Polymers in Tissue Engineering

$40.00

Polymers in Tissue Engineering

David Romero-Fierro, Y. Aylin Esquivel-Lozano, Gabriela Casillas-Calzadilla, Alexander E. Escobar-Pullas, Emilio Bucio

Polymers display important roles in tissue engineering acting as precursors to synthesize materials that serve as scaffolds for drug delivery and cell growth, or in the creation of implants for regeneration or replacement of damaged organs and tissues. This importance relies on the remarkable properties of these macromolecules and their versatility to obtain scaffolds with desired characteristics and specific applications. This chapter describes the most featured aspects of polymers with application in tissue engineering including desired properties, types of polymers, synthetic methods and future challenges that scientific community must face in this interdisciplinary field.

Keywords
Polymers, Scaffolds, Tissue Engineering, Regeneration, Tissue Replacement

Published online 2/15/2025, 32 pages

Citation: David Romero-Fierro, Y. Aylin Esquivel-Lozano, Gabriela Casillas-Calzadilla, Alexander E. Escobar-Pullas, Emilio Bucio, Polymers in Tissue Engineering, Materials Research Foundations, Vol. 172, pp 199-230, 2025

DOI: https://doi.org/10.21741/9781644903353-8

Part of the book on Applications of Polymers in Surgery II

References
[1] J.L. Olson, A. Atala, J.J. Yoo, Tissue Engineering: Current Strategies and Future Directions, Chonnam Med J 47 (2011) 1. https://doi.org/10.4068/cmj.2011.47.1.1.
[2] C. Vacanti, The history of tissue engineering, J Cell Mol Med 1 (2006) 569–576. https://doi.org/10.2755/jcmm010.003.20
[3] G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering, Nat Rev Mater 5 (2020) 584–603. https://doi.org/10.1038/s41578-020-0204-2
[4] K.Y. Lee, Design parameters of polymers for tissue engineering applications, Macromol Res 13 (2005) 277–284. https://doi.org/10.1007/BF03218454
[5] H. Chamkouri, A Review of Hydrogels, Their Properties and Applications in Medicine, Am J Biomed Sci Res 11 (2021) 485–493. https://doi.org/10.34297/AJBSR.2021.11.001682
[6] M.U.A. Khan, G.M. Stojanović, M.F. Bin Abdullah, A. Dolatshahi-Pirouz, H.E. Marei, N. Ashammakhi, A. Hasan, Fundamental properties of smart hydrogels for tissue engineering applications: A review, Int J Biol Macromol 254 (2024) 127882. https://doi.org/10.1016/j.ijbiomac.2023.127882
[7] S. Zhu, W. Dou, X. Zeng, X. Chen, Y. Gao, H. Liu, S. Li, Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers, Int J Mol Sci 25 (2024) 5249. https://doi.org/10.3390/ijms25105249.
[8] N. Petelinšek, S. Mommer, Tough Hydrogels for Load‐Bearing Applications, Advanced Science 11 (2024). https://doi.org/10.1002/advs.202307404
[9] S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh, Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications, Polymers (Basel) 12 (2020) 2702. https://doi.org/10.3390/polym12112702
[10] J.L. Guo, Y.S. Kim, V.Y. Xie, B.T. Smith, E. Watson, J. Lam, H.A. Pearce, P.S. Engel, A.G. Mikos, Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering, Sci Adv 5 (2019). https://doi.org/10.1126/sciadv.aaw7396
[11] X. Ma, T. Xu, W. Chen, H. Qin, B. Chi, Z. Ye, Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery, Carbohydr Polym 179 (2018) 100–109. https://doi.org/10.1016/j.carbpol.2017.09.071
[12] B.M. Watson, F.K. Kasper, P.S. Engel, A.G. Mikos, Synthesis and Characterization of Injectable, Biodegradable, Phosphate-Containing, Chemically Cross-Linkable, Thermoresponsive Macromers for Bone Tissue Engineering, Biomacromolecules 15 (2014) 1788–1796. https://doi.org/10.1021/bm500175e
