedings, Vol. 49, pp 143-151, 2025
DOI: https://doi.org/10.21741/9781644903438-15
The article was published as article 15 of the book Mechanical Engineering for Sustainable Development
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Dash, S. U. S. M. I. T. A., Kumari, N. I. R. U., & Garimella, S. V. (2011). Characterization of ultrahydrophobic hierarchical surfaces fabricated using a single-step fabrication methodology. Journal of Micromechanics and Microengineering, 21(10), 105012. https://doi.org/10.1088/0960-1317/21/10/105012
[2] Pollack, M. G., Fair, R. B., & Shenderov, A. D. (2000). Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied physics letters, 77(11), 1725-1726. https://doi.org/10.1063/1.1308534
[3] Kim, J. H., Lee, J. H., Mirzaei, A., Kim, H. W., Tan, B. T., Wu, P., & Kim, S. S. (2020). Electrowetting-on-dielectric characteristics of ZnO nanorods. Scientific reports, 10(1), 14194. https://doi.org/10.1038/s41598-020-71017-7
[4] Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2), 96-101. https://doi.org/10.1039/B110474H
[5] Controlling Wettability in Oil-Water systems, Bahadur research group, https://utw10954.utweb.utexas.edu/research/controlling-wettability-in-oil-water-systems.html.
[6] Baird, E., & Mohseni, K. (2008). Digitized heat transfer: a new paradigm for thermal management of compact micro systems. IEEE Transactions on Components and packaging Technologies, 31(1), 143-151. http://dx.doi.org/10.1109/TCAPT.2008.916810
[7] Cheng, J. T., & Chen, C. L. (2010). Adaptive chip cooling using electrowetting on coplanar control electrodes. Nanoscale and Microscale Thermophysical Engineering, 14(2), 63-74. http://dx.doi.org/10.1080/15567261003601771
[8] Paik, P. Y., Pamula, V. K., & Chakrabarty, K. (2008). Adaptive cooling of integrated circuits using digital microfluidics. IEEE transactions on very large scale integration (vlsi) systems, 16(4), 432-443. http://dx.doi.org/10.1109/TVLSI.2007.915434
[9] Mohseni, K., & Baird, E. S. (2007). Digitized heat transfer using electrowetting on dielectric. Nanoscale and Microscale Thermophysical Engineering, 11(1-2), 99-108. http://dx.doi.org/10.1080/15567260701337555
[10] Oprins, H., Danneels, J., Van Ham, B., Vandevelde, B., & Baelmans, M. (2008). Convection heat transfer in electrostatic actuated liquid droplets for electronics cooling. Microelectronics journal, 39(7), 966-974. https://doi.org/10.1016/j.mejo.2007.11.024
[11] Bindiganavale, G. S., Amaya, M., & Moon, H. (2018). Demonstration of hotspot cooling using digital microfluidic device. Journal of Micromechanics and Microengineering, 28(12), 125015. https://doi.org/10.1088/1361-6439/aae883
[12] Xu, H., Yan, R., Wang, S., & Chen, C. L. (2017). Bubble detachment assisted by electrowetting-driven interfacial wave. Physics of Fluids, 29(10). https://doi.org/10.1063/1.4996905
[13] Ahmad, I., Ranjan, A., Pathak, M., & Khan, M. K. (2022). A wettability-mediated microdroplet under electrowetting effect for hotspot cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12(2), 288-296. http://dx.doi.org/10.1109/TCPMT.2022.3143687
[14] Park, S. Y., & Nam, Y. (2016). Single-sided digital microfluidic (SDMF) devices for effective coolant delivery and enhanced two-phase cooling. Micromachines, 8(1), 3. https://doi.org/10.3390/mi8010003
[15] Betz, A. R., Jenkins, J., & Attinger, D. (2013). Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. International Journal of Heat and Mass Transfer, 57(2), 733-741. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.080
[16] Yan, Z., Jin, M., Li, Z., Zhou, G., & Shui, L. (2019). Droplet-based microfluidic thermal management methods for high performance electronic devices. Micromachines, 10(2), 89. https://doi.org/10.3390%2Fmi10020089
