Polymers in Orthopedic Surgery

$40.00

Polymers in Orthopedic Surgery

Muhammad Shahbaz, Nadia Akram, Tanveer Hussain Bokhari, Muhammad Saeed, Khalid Mahmood Zia

There is advancement in the field of orthopedic surgery with the innovation in polymers having diverse range of applications by providing variety of materials, having tailored properties which can be used in replacement of joint and in bone replacement. This chapter gives detailed overview of polymers applications in orthopedic surgery applications. Also, polymer-based scaffolds derived from polymers are explained which can be used in orthopedic applications. Limitations of using polymers in orthopedic surgery and advanced polymer materials in surgery are explained.

Keywords
Orthopedic Implants, Mechanical and Biological Properties, Acrylic Polymers, Polyurethanes, Fabrication Methods

Published online 2/15/2025, 24 pages

Citation: Muhammad Shahbaz, Nadia Akram, Tanveer Hussain Bokhari, Muhammad Saeed, Khalid Mahmood Zia, Polymers in Orthopedic Surgery, Materials Research Foundations, Vol. 172, pp 163-186, 2025

DOI: https://doi.org/10.21741/9781644903353-6

Part of the book on Applications of Polymers in Surgery II

References
[1] C.L. Bennett Wilke, B.M. Dowdle, The Future of Orthopedics: Imagining Orthopedics in the Year 2100, Physician Assist Clin 9 (2024) 149–153.https://doi.org/10.1016/J.CPHA.2023.09.002.
[2] M.H. Mohammad, R. Verma, M.M. Jeyam, An Introduction to Orthopedic Surgery Volume 3 Issue 1 Doctors Academy Publications, 2013. www.wjmer.co.uk.
[3] N. Kose, A. Ayse Kose, Application of Nanomaterials in Prevention of Bone and Joint Infections, in: Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases, Elsevier, 2015: pp. 107–117. https://doi.org/10.1016/B978-0-12-801317-5.00007-4
[4] G.E. Cook, D.C. Markel, W. Ren, L.X. Webb, M.D. McKee, E.H. Schemitsch, Infection in Orthopaedics, J Orthop Trauma 29 (2015) S19–S23. https://doi.org/10.1097/BOT.0000000000000461.
[5] D. Clayton-Krasinski, L. Fieback, Pediatric Nonprogressive Central Nervous System Disorders, in: Physical Rehabilitation, Elsevier, 2007: pp. 367–404. https://doi.org/10.1016/B978-072160361-2.50018-1
[6] D. Buford, B.W. Blatz, N. Hyde, Needle Arthroscopy of the Knee, Shoulder, and Hip, Atlas of Interventional Orthopedics Procedures: Essential Guide for Fluoroscopy and Ultrasound Guided Procedures (2022) 594–598. https://doi.org/10.1016/B978-0-323-75514-6.00036-4.
[7] H.S. Kim, J.K. Seon, A.R. Jo, Current Trends in Anterior Cruciate Ligament Reconstruction, Knee Surg Relat Res 25 (2013) 165–173. https://doi.org/10.5792/ksrr.2013.25.4.165
[8] L. Evans, T. O’Donohoe, A. Morokoff, K. Drummond, The role of spinal surgery in the treatment of low back pain, Medical Journal of Australia 218 (2023) 40–45. https://doi.org/10.5694/mja2.51788
[9] R.J. Ferguson, A.J. Palmer, A. Taylor, M.L. Porter, H. Malchau, S. Glyn-Jones, Hip replacement, The Lancet 392 (2018) 1662–1671. https://doi.org/10.1016/S0140-6736(18)31777-X
[10] R.W. Chang, A Cost-effectiveness Analysis of Total Hip Arthroplasty for Osteoarthritis of the Hip, JAMA: The Journal of the American Medical Association 275 (1996) 858. https://doi.org/10.1001/jama.1996.03530350040032
[11] A.J. Carr, O. Robertsson, S. Graves, A.J. Price, N.K. Arden, A. Judge, D.J. Beard, Knee replacement, The Lancet 379 (2012) 1331–1340. https://doi.org/10.1016/S0140-6736(11)60752-6
