XYZ calibration cube – A misleading tool for achieving print accuracy

XYZ calibration cube – A misleading tool for achieving print accuracy

Vasile ERMOLAI, Marius-Ionuț RÎPANU, Vasile MERTICARU Jr., Alexandru-Ionuț IRIMIA, Marius-Andrei MIHALACHE, Alexandru SOVER, Nicolae-Răzvan MITITELU, Ionuț-Mădălin PIȘTA

Abstract. Various factors influence the dimensional accuracy in Fused Filament Fabrication (FFF). The kinematic system is a major influential factor, as the motion precision depends on the implemented solution. Kinematics have a direct influence on equipment costs. The FFF 3D printing market has abundant equipment options, from low-cost to high-end solutions. The filament extrusion precision and the shrinkage induced by the thermal contractions are other influential factors for the resulting parts’ quality. Nowadays, the XYZ cube is the calibration benchmark. This cube is used to adjust the dimensional accuracy of the resulting parts. The deficiency with the calibration cubes is that they allow only the measurement of external dimensions, which makes the calibration useless when tolerancing the internal features or scaling. This paper discusses the limitations of the accuracy calibration method using the XYZ cube and possible solutions to overcome them.

Keywords
Fused Filament Fabrication, Material Extrusion Additive Manufacturing, XYZ Cube, Calibration Cube, Print Accuracy

Published online 12/10/2024, 12 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Vasile ERMOLAI, Marius-Ionuț RÎPANU, Vasile MERTICARU Jr., Alexandru-Ionuț IRIMIA, Marius-Andrei MIHALACHE, Alexandru SOVER, Nicolae-Răzvan MITITELU, Ionuț-Mădălin PIȘTA, XYZ calibration cube – A misleading tool for achieving print accuracy, Materials Research Proceedings, Vol. 46, pp 23-34, 2024

DOI: https://doi.org/10.21741/9781644903377-4

The article was published as article 4 of the book Innovative Manufacturing Engineering and Energy