[17] Pontes, P., Cautela, R., Teodori, E., Moita, A. S., Georgoulas, A., & Moreira, A. L. N. M. (2020). Bubble dynamics and heat transfer on biphilic surfaces: Experiments and numerical simulation. Journal of Bionic Engineering, 17, 809-821. http://dx.doi.org/10.1007/978-981-33-4765-6_17
[18] Chinnov, E. A., Khmel, S. Y., Vladimirov, V. Y., Safonov, A. I., Semionov, V. V., Emelyanenko, K. A., & Boinovich, L. B. (2022). Boiling heat transfer enhancement on biphilic surfaces. Energies, 15(19), 7296. https://doi.org/10.3390/en15197296
[19] Federal standard for cleanroom classifications & classes; https://www.mecart-cleanrooms.com/learning-center/cleanroom-classifications-classes-1-10-100-1000-10000-and-100000-fs209e/
[20] Sukthang, K., Pengwang, E., Tuantranont, A., & Wechsatol, W. (2020, July). Rapid Fabrication of Close-Typed Electrowetting on Dielectric Devices. In IOP Conference Series: Materials Science and Engineering (Vol. 886, No. 1, p. 012046). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/886/1/012046
[21] Yin, X., Yu, S., Hu, J., Li, H., Lv, Z., & Zhou, X. (2019). Facile fabrication of a durable Ni3S2 nanorod arrays superhydrophobic surface with self-cleaning and degradation properties. Journal of Alloys and Compounds, 791, 864-873. http://dx.doi.org/10.1016/j.jallcom.2019.03.367
[22] Qing, Y., Yang, C., Sun, Y., Zheng, Y., Wang, X., Shang, Y., … & Liu, C. (2015). Facile fabrication of superhydrophobic surfaces with corrosion resistance by nanocomposite coating of TiO2 and polydimethylsiloxane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 484, 471-477. http://dx.doi.org/10.1016/j.colsurfa.2015.08.024
[23] Wang, S., Li, M., Su, B., & Lu, Q. (2010). Preparation and properties of superhydrophobic polyphenylene sulfide composite coatings. Acta Polymerica Sinica, 2010(4), 449-455. http://dx.doi.org/10.3724/SP.J.1105.2010.09124
[24] Cui, W., Dong, J., Zhao, N., Liang, D., & Ma, H. (2020). Sessile Droplet Evaporation on a Structurally Heterogeneous Multiwalled Carbon Nanotube Membrane. Journal of Thermophysics and Heat Transfer, 34(1), 150-153. https://doi.org/10.2514/1.T5772
[25] Zhou, J., Yang, S., Zeng, X. Y., Wu, J. H., Chen, G. P., & Huang, Y. P. (2012). Superhydrophobic ZnO for EWOD digital microfluidic device for application in micro total analysis system (μ-TAS). Journal of adhesion science and technology, 26(12-17), 2087-2098. http://dx.doi.org/10.1163/156856111X600451
[26] Sirbu, L., Ghimpu, L., Müller, R., Vodă, I., Tiginyanu, I., Ursaki, V., & Dascalu, T. (2012, October). Hydrophobic ZnO used in EWOD technology and saw devices for better bio-fluid slip at microchannel walls controlled by DC pulses. In CAS 2012 (International Semiconductor Conference) (Vol. 1, pp. 231-234). https://doi.org/10.1109/SMICND.2012.6400645
[27] Campbell, J. L., Breedon, M., Latham, K., & Kalantar-Zadeh, K. (2008). Electrowetting of superhydrophobic ZnO nanorods. Langmuir, 24(9), 5091-5098. https://doi.org/10.1021/la7030413
[28] Fair, R. B. (2007). Digital microfluidics: is a true lab-on-a-chip possible?. Microfluidics and Nanofluidics, 3, 245-281. http://dx.doi.org/10.1007/s10404-007-0161-8
[29] Krogmann, F., Shaik, R., Lasinger, L., Mönch, W., & Zappe, H. (2008). Reconfigurable liquid micro-lenses with high positioning accuracy. Sensors and Actuators A: Physical, 143(1), 129-135. http://dx.doi.org/10.1109/OMEMS.2007.4373879
[30] Zhou, K., & Heikenfeld, J. (2008). Arrayed electrowetting microwells. Applied Physics Letters, 92(11), 113515. https://doi.org/10.1063/1.2898890