[13] M. Hoque, M. Alam, S. Wang, J.U. Zaman, Md.S. Rahman, M. Johir, L. Tian, J.-G. Choi, M.B. Ahmed, M.-H. Yoon, Interaction chemistry of functional groups for natural biopolymer-based hydrogel design, Materials Science and Engineering: R: Reports 156 (2023) 100758. https://doi.org/10.1016/j.mser.2023.100758
[14] H. Zong, B. Wang, G. Li, S. Yan, K. Zhang, Y. Shou, J. Yin, Biodegradable High-Strength Hydrogels with Injectable Performance Based on Poly(l -Glutamic Acid) and Gellan Gum, ACS Biomater Sci Eng 6 (2020) 4702–4713. https://doi.org/10.1021/ACSBIOMATERIALS.0C00915/ASSET/IMAGES/LARGE/AB0C00915_0009.JPEG
[15] B. Hosseinzadeh, M. Ahmadi, Degradable hydrogels: Design mechanisms and versatile applications, Materials Today Sustainability 23 (2023) 100468. https://doi.org/10.1016/J.MTSUST.2023.100468
[16] P.M. Kharkar, K.L. Kiick, A.M. Kloxin, Design of thiol- and light-sensitive degradable hydrogels using Michael-type addition reactions, Polym Chem 6 (2015) 5565–5574. https://doi.org/10.1039/C5PY00750J
[17] R. Raman, T. Hua, D. Gwynne, J. Collins, S. Tamang, J. Zhou, T. Esfandiary, V. Soares, S. Pajovic, A. Hayward, R. Langer, G. Traverso, Light-degradable hydrogels as dynamic triggers for gastrointestinal applications, Sci Adv 6 (2020). https://doi.org/10.1126/SCIADV.AAY0065/SUPPL_FILE/AAY0065_SM.PDF.
[18] M. Shao, Z. Shi, X. Zhang, B. Zhai, J. Sun, Synthesis and Properties of Biodegradable Hydrogel Based on Polysaccharide Wound Dressing, Materials 2023, Vol. 16, Page 1358 16 (2023) 1358. https://doi.org/10.3390/MA16041358
[19] A. Steinbüchel, Non-biodegradable biopolymers from renewable resources: perspectives and impacts, Curr Opin Biotechnol 16 (2005) 607–613. https://doi.org/10.1016/J.COPBIO.2005.10.011
[20] A. Subramaniam, S. Sethuraman, Biomedical Applications of Nondegradable Polymers, Natural and Synthetic Biomedical Polymers (2014) 301–308. https://doi.org/10.1016/B978-0-12-396983-5.00019-3
[21] U. Kong, N.F. Mohammad Rawi, G.S. Tay, The Potential Applications of Reinforced Bioplastics in Various Industries: A Review, Polymers (Basel) 15 (2023). https://doi.org/10.3390/POLYM15102399
[22] L. Shen, J. Huafe, M.K. Patel, Product overview and market projection of emerging bio-based plastics PRO-BIP 2009 , Utrecht, 2009.
[23] S. Yan, B.K. Biswal, R. Balasubramanian, Insights into interactions of biodegradable and non-biodegradable microplastics with heavy metals, Environ Sci Pollut Res Int 30 (2023) 107419–107434. https://doi.org/10.1007/S11356-023-27906-1
[24] C.J. Demott, M.A. Grunlan, Emerging polymeric material strategies for cartilage repair, J Mater Chem B 10 (2022) 9578–9589. https://doi.org/10.1039/D2TB02005J
[25] C. Andreeßen, A. Steinbüchel, Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives, Appl Microbiol Biotechnol 103 (2019) 143–157. https://doi.org/10.1007/S00253-018-9483-6/METRICS
[26] A. Steinbüchel, Non-biodegradable biopolymers from renewable resources: perspectives and impacts, Curr Opin Biotechnol 16 (2005) 607–613. https://doi.org/10.1016/J.COPBIO.2005.10.011
[27] Z. Yao, H.J. Seong, Y.S. Jang, Environmental toxicity and decomposition of polyethylene, Ecotoxicol Environ Saf 242 (2022). https://doi.org/10.1016/J.ECOENV.2022.113933
[28] M.A. Rodriguez-Soto, N.S. Vargas, A. Riveros, C.M. Camargo, J.C. Cruz, N. Sandoval, J.C. Briceño, Failure Analysis of TEVG’s I: Overcoming the Initial Stages of Blood Material Interaction and Stabilization of the Immune Response, Cells 10 (2021). https://doi.org/10.3390/CELLS10113140
