Biosourced materials and vernacular architecture: A bibliometric analysis of properties and recent developments

Biosourced materials and vernacular architecture: A bibliometric analysis of properties and recent developments

GHARBI Islam, BENAICHA Mouhcine, MOULOUDI Hicham

Abstract. Vernacular architecture, which employs traditional materials and techniques tailored to local contexts, is vital for managing natural risks and enhancing building resilience. This study explores the use of bio-sourced materials as a sustainable solution in vernacular architecture. By valorizing plant waste, these materials offer alternatives to conventional resources and reduce the environmental footprint of the construction sector. A bibliometric analysis provides insights into the evolution of research in vernacular architecture, highlighting key trends, influential contributors, and collaborations within the field. This work aims to define the etymological and epistemological significance of vernacular architecture, investigate its recognition, and identify its lessons. Additionally, the study includes a survey of vernacular seismic resistance techniques and an inventory of available bio-sourced materials in Morocco that can bolster the seismic resilience of vernacular constructions.

Keywords
Bio-sourced Materials, Vernacular Architecture, Bibliometric Analysis, Seismic Resistance, Building Resilience, Etymology

Published online 1/10/2025, 11 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: GHARBI Islam, BENAICHA Mouhcine, MOULOUDI Hicham, Biosourced materials and vernacular architecture: A bibliometric analysis of properties and recent developments, Materials Research Proceedings, Vol. 47, pp 268-278, 2025

DOI: https://doi.org/10.21741/9781644903391-31

The article was published as article 31 of the book Vernacular Architecture

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] United Nations Environment Programme (2021), 2021 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector, Nairobi, 2021.
[2] S. Pauliuk, N. Heeren, P. Berrill, T. Fishman, A. Nistad, Q. Tu, P. Wolfram, E.G. Hertwich, Global scenarios of resource and emission savings from material efficiency in residential buildings and cars, Nat. Commun. 12 (2021) 5097. https://doi.org/10.1038/s41467-021-25300-4
[3] J. (viaf)314846734 (role)edt Choppin, N. (viaf)305911349 (role)edt Delon, Matière grise : Matériaux/Réemploi/Architecture, (2014). http://lib.ugent.be/catalog/rug01:002930005
[4] G. Bumanis, L. Vitola, I. Pundiene, M. Sinka, D. Bajare, Gypsum, Geopolymers, and Starch—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment, Sustainability. 12 (2020) 5666. https://doi.org/10.3390/su12145666
[5] M. Sinka, A. Korjakins, D. Bajare, Z. Zimele, G. Sahmenko, Bio-based construction panels for low carbon development, Energy Procedia. 147 (2018) 220–226. https://doi.org/10.1016/j.egypro.2018.07.063
[6] A.D. La Rosa, G. Recca, J. Summerscales, A. Latteri, G. Cozzo, G. Cicala, Bio-based versus traditional polymer composites. A life cycle assessment perspective, J. Clean. Prod. 74 (2014) 135–144. https://doi.org/10.1016/j.jclepro.2014.03.017
[7] Y. Florentin, D. Pearlmutter, B. Givoni, E. Gal, A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials, Energy Build. 156 (2017) 293–305. https://doi.org/10.1016/j.enbuild.2017.09.097
[8] M. Vellinga, P. Oliver, A. Bridge, Atlas of Vernacular Architecture of the World, Routledge, London, 2024. https://doi.org/10.4324/9781003572459
[9] Bisson Marie-France, Vernaculaire moderne? : vers une compréhension de la notion d’architecture vernaculaire et de ses liens avec la modernité architecturale, Université du Québec à Montréal, 2007. https://archipel.uqam.ca/849/
[10] C.O. Nnaji, Monastic Philosophy of the Origins of University Education, Open J. Philos. 05 (2015) 228–233. https://doi.org/10.4236/ojpp.2015.54028
[11] H. Kamalipour, M. Zaroudi, Sociocultural Context and Vernacular Housing Morphology: A Case Study, Curr. Urban Stud. 02 (2014) 220–232. https://doi.org/10.4236/cus.2014.23022
[12] M. Méquignon, Durée de vie et développement durable, Les Cah. La Rech. Archit. Urbaine. (2012) 225–232. https://doi.org/10.4000/crau.587
[13] V. Didelon, Pierre Frey. Learning from Vernacular : pour une nouvelle architecture vernaculaire, Crit. d’art. (2011). https://doi.org/10.4000/critiquedart.1321
[14] G.D. Danciu L., Nandan S., Reyes C., Basili R., Weatherill G., Beauval C., Rovida A., Vilanova S., Sesetyan K., Bard P-Y., Cotton F., Wiemer S., The 2020 update of the European Seismic Hazard Model – ESHM20: Model Overview, 2021. https://doi.org/https://doi.org/10.12686/a15
[15] J. Ortega, G. Vasconcelos, M.R. Correia, Seismic-resistant building practices resulting from Local Seismic Culture, in: Seism. Retrofit. Learn. from Vernac. Archit., CRC Press, 2015: pp. 17–22. https://doi.org/10.1201/b18856-3
[16] H.V. Mariana R. Correia, Paulo B. Lourenco, Seismic Retrofitting: Learning from Vernacular Architecture, 1st Editio, CRC Press, London, 2015. https://doi.org/10.1201/b18856
[17] F. Ferrigni, C. universitario europeo per i beni culturali di Ravello, E.-O.M.H. Agreement, Ancient Buildings and Earthquakes: Reducing the Vulnerability of Historical Built-up Environment by Recovering the Local Seismic Culture : Principles, Methods, Potentialities, Edipuglia, 2005. https://books.google.co.ma/books?id=T0s9DeosdA0C
[18] A. Dutu, J. Gomes Ferreira, L. Guerreiro, F. Branco, A.M. Gonçalves, Timbered masonry for earthquake resistance in Europe, Mater. Construcción. 62 (2012) 615–628. https://doi.org/10.3989/mc.2012.01811