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. Dey, I.N. Roan Eagle, N. Yodo, A Review on Filament Materials for Fused Filament Fabrication. J. Manuf. Mater. 2021; 5(3):69. https://doi.org/10.3390/jmmp5030069
[2] A. Yadav, P. Rohru, A. Babbar, R. Kumar, N. Ranjan, J. Singh, R. Kumar, M. Gupta, Fused filament fabrication: A state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf. 17, 2867–2889, 2023. https://doi.org/10.1007/s12008-022-01026-5
[3] R.C. Stavarache, V. Ermolai, M.I. Ripanu, L. Andruşcă, M. Mareş, O. Dodun, Infill pattern optimization of fused filament fabrication samples for enhanced mechanical properties. Sci. Bulletin Series C: Fascicle Mech., Tribol., Machine Manuf. Technol., 35, 2021, 80-85.
[4] L. Romero, A. Guerrero, M.M. Espinosa, M. Jimenez, I.A. Dominguez, M. Dominguez, Additive manufacturing with RepRap methodology: current situation and future prospects. 2014 http://dx.doi.org/10.26153/tsw/15669
[5] E. Sells, S. Bailard, Z. Smith, A. Bowyer, V. Olliver, 2010, RepRap: the replicating rapid prototyper: maximizing customizability by breeding the means of production. In Handbook of Research in Mass Customization and Personalization, vol. 2 (pp. 568-580). http://dx.doi.org/10.1142/9789814280280_0028
[6] S. Bradshaw, A. Bowyer, P. Haufe, The Intellectual Property Implications of Low-Cost 3D Printing. Script Ed. 2010; 7(1): 5-31. https://script-ed.org/archive/volume-7/issue-71-1-241/
[7] M.A. Boca, A. Sover, L. Slătineanu, 2023. Short foray into the stages of conversion from 2.5D to volumetric printing. In Proc.: 5th International Conference Business Meets Technology. Valencia, 13th-15th July 2023. 13-50. https://doi.org/10.4995/BMT2023.2023.16748
[8] T.T. Wohlers, I. Campbell, O. Diegel, R. Huff, J. Kowen, Wohlers Report: 3D Printing and Additive Manufacturing Global State of the Industry. Fort Collins, Colorado, 2022.
[9] M. Mensley, (2024, September 4). The Best 3D Printers in 2024: Our Picks in 25 Categories. All3DP. Retrieved September 12, 2024, from https://all3dp.com/1/best-3d-printer-reviews-top-3d-printers-home-3-d-printer-3d/
[10] All3DP. (2024, March 15). Professional 3D printers under $10,000 (FDM & Resin). https://all3dp.com/1/best-professional-3d-printer-small-business/
[11] S. Frey, F. Gehrke, (2023, May 8). The Best DIY 3D Printer Kits of 2023. All3DP. Retrieved September 12, 2024, from https://all3dp.com/1/best-cheap-diy-3d-printer-kit/
[12] J.R. Ai, F. Peng, P. Joo, B.D. Vogt, Enhanced dimensional accuracy of material extrusion 3D-printed plastics through filament architecture. ACS Applied Polymer Materials, 3(5), 2021, 2518-2528. https://doi.org/10.1021/acsapm.1c00110
[13] F.R. Read, J.E. Seppala, F. Tourlomousis, J.A. Warren, N. Bakker, N. Gershenfeld, Online Measurement for Parameter Discovery in Fused Filament Fabrication. Integr. Mater. Manuf. Innov. 13, 2024, 541–554. https://doi.org/10.1007/s40192-024-00350-w
[14] J. Grubbs, B.C. Sousa, D.L. Cote, Establishing a Framework for Fused Filament Fabrication Process Optimization: A Case Study with PLA Filaments. Polymers. 15(8), 2023, 1945. https://doi.org/10.3390/polym15081945
[15] M. Alatefi, A.M. Al-Ahmari, A.Y. Al Faify, M.A. Saleh Framework for Multivariate Statistical Quality Monitoring of Additive Manufacturing: Fused Filament Fabrication Process. Processes. 11(4), 2023, 1216. https://doi.org/10.3390/pr11041216
[16] L. Lendvai, I. Fekete, D. Rigotti, Experimental study on the effect of filament-extrusion rate on the structural, mechanical and thermal properties of material extrusion 3D-printed polylactic acid (PLA) products. Prog. Addit. Manuf. 2024. https://doi.org/10.1007/s40964-024-00646-5
[17] S. Eva, A. Sover, V. Ermolai, 2023, The impact of the G-code flavour selection in FFF. En 4th International Conference Business Meets Technology 2022. Editorial Universitat Politècnica de València. 54-62. https://doi.org/10.4995/BMT2022.2022.15547
[18] L. Santana, J.L. Alves, A.D.C. Netto, A study of parametric calibration for low cost 3D printing: Seeking improvement in dimensional quality. Materials & Design, 135, 2017, 159-172. https://doi.org/10.1016/j.matdes.2017.09.020