[29] W.G. Ribeiro, A.C.C. Nascimento, L.B. Ferreira, D.D. De Marchi, G.M. Rego, C.T. Maeda, G.E.B. Silva, R.A. Neto, O.J.M. Torres, M.B. Pitombo, Analysis of tissue inflammatory response, fibroplasia, and foreign body reaction between the polyglactin suture of abdominal aponeurosis in rats and the intraperitoneal implant of polypropylene, polypropylene/polyglecaprone and polyester/porcine collagen meshes, Acta Cir Bras 36 (2021). https://doi.org/10.1590/ACB360706
[30] S. S, A.P. R G, G. Bajaj, A.E. John, S. Chandran, V.V. Kumar, S. Ramakrishna, A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications, J Mater Sci Mater Med 34 (2023). https://doi.org/10.1007/S10856-023-06765-9
[31] M.C. Biswas, B. Jony, P.K. Nandy, R.A. Chowdhury, S. Halder, D. Kumar, S. Ramakrishna, M. Hassan, M.A. Ahsan, M.E. Hoque, M.A. Imam, Recent Advancement of Biopolymers and Their Potential Biomedical Applications, J Polym Environ 30 (2022) 51–74. https://doi.org/10.1007/S10924-021-02199-Y
[32] M.C. Serrano, G.A. Ameer, Recent insights into the biomedical applications of shape-memory polymers, Macromol Biosci 12 (2012) 1156–1171. https://doi.org/10.1002/MABI.201200097
[33] M.X. Li, Q.Q. Wei, H.L. Mo, Y. Ren, W. Zhang, H.J. Lu, Y.K. Joung, Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts, Biomater Res 27 (2023) 1–22. https://doi.org/10.1186/S40824-023-00399-2/FIGURES/9
[34] C.S. Pfeifer, Polymer-Based Direct Filling Materials, Dent Clin North Am 61 (2017) 733–750. https://doi.org/10.1016/J.CDEN.2017.06.002
[35] S. Koltzenburg, M. Maskos, O. Nuyken, Polymer Chemistry, First, Springer , Berlin, 2017.
[36] R.M. Patel, Types and Basics of Polyethylene, Handbook of Industrial Polyethylene Technology (2016) 105–138. https://doi.org/10.1002/9781119159797.CH4
[37] S. Stephan, J. Reinisch, Auricular Reconstruction Using Porous Polyethylene Implant Technique, Facial Plast Surg Clin North Am 26 (2018) 69–85. https://doi.org/10.1016/J.FSC.2017.09.009
[38] J. Martínez Rodríguez, S.J. Renou, M.B. Guglielmotti, D.G. Olmedo, Tissue response to porous high density polyethylene as a three-dimensional scaffold for bone tissue engineering: An experimental study, J Biomater Sci Polym Ed 30 (2019) 486–499. https://doi.org/10.1080/09205063.2019.1582278
[39] P.F.H. Harmsen, M.M. Hackmann, H.L. Bos, Green building blocks for bio-based plastics, Biofuels, Bioproducts and Biorefining 8 (2014) 306–324. https://doi.org/10.1002/BBB.1468
[40] L.K. Zhang, H. Wang, R. Yang, M. Liu, Q. Ban, W. Chen, M. Zhao, R. You, Y. Jin, Y.Q. Guan, Bone marrow stem cells combined with polycaprolactone-polylactic acid-polypropylene amine scaffolds for the treatment of acute liver failure, Chemical Engineering Journal 360 (2019) 1564–1576. https://doi.org/10.1016/J.CEJ.2018.10.230
[41] M. Khaledian, F. Jiroudhashemi, E. Biazar, Chitosan- and polypropylene-oriented surface modification using excimer laser and their biocompatibility study, Artif Cells Nanomed Biotechnol 45 (2017) 135–138. https://doi.org/10.3109/21691401.2016.1138485
[42] F.F. Ai, M. Mao, Y. Zhang, J. Kang, L. Zhu, The in vivo biocompatibility of titanized polypropylene lightweight mesh is superior to that of conventional polypropylene mesh, Neurourol Urodyn 39 (2020) 96–107. https://doi.org/10.1002/NAU.24159
[43] M.A. Rodriguez-Soto, A. Riveros, N.S. Vargas, A.J. Garcia-Brand, C.M. Camargo, J.C. Cruz, N. Sandoval, J.C. Briceño, Failure Analysis of TEVG’s II: Late Failure and Entering the Regeneration Pathway, Cells 11 (2022). https://doi.org/10.3390/CELLS11060939
[44] R. Nisticò, Polyethylene terephthalate (PET) in the packaging industry, Polym Test 90 (2020) 106707. https://doi.org/10.1016/J.POLYMERTESTING.2020.106707.
