Laser machining with a high-power CW fiber laser
Alexandros GOSTA, Efstathios KAMPOSOS, Alexandros SKOULAKIS, Yannis ORPHANOS, Helen PAPADAKI, Nektarios A. PAPADOGIANNIS, Michael TATARAKIS, Evaggelos KASELOURIS, Vasilis DIMITRIOU
Abstract. We investigate the CW fiber laser – aluminum 1050 alloy interactions. The manufacturing processes of laser marking, engraving, and cutting are studied by experiments and numerical simulations. The laser head Precitec LightCutter 2.0 motorized 3D is mounted on a 3-Axis CNC milling machine, assembled with the Pipa-Q connector and the powerful CW 2kW Trumpf fiber optic laser. The fiber laser beam interacts with the aluminum samples for varying laser flux and laser scanning speeds. The temperature distribution is monitored by a thermal camera, while thermocouples are used to measure the temperature at specific locations on the sample. A white light interferometric technique is applied for measuring the marking and engraving depths of the irradiated samples. A thermostructural finite element method model, accounting for elastoplastic effects and phase changes, is developed to simulate the laser machining processes, providing key insights into the thermomechanical behavior. A satisfactory agreement between experiments and simulations demonstrates the great potential of high-power fiber lasers in manufacturing.
Keywords
Laser Machining & Manufacturing, 1050 Aluminum Alloy, High-Power Fiber Laser, Finite Element Method
Published online 12/10/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Alexandros GOSTA, Efstathios KAMPOSOS, Alexandros SKOULAKIS, Yannis ORPHANOS, Helen PAPADAKI, Nektarios A. PAPADOGIANNIS, Michael TATARAKIS, Evaggelos KASELOURIS, Vasilis DIMITRIOU, Laser machining with a high-power CW fiber laser, Materials Research Proceedings, Vol. 46, pp 235-242, 2024
DOI: https://doi.org/10.21741/9781644903377-31
The article was published as article 31 of the book Innovative Manufacturing Engineering and Energy
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J.R. Lawrence, ed. Advances in laser materials processing: technology, research and applications. Woodhead Publishing, 2018. https://doi.org/10.1016/C2015-0-05718-5
[2] Y.C. Shin, et al. Overview of laser applications in manufacturing and materials processing in recent years. J. Manuf. Sci. Eng.142 (2020) 110818. https://doi.org/10.1115/1.4048397
[3] S.P. Murzin, C. Stiglbrunner. Fabrication of Smart Materials Using Laser Processing: Analysis and Prospects. Appl. Sci. 14 (2023) 85. https://doi.org/10.3390/app14010085
[4] J. Dutta Majumdar, I. Manna. Laser material processing. Int. Mater. Rev. 56 (2011) 341-388. https://doi.org/10.1179/1743280411Y.0000000003
[5] A.K. Nath, High power lasers in material processing applications: an overview of recent developments. in: Laser-assisted fabrication of materials, Springer, Berlin, Heidelberg 2012, pp. 69-111. https://doi.org/10.1007/978-3-642-28359-8_2
[6] L. D. Scintilla, L. Tricarico. Fusion cutting of aluminum, magnesium, and titanium alloys using high-power fiber laser. Optical Engineering 52 (2013) 076115-076115. https://doi.org/10.1117/1.OE.52.7.076115
[7] C. Wandera, A. Salminen, V. Kujanpaa, Inert gas cutting of thick-section stainless steel and medium-section aluminum using a high-power fiber laser. J. Laser Appl. 21 (2009) 154-161. https://doi.org/10.2351/1.3184429
[8] Lauro, Carlos H., et al. Finite element method in machining processes: a review. In: Modern Manufacturing Engineering, Springer, Cham 2015, pp. 65-97. https://doi.org/10.1007/978-3-319-20152-8_3
[9] V. Dimitriou, E. Kaselouris, Y. Orphanos, M. Bakarezos, N. Vainos, I. K. Nikolos, M. Tatarakis, N. A. Papadogiannis, The thermo-mechanical behavior of thin metal films under nanosecond laser pulse excitation above the thermoelastic regime, Appl. Phys. A 118 (2015) 739-748. https://doi.org/10.1007/s00339-014-8792-6
[10] E. Kaselouris, I.K. Nikolos, Y. Orphanos, E Bakarezos, N. A. Papadogiannis, M. Tatarakis, V. Dimitriou, Elastoplastic study of nanosecond-pulsed laser interaction with metallic films using 3D multiphysics fem modeling, Int. J. Damage Mech. 25 (2016) 42-55. https://doi.org/10.1177/105678951557655
[11] E. Kaselouris, A. Skoulakis, Y. Orphanos et al. Analysis of the heat affected zone and surface roughness during laser micromachining of metals. Key Engineering Materials 827 (2020) 122-127. https://doi.org/10.4028/www.scientific.net/KEM.827.122
[12] Mach3 CNC Controller Software Installation and Configuration Version 3, ArtSoft USA, November 6, 2008, http://www.machsupport.com.
[13] Information on https://www.engineeringtoolbox.com/radiation-heat-emissivity-aluminum-d_433.html
[14] Information on https://www.jcmetalchina.com/blog/what-is-1050-aluminum-alloy/
[15] S. Akram, S. H. Imran Jaffery, M. Khan, M. Fahad, A. Mubashar and L. Ali, Numerical and experimental investigation of Johnson–Cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approach Adv. Mech. Eng. 10 (2018) 1-14. https://doi.org/10.1177/1687814018797794
[16] Aris Documentation. Available online: http://doc.aris.grnet.gr/system/hardware/ (accessed on 26 September 2023).
[17] H. Liu, L. Wenxiong, H. Minghui, Surface coloring by laser irradiation of solid substrates. Apl Photonics 4 (2019) 051101. https://doi.org/10.1063/1.5089778
[18] R. Indhu, et al. Overview of laser absorptivity measurement techniques for material processing. Lasers Manuf. Mater. Process. 5 (2018) 458-481. https://doi.org/10.1007/s40516-018-0075-1