[19] F. Cucinotta, G. Di Bella, M. Raffaele, F. Salmeri, A design strategy for removing the debinding and sintering gas in additive manufactured samples of a bronze/polylactic acid filament. Adv. Eng. Mater., 26(6), 2024, 2301722. https://doi.org/10.1002/adem.202301722
[20] X. Wang, S. Shujaat, E. Shaheen, R. Jacobs, Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers. BMC Oral Health 23, 2023, 397,. https://doi.org/10.1186/s12903-023-03104-w
[21] A.M. Mihalache, A. Hriţuc, L. Slătineanu, G. Nagîț, O. Dodun, V. Ermolai, E. Panaite, The Behavior of a 3D Printed Panel under Thermal Stress. Macromolecular Symposia, 404(1), 2022. https://doi.org/10.1002/masy.202100332
[22] iDig3Dprinting. (2016, January 19). XYZ 20mm Calibration Cube. Thighiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:1278865
[23] Dezign. (2016, May 7). Cali Cat – The Calibration Cat. Thingiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:1545913
[24] Sch00f. (2017, March 10). Filament Test Cube. Thighiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:2166102
[25] Elproducts (2018, November 2018). CHEP Cube – Calibration Cube. Thighiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:3189377
[26] EnginEli. (2020, November 6). Lego Calibration Cube. Thighiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:4645349
[27] Agepbiz. (2022, December 18). Hinged Calibration Cube. Printables Retrieved September 10, 2024, from https://www.printables.com/model/74825-hinged-calibration-cube
[28] Jun Ho, L., 1102. (2020, January 28). 3in1 20mm calibration cube. Thighiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:4128036
[29] FenixPrints. (2018, April 8). XYZ Calibration Cube. Thighiverse. Retrieved September 1, 2024, from https://www.thingiverse.com/thing:2882777
[30]de Baer. (2015, July 27). Test Cube for calibration. Thighiverse. Retrieved September 1, 2024, from https://www.thingiverse.com/thing:943755
[31] Grabejud. (2019, February 19). 20mm calibration cube and circle. Thighiverse. Retrieved September 10, 2024, from https://www.thingiverse.com/thing:3435944
[32] Ecjuliatti. (2024, February). Calibration Cube 20×20. Thighiverse. Retrieved September 1, 2024, from https://www.thingiverse.com/thing:6471070
[33] Ograymic. (2021, August 9). Detailed calibration Cube. Thighiverse. Retrieved September 1, 2024, from https://www.thingiverse.com/thing:4928482
[34] OneEyedOwl. (2022 December 12). Calibration Cube. Printables. Retrieved September 2, 2024, from https://www.printables.com/model/335425-calibration-cube
[35] Rubenv., 2006. (2019, June 19). XYZ Test Calibration Cube 20mm. Thighiverse. Retrieved September 2, 2024, from https://www.thingiverse.com/thing:3684033
[36] Fdumi. (2021, October 26). XYZ 100mm calibration cube / skew correction test piece. Thighiverse. Retrieved September 3, 2024, from https://www.thingiverse.com/thing:5031020
[37] J. West, G. Kuk, 2016, The complementarity of openness: How MakerBot leveraged Thingiverse in 3D printing. Technol. Forecast. Soc. Change, 102, 169-181. https://doi.org/10.1016/j.techfore.2015.07.025
[38] M. Soreni-Harari, R. St. Pierre, C. McCue, K Moreno, S. Bergbreiter, Multimaterial 3D printing for microrobotic mechanisms. Soft robotics, 7(1), 2020, 59-67. https://doi.org/10.1089/soro.2018.0147
[39] Thingiverse (n.d.). Thingiverse – Digital Designs for physical Objects. https://www.thingiverse.com/
[40] Printables. (n.d.). https://www.printables.com/
[41] Discover STL files for 3D printing ideas and high-quality 3D printer models. MyMiniFactory. (n.d.). MyMinifactory. https://www.myminifactory.com/
[42] Cults・Download free 3D printer models・STL, OBJ, 3MF, CAD. (n.d.). Cults 3D. https://cults3d.com/en
[43] Free CAD designs, files & 3D models, The GrabCAD Community Library. (n.d.). https://grabcad.com/library
[44] M.R. Caputo, M. Fernández, R. Aguirresarobe, A. Kovalcik, H. Sardon, M.V. Candal, A.J. Müller, Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate). Polymers. 15(8), 2023, 1817. https://doi.org/10.3390/polym15081817
[45] F. Javed, S. Javed, Design Methodology and Development of an Economical 3D Printer, SAE Technical Paper 2016-01-0325, 2016, https://doi.org/10.4271/2016-01-0325.