[45] T. Çaykara, M.G. Sande, N. Azoia, L.R. Rodrigues, C.J. Silva, Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces, Med Microbiol Immunol 209 (2020) 363. https://doi.org/10.1007/S00430-020-00660-8
[46] D. Wang, Y. Xu, Q. Li, L.S. Turng, Artificial Small-Diameter Blood Vessels: Materials, Fabrication, Surface Modification, Mechanical Properties, and Bioactive Functionalities, J Mater Chem B 8 (2020) 1801. https://doi.org/10.1039/C9TB01849B
[47] Q. Chen, G. Thouas, Biomaterials A Basic Introduction, First, CRC Press, 2014.
[48] S.M. Pituru, M. Greabu, A. Totan, M. Imre, M. Pantea, T. Spinu, A.M.C. Tancu, N.O. Popoviciu, I.I. Stanescu, E. Ionescu, A Review on the Biocompatibility of PMMA-Based Dental Materials for Interim Prosthetic Restorations with a Glimpse into their Modern Manufacturing Techniques, Materials (Basel) 13 (2020) 1–14. https://doi.org/10.3390/MA13132894
[49] S. Fathi-Karkan, B. Banimohamad-Shotorbani, S. Saghati, R. Rahbarghazi, S. Davaran, A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds, Journal of Biological Engineering 2022 16:1 16 (2022) 1–18. https://doi.org/10.1186/S13036-022-00286-9
[50] M. Ribeiro, M. Simões, C. Vitorino, F. Mascarenhas-Melo, Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential, Gels 10 (2024). https://doi.org/10.3390/GELS10030188
[51] P. Szczepańczyk, M. Szlachta, N. Złocista-Szewczyk, J. Chłopek, K. Pielichowska, Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering, Polymers 2021, Vol. 13, Page 946 13 (2021) 946. https://doi.org/10.3390/POLYM13060946
[52] T.-C. Ho, C.-C. Chang, H.-P. Chan, T.-W. Chung, C.-W. Shu, K.-P. Chuang, T.-H. Duh, M.-H. Yang, Y.-C. Tyan, Hydrogels: Properties and Applications in Biomedicine, Molecules 27 (2022) 2902. https://doi.org/10.3390/molecules27092902
[53] H. Zhao, M. Liu, Y. Zhang, J. Yin, R. Pei, Nanocomposite hydrogels for tissue engineering applications, Nanoscale 12 (2020) 14976–14995. https://doi.org/10.1039/D0NR03785K
[54] M.U. din Khan, A. Afzaal, Shahnaz, M.A. Gilani, S. Perveen, F. Sharif, A. Asif, A. Faisal, M.S. Nazir, O. Huck, S. Tabassum, Synergistic utilization of cost-effective glycerophosphate and biologically active zein for innovative minimally invasive smart thermo-responsive hydrogels for potential hard tissue engineering applications, Smart Mater Struct 33 (2024) 085007. https://doi.org/10.1088/1361-665X/ad57a4
[55] R. Luo, X. Xiang, Q. Jiao, H. Hua, Y. Chen, Photoresponsive Hydrogels for Tissue Engineering, ACS Biomater Sci Eng 10 (2024) 3612–3630. https://doi.org/10.1021/acsbiomaterials.4c00314
[56] Z. Barabadi, A. Bahmani, M. Jalalimonfared, M. Ashrafizadeh, M. Rashtbar, E. Sharifi, H. Tian, Design and characterization of electroactive gelatin methacrylate hydrogel incorporated with gold nanoparticles empowered with parahydroxybenzaldehyde and curcumin for advanced tissue engineering applications, J Mater Sci Mater Med 35 (2024) 45. https://doi.org/10.1007/s10856-024-06808-9
