Recent advancements in biomass-based photothermal material for interfacial solar steam generation
Krishna Kumar KAROTHIYA, K. MANJUNATH, R.S. MISHRA
Abstract. In recent years, photothermal materials have been extensively used to enhanced solar evaporation thermal efficiency. A wide variety of photothermal materials, including those based on biomass, plasmonic nanoparticles, metal oxide, carbon materials, and polymers, displayed excellent results for interfacial solar steam generation (ISSG). This research article presents a recent advancement in photothermal materials derived from waste biomass used for ISSG and discusses their key thermal properties, solar absorption, synthesis methods, thermal energy conversion efficiency, and water evaporation rate. The paper highlights the importance of thermal stability and cost-effective synthesis methods for the design of biomass photothermal materials. We also discussed the problems and prospects in the development of biomass photothermal materials, highlighting the need for scalable, cost-effective manufacturing methods and encouraging the development of sustainable, efficient solar energy conversion technologies.
Keywords
Photothermal Materials, Solar Energy, Biomass-Based Absorbers, Water Desalination, Interfacial Evaporation
Published online 3/1/2025, 8 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Krishna Kumar KAROTHIYA, K. MANJUNATH, R.S. MISHRA, Recent advancements in biomass-based photothermal material for interfacial solar steam generation, Materials Research Proceedings, Vol. 49, pp 122-129, 2025
DOI: https://doi.org/10.21741/9781644903438-13
The article was published as article 13 of the book Mechanical Engineering for Sustainable Development
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Mittal, R. Brajpuriya, R. Gupta, Solar steam generation using hybrid nanomaterials to address global environmental pollution and water shortage crisis, Mater. Today Sustain. 21 (2023), 100319.
[2] Zhang, W., Fan, M., Huang, E., Sun, J., Zuo, Q., & Gong, L. (2024). Recent developments in natural materials for interfacial solar steam generation: A comprehensive review. Journal of Environmental Chemical Engineering, 12(1), 111787. https://doi.org/10.1016/j.jece.2023.111787
[3] Fillet, R., Nicolas, V., Fierro, V., & Celzard, A. (2021). A review of natural materials for solar evaporation. Solar Energy Materials and Solar Cells, 219, 110814. https://doi.org/10.1016/j.solmat.2020.110814
[4] Zhang, X.-F., Wang, Z., Song, L., Feng, Y., & Yao, J. (2020). Chinese ink enabled wood evaporator for continuous water desalination. Desalination, 496, 114727. https://doi.org/10.1016/j.desal.2020.114727.
[5] L. Wu et al., “Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization,” Nature Communications, vol. 11, no. 1, pp. 1–12, Jan. 2020. https://doi.org/10.1038/s41467-020-14366-1
[6] Liao, Y., Chen, J., Zhang, D., Wang, X., Yuan, B., Deng, P., Li, F., & Zhang, H. (2019). Lotus leaf as solar water evaporation devices. Materials Letters, 240, 92–95. https://doi.org/10.1016/j.matlet.2018.12.133
[7] Wang, Y. L., Li, G. J., & Chan, K. C. (2020). Cost-effective and eco-friendly laser-processed cotton paper for high-performance solar evaporation. Solar Energy Materials and Solar Cells, 218, 110693. https://doi.org/10.1016/j.solmat.2020.110693
[8] Dao, V.-D., Vu, N. H., & Yun, S. (2020). Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 68, 104324. https://doi.org/10.1016/j.nanoen.2019.104324
[9] Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., & Zhu, J. (2017). Mushrooms as Efficient Solar Steam‐Generation Devices. Advanced Materials, 29(28). https://doi.org/10.1002/adma.201606762
[10] Ghasemi, H., Ni, G., Marconnet, A. M., Loomis, J., Yerci, S., Miljkovic, N., & Chen, G. (2014). Solar steam generation by heat localization. Nature Communications, 5(1). https://doi.org/10.1038/ncomms5449.