[46] J.T. Green, I.A. Rybak, J.J. Slager, M. Lopez, Z. Chanoi, C.M. Stewart, R.V. Gonzalez, Local composition control using an active-mixing hotend in fused filament fabrication. Additive Manufacturing Letters, 7, 2023 100177. https://doi.org/10.1016/j.addlet.2023.100177
[47] Nguyen, A. (2022). Hard Real-time Linux on a Raspberry Pi for 3D Printing. https://doi.org/10.31979/etd.68zc-s4dq
[48] G. Hsiang Loh, E. Pei, J. Gonzalez-Gutierrez, M. Monzón, An Overview of Material Extrusion Troubleshooting. Appl. Sci. 10(14), 2020, 4776. https://doi.org/10.3390/app10144776
[49] D. Vieira da Silva, L. Santana, A. Magalhães, J. Lino Alves, Parametric calibration study of fused filament fabrication printing with large nozzle diameter. Proceedings of the Institution of Mechanical Engineers, Part E: J. of Process Mechanical Engineering, 238(4), 2024, 1525-1536. https://doi.org/10.1177/09544089221119691
[50] L. Schmidt, K. Schricker, J.P. Bergmann, F. Hussenöder, M. Eiber, Characterization of a granulate-based strand deposition process in the FLM-method for definition of material-dependent process strategies, Rapid Prototyp. J., Vol. 25 No. 1, 2019, 104-116. https://doi.org/10.1108/RPJ-09-2017-0186
[51] C. Cardona, A.H. Curdes, A.J. Isaacs, Effects of filament diameter tolerances in fused filament fabrication. IUJUR, 2(1), 2016, 44-47. https://doi.org/10.14434/iujur.v2i1.20917
[52] C. Chadha, G. Olaivar G, M.A. Mahrous, A.E. Patterson, I. Jasiuk. Exploring the Effect of Specimen Size on Elastic Properties of Fused-Filament-Fabrication-Printed Polycarbonate and Thermoplastic Polyurethane. Materials. 17(11), 2024, 2677. https://doi.org/10.3390/ma17112677
[53] A. Heuer, J. Huether, W.V. Liebig, P. Elsner, Fused filament fabrication: Comparison of methods for determining the interfacial strength of single welded tracks. Manufacturing Review, 8, 2021, 32. https://doi.org/10.1051/mfreview/2021031
[54] Ghostkeeper. (n.d.). GitHub – Ghostkeeper/SettingsGuide: More extensive explanations of Cura slicing settings. GitHub. https://github.com/Ghostkeeper/SettingsGuide
[55] H.A. Hemminger, 2022. Improvements and Characterization of Error, Speed, and Capabilities in Low-Cost Additive Manufacturing Systems. UCLA. ProQuest ID: Hemminger_ucla_0031N_21067. Merritt ID: ark:/13030/m55v0vfq. Retrieved from https://escholarship.org/uc/item/3pw7z6d3
[56] J. Kundrák, V. Molnár, T. Makkai, T. Dági, Analysis of Material Removal Efficiency in Face Milling of Aluminum Alloy. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-16943-5_34
[57] M. Moretti, A. Rossi, N.J.A.M. Senin, N. J. A. M., In-process monitoring of part geometry in fused filament fabrication using computer vision and digital twins. Addit. Manuf. 37, 2021, 101609. https://doi.org/10.1016/j.addma.2020.101609
[58] V. Ermolai, A. Sover, 2023, Multi-material 3D Printed Interfaces. Influencing Factors and Design Considerations. In: D.D. Cioboată, (eds) International Conference on Reliable Systems Engineering (ICoRSE) – 2023. ICoRSE 2023. Lecture Notes in Networks and Systems, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-031-40628-7_11
[59] R. Freund, H. Watschke, J. Heubach, T. Vietor, Determination of Influencing Factors on Interface Strength of Additively Manufactured Multi-Material Parts by Material Extrusion. Appl. Sci. 9(9), 2019, 1782. https://doi.org/10.3390/app9091782
[60] A. Benarbia. V. Sobotka, N. Boyard, C. Roua, Fused filament fabrication: Numerical adhesion modeling suitable for semicrystalline polymers. Mater. Res. Proc. 28, 2023, 139-148. https://doi.org/10.21741/9781644902479-16
[61] A. Lepoivre, A. Levy, N. Boyard, V. Gaudefroy, V. Sobotka, Coalescence in fused filament fabrication process: Thermo-dependent characterization of high-performance polymer properties. Polym. Test. 98, 2021, 107096. https://doi.org/10.1016/j.polymertesting.2021.107096
[62] G.W. Ehrenstein, Structure of Polymeric Materials, In: Polymeric materials, Hanser, Ohio, 2001, pp. 61-141. https://doi.org/10.3139/9783446434134.004
[63] AfroPsyho. (2023, May 20). Skew Correction Made Easy! (For X & Y Axis). Printables. Retrieved September 10, 2024, from https://www.printables.com/model/485014-skew-correction-made-easy-for-x-y-axis
[64] Vector 3D. (n.d.). Califlower Calibration Tool. September 10, 2024, from https://vector3d.shop/products/califlower-calibration