[57] F. Ghorbani, B. Ghalandari, M. Khajehmohammadi, N. Bakhtiary, H. Tolabi, M. Sahranavard, S. Fathi-Karkan, V. Nazar, S. Hasan Niari Niar, A. Armoon, M. Ettelaei, M. Tavakoli Banizi, M.N. Collins, Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications, International Materials Reviews 68 (2023) 901–942. https://doi.org/10.1080/09506608.2023.2167559
[58] W. Yan, X. Xu, Q. Xu, Z. Sun, Q. Jiang, D. Shi, Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up, Regen Biomater 7 (2020) 77–90. https://doi.org/10.1093/rb/rbz039
[59] M. Gomez-Florit, A. Pardo, R.M.A. Domingues, A.L. Graça, P.S. Babo, R.L. Reis, M.E. Gomes, Natural-Based Hydrogels for Tissue Engineering Applications, Molecules 25 (2020) 5858. https://doi.org/10.3390/molecules25245858
[60] Z. Zhou, Z. Bu, S. Wang, J. Yu, W. Liu, J. Huang, J. Hu, S. Xu, P. Wu, Extracellular matrix hydrogels with fibroblast growth factor 2 containing exosomes for reconstructing skin microstructures, J Nanobiotechnology 22 (2024) 438. https://doi.org/10.1186/s12951-024-02718-8
[61] R. Rakhshaei, H. Namazi, H. Hamishehkar, H.S. Kafil, R. Salehi, In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects, J Appl Polym Sci 136 (2019). https://doi.org/10.1002/app.47590
[62] J.G. Jung, J.H. Kim, J. Moon, J.H. Kang, Y.J. Kim, H.B. Park, Enhanced antibacterial activity of poly(vinyl alcohol)‐graphene composites via graphene oxide surfactancy, J Appl Polym Sci 141 (2024). https://doi.org/10.1002/app.55910
[63] F. Kadi, G. Dini, S.A. Poursamar, F. Ejeian, Fabrication and characterization of 3D-printed composite scaffolds of coral-derived hydroxyapatite nanoparticles/polycaprolactone/gelatin carrying doxorubicin for bone tissue engineering, J Mater Sci Mater Med 35 (2024) 7. https://doi.org/10.1007/s10856-024-06779-x
[64] A. Izadyari Aghmiuni, A. Ghadi, E. Azmoun, N. Kalantari, I. Mohammadi, H. Hemati Kordmahaleh, Electrospun Polymeric Substrates for Tissue Engineering: Viewpoints on Fabrication, Application, and Challenges, in: Electrospinning – Material Technology of the Future, IntechOpen, 2022. https://doi.org/10.5772/intechopen.102596
[65] M.Z.A. Zulkifli, D. Nordin, N. Shaari, S.K. Kamarudin, Overview of Electrospinning for Tissue Engineering Applications, Polymers (Basel) 15 (2023) 2418. https://doi.org/10.3390/polym15112418
[66] R. Khajavi, M. Abbasipour, A. Bahador, Electrospun biodegradable nanofibers scaffolds for bone tissue engineering, J Appl Polym Sci 133 (2016). https://doi.org/10.1002/app.42883
[67] K. Peranidze, T. V. Safronova, N.R. Kildeeva, Electrospun Nanomaterials Based on Cellulose and Its Derivatives for Cell Cultures: Recent Developments and Challenges, Polymers (Basel) 15 (2023) 1174. https://doi.org/10.3390/polym15051174
[68] G.-H. Wu, S. Hsu, Review: Polymeric-Based 3D Printing for Tissue Engineering, J Med Biol Eng 35 (2015) 285–292. https://doi.org/10.1007/s40846-015-0038-3
[69] D. Veeman, M.S. Sai, P. Sureshkumar, T. Jagadeesha, L. Natrayan, M. Ravichandran, W.D. Mammo, Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends, Int J Polym Sci 2021 (2021) 1–20. https://doi.org/10.1155/2021/4907027
[70] K. Tappa, U. Jammalamadaka, Novel Biomaterials Used in Medical 3D Printing Techniques, J Funct Biomater 9 (2018) 17. https://doi.org/10.3390/jfb9010017.