[12] N. Filip, I. Radu, B. Veliceasa, C. Filip, M. Pertea, A. Clim, A.C. Pinzariu, I.C. Drochioi, R.L. Hilitanu, I.L. Serban, Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives, Coatings 12 (2022) 1544. https://doi.org/10.3390/coatings12101544
[13] M.A. MATEOS-TIMONEDA, Polymers for bone repair, in: Bone Repair Biomaterials, Elsevier, 2009: pp. 231–251. https://doi.org/10.1533/9781845696610.2.231
[14] A. Bistolfi, F. Giustra, F. Bosco, L. Sabatini, A. Aprato, P. Bracco, A. Bellare, Ultra-high molecular weight polyethylene (UHMWPE) for hip and knee arthroplasty: The present and the future, J Orthop 25 (2021) 98–106. https://doi.org/10.1016/j.jor.2021.04.004
[15] C.P. Reghunadhan Nair, G. Clouet, THERMAL INIFERTERS: THEIR CONCEPT AND APPLICATION IN FREE RADICAL POLYMERIZATION, Journal of Macromolecular Science, Part C: Polymer Reviews 31 (1991) 311–340. https://doi.org/10.1080/15321799108021926
[16] Y.D. K Draenert, Properties of bone cement: the three interfaces, 2005.
[17] C.M. Agrawal, Biodegradable Polymers for Orthopedic Applications, in: Polymer Based Systems on Tissue Engineering, Replacement and Regeneration, Springer Netherlands, Dordrecht, 2002: pp. 25–36. https://doi.org/10.1007/978-94-010-0305-6_3
[18] X. Zhang, Mattheus, F.A. Goosen, S.P. Wyss, D. Pichora, Biodegradable Polymers for Orthopedic Applications, Journal of Macromolecular Science, Part C: Polymer Reviews 33 (1993) 81–102. https://doi.org/10.1080/15321799308021434
[19] H. Altpeter, M.J. Bevis, D.W. Grijpma, J. Feijen, Non-conventional injection molding of poly(lactide) and poly(ε-caprolactone) intended for orthopedic applications, J Mater Sci Mater Med 15 (2004) 175–184. https://doi.org/10.1023/B:JMSM.0000011820.64572.a5
[20] J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0
[21] K. Yamane, H. Sato, Y. Ichikawa, K. Sunagawa, Y. Shigaki, Development of an industrial production technology for high-molecular-weight polyglycolic acid, Polym J 46 (2014) 769–775. https://doi.org/10.1038/pj.2014.69
[22] N. Ashammakhi, P. Rokkanen, Absorbable polyglycolide devices in trauma and bone surgery, Biomaterials 18 (1997) 3–9. https://doi.org/10.1016/S0142-9612(96)00107-X
[23] O. Böstman, H. Pihlajamäki, Clinical biocompatibility of biodegradable orthopedic implants for internal fixation: a review, Biomaterials 21 (2000) 2615–2621. https://doi.org/10.1016/S0142-9612(00)00129-0
[24] K. Budak, O. Sogut, U. Aydemir Sezer, A review on synthesis and biomedical applications of polyglycolic acid, Journal of Polymer Research 27 (2020) 208. https://doi.org/10.1007/s10965-020-02187-1
[25] J.A. Martins, A.A. Lach, H.L. Morris, A.J. Carr, P.-A. Mouthuy, Polydioxanone implants: A systematic review on safety and performance in patients, J Biomater Appl 34 (2020) 902–916. https://doi.org/10.1177/0885328219888841
[26] P.G. Reddy, A.J. Domb, Polyanhydride Chemistry, Biomacromolecules 23 (2022) 4959–4984. https://doi.org/10.1021/acs.biomac.2c01180
[27] A.J. Domb, S. Amselem, J. Shah, M. Maniar, Polyanhydrides: Synthesis and characterization, in: 1993: pp. 93–141. https://doi.org/10.1007/BFb0027552
[28] Mark. Chasin, R.S. Langer, Biodegradable polymers as drug delivery systems, M. Dekker, 1990.
[29] K.M. Hämäläinen, E. Määttä, H. Piirainen, Marianne Sarkola, A. Väisänen, V.-P. Ranta, A. Urtti, Roles of acid/base nature and molecular weight in drug release from matrices of gelfoam and monoisopropyl ester of poly(vinyl methyl ether–maleic anhydride), Journal of Controlled Release 56 (1998) 273–283. https://doi.org/10.1016/S0168-3659(98)00094-7
[30] S.J. Peter, M.J. Yaszemski, L.J. Suggs, R.G. Payne, R. Langer, W.C. Hayes, M.R. Unroe, L.B