[11] H. Chen et al., “Investigating the Performance of Solar Steam Generation Using a Carbonized Cotton-Based Evaporator,” Frontiers in Energy Research, vol. 10, https://doi.org/10.3389/fenrg.2022.817638
[12] Liao, Y., Chen, J., Zhang, D., Wang, X., Yuan, B., Deng, P., Li, F., & Zhang, H. (2019b). Lotus leaf as solar water evaporation devices. Materials Letters, 240, 92–95. https://doi.org/10.1016/j.matlet.2018.12.133
[13] Morad, M., Attia, S., Mohamed, S., Moharam, M., AbouShahba, R., & Rashad, M. (2020b). Preparation and electrochemical behavior of the activated carbon from pomegranate peels as energy-storage materials. Al-Azhar Bulletin of Science, 31(1), 1–9. https://doi.org/10.21608/absb.2020.111459
[14] Feng, J., Bai, B., Yang, L., Hu, N., & Wang, H. (2021). Low-cost and facile hydrophilic amplification of raw corn straws for the applications of highly efficient interfacial solar steam generation. Materials Chemistry and Physics, 271, 124904. https://doi.org/10.1016/j.matchemphys.2021.124904
[15] Chen, H., Chen, Y., Zang, J., Sha, C., Xiao, Y., Wang, W., Wang, H., & Wu, J. (2022). Investigating the Performance of Solar Steam Generation Using a Carbonized Cotton-Based Evaporator. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.817638
[16] Chen, Y., Zhao, G., Ren, L., Yang, H., Xiao, X., & Xu, W. (2020). Blackbody-Inspired Array Structural Polypyrrole-Sunflower Disc with Extremely High Light Absorption for Efficient Photothermal Evaporation. ACS Applied Materials & Interfaces, 12(41), 46653–46660. https://doi.org/10.1021/acsami.0c11549
[17] Bian, Y., Du, Q., Tang, K., Shen, Y., Hao, L., Zhou, D., Wang, X., Xu, Z., Zhang, H., Zhao, L., Zhu, S., Ye, J., Lu, H., Yang, Y., Zhang, R., Zheng, Y., & Gu, S. (2018). Carbonized Bamboos as Excellent 3D Solar Vapor‐Generation Devices. Advanced Materials Technologies, 4(4). https://doi.org/10.1002/admt.201800593
[18] Dong, Y., Tan, Y., Wang, K., Cai, Y., Li, J., Sonne, C., & Li, C. (2022). Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Research, 223, 119011. https://doi.org/10.1016/j.watres.2022.119011
[19] Zhang, C., Yuan, B., Liang, Y., Yang, L., Bai, L., Yang, H., Wei, D., Wang, W., & Chen, H. (2021). Solar vapor generator: A natural all-in-one 3D system derived from cattail. Solar Energy Materials and Solar Cells, 227, 111127. https://doi.org/10.1016/j.solmat.2021.111127
[20] N. Xu et al., “A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine,” Science Advances, vol. 5, no. 7, p. eaaw7013, Jul. 2019, doi: https://doi.org/10.1126/sciadv.aaw7013
[21] Long, Y., Huang, S., Yi, H., Chen, J., Wu, J., Liao, Q., Liang, H., Cui, H., Ruan, S., & Zeng, Y.-J. (2019). Carrot-inspired solar thermal evaporator. Journal of Materials Chemistry A, 7(47), 26911–26916. https://doi.org/10.1039/c9ta08754k
[22] W.-J. Liu, H. Jiang, and H.-Q. Yu, “Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material,” Chemical Reviews, vol. 115, no. 22, pp. 12251–12285, Oct. 2015, doi: https://doi.org/10.1021/acs.chemrev.5b00195
[23] Zhang, Q., Yang, X., Deng, H., Zhang, Y., Hu, J., & Tian, R. (2022). Carbonized sugarcane as interfacial photothermal evaporator for vapor generation. Desalination, 526, 115544. https://doi.org/10.1016/j.desal.2021.115544
[24] Wang, C.-F., Wu, C.-L., Kuo, S.-W., Hung, W.-S., Lee, K.-J., Tsai, H.-C., Chang, C.-J., & Lai, J.-Y. (2020). Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69778-2
[25] Wilson, H. M., Ahirrao, D. J., Raheman Ar, S., & Jha, N. (2020). Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Solar Energy Materials and Solar Cells, 215, 110604. https://doi.org/10.1016/j.solmat.2020.110604
[26] Khajevand, M., Azizian, S., & Boukherroub, R. (2021). Naturally Abundant Green Moss for Highly Efficient Solar Thermal Generation of Clean Water. ACS Applied Materials & Interfaces, 13(27), 31680–31690. https://doi.org/10.1021/acsami.1c06810
[27] P. Sun et al., “3D-Structured Carbonized Sunflower Heads for Improved Energy Efficiency in Solar Steam Generation,” ACS Applied Materials & Interfaces, vol. 12, no. 2, pp. 2171–2179, Dec. 2019. https://doi.org/10.1021/acsami.9b11738
[28] S. Wang, H. Deng, H. Chang, Y. Li, H. Hui, Z. Dong, P. Pu, Co-Hydrothermal carbonization of cotton stalks and MnO2 for direct solar steam generation with high efficiency, Sol. RRL 6 (2022) 2100890.
[29] S. Wang et al., “Co‐Hydrothermal Carbonization of Cotton Stalks and MnO2 for Direct Solar Steam Generation with High Efficiency,” Solar RRL, vol. 6, no. 2. https://doi.org/10.1002/solr.202100890