[71] A. Maihemuti, H. Zhang, X. Lin, Y. Wang, Z. Xu, D. Zhang, Q. Jiang, 3D-printed fish gelatin scaffolds for cartilage tissue engineering, Bioact Mater 26 (2023) 77–87. https://doi.org/10.1016/j.bioactmat.2023.02.007
[72] R. Akbarzadeh, A. Yousefi, Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering, J Biomed Mater Res B Appl Biomater 102 (2014) 1304–1315. https://doi.org/10.1002/jbm.b.33101
[73] A. Yadegari, F. Fahimipour, M. Rasoulianboroujeni, E. Dashtimoghadarm, M. Omidi, H. Golzar, M. Tahriri, L. Tayebi, Specific considerations in scaffold design for oral tissue engineering, in: Biomaterials for Oral and Dental Tissue Engineering, Elsevier, 2017: pp. 157–183. https://doi.org/10.1016/B978-0-08-100961-1.00010-4
[74] Z. Fereshteh, Freeze-drying technologies for 3D scaffold engineering, in: Functional 3D Tissue Engineering Scaffolds, Elsevier, 2018: pp. 151–174. https://doi.org/10.1016/B978-0-08-100979-6.00007-0
[75] C.M. Brougham, T.J. Levingstone, N. Shen, G.M. Cooney, S. Jockenhoevel, T.C. Flanagan, F.J. O’Brien, Freeze‐Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds, Adv Healthc Mater 6 (2017). https://doi.org/10.1002/adhm.201700598
[76] A. Autissier, C. Le Visage, C. Pouzet, F. Chaubet, D. Letourneur, Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process, Acta Biomater 6 (2010) 3640–3648. https://doi.org/10.1016/j.actbio.2010.03.004
[77] N. Sultana, M. Wang, PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation, Biofabrication 4 (2012) 015003. https://doi.org/10.1088/1758-5082/4/1/015003
[78] K.S. Vasanthan, A. Subramaniam, U.M. Krishnan, S. Sethuraman, Influence of 3D porous galactose containing PVA/gelatin hydrogel scaffolds on three-dimensional spheroidal morphology of hepatocytes, J Mater Sci Mater Med 26 (2015) 20. https://doi.org/10.1007/s10856-014-5345-7
[79] M. Costantini, A. Barbetta, Gas foaming technologies for 3D scaffold engineering, in: Functional 3D Tissue Engineering Scaffolds, Elsevier, 2018: pp. 127–149. https://doi.org/10.1016/B978-0-08-100979-6.00006-9
[80] F. Dehghani, N. Annabi, Engineering porous scaffolds using gas-based techniques, Curr Opin Biotechnol 22 (2011) 661–666. https://doi.org/10.1016/j.copbio.2011.04.005
[81] Q.Z. Chen, Foaming technology of tissue engineering scaffolds – a review, Bubble Sci Eng Technol 3 (2011) 34–47. https://doi.org/10.1179/1758897911Y.0000000003
[82] S.A. Poursamar, J. Hatami, A.N. Lehner, C.L. da Silva, F.C. Ferreira, A.P.M. Antunes, Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment, Materials Science and Engineering: C 48 (2015) 63–70. https://doi.org/10.1016/j.msec.2014.10.074
[83] T. Kuang, F. Chen, L. Chang, Y. Zhao, D. Fu, X. Gong, X. Peng, Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications, Chemical Engineering Journal 307 (2017) 1017–1025. https://doi.org/10.1016/j.cej.2016.09.023
[84] F. Habibzadeh, S.M. Sadraei, R. Mansoori, N.P. Singh Chauhan, G. Sargazi, Nanomaterials supported by polymers for tissue engineering applications: A review, Heliyon 8 (2022) e12193. https://doi.org/10.1016/j.heliyon.2022.e12193
[85] M. González-Torres, I.H. Serrano-Aguilar, A. Cabrera-Wrooman, R. Sánchez-Sánchez, R. Pichardo-Bahena, Y. Melgarejo-Ramírez, G. Leyva-Gómez, H. Cortés, M. de los Angeles Moyaho-Bernal, E. Lima, C. Ibarra, C. Velasquillo, Gamma radiation-induced grafting of poly(2-aminoethyl methacrylate) onto chitosan: A comprehensive study of a polyurethane scaffold intended for skin tissue engineering, Carbohydr Polym 270 (2021) 117916. https://doi.org/10.1016/j.carbpol.2021.117916
[86] M.M. Nasef, B. Gupta, K. Shameli, C. Verma, R.R. Ali, T.M. Ting, Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications, Polymers (Basel) 13 (2021) 3102. https://doi.org/10.3390/polym13183102
[87] V.H. Pino-Ramos, H.I. Meléndez-Ortiz, A. Ramos-Ballesteros, E. Bucio, Radiation Grafting of Biopolymers and Synthetic Polymers, in: Biopolymer Grafting: Applications, Elsevier, 2018: pp. 205–250. https://doi.org/10.1016/B978-0-12-810462-0.00006-5
[88] E.I. Ochoa-Segundo, M. González-Torres, A. Cabrera-Wrooman, R. Sánchez-Sánchez, B.M. Huerta-Martínez, Y. Melgarejo-Ramírez, G. Leyva-Gómez, E.M. Rivera-Muñoz, H. Cortés, C. Velasquillo, S. Vargas-Muñoz, R. Rodríguez-Talavera, Gamma radiation-induced grafting of n-hydroxyethyl acrylamide onto poly(3-hydroxybutyrate): A companion study on its polyurethane scaffolds meant for potential skin tissue engineering applications, Materials Science and Engineering: C 116 (2020) 111176. https://doi.org/10.1016/j.msec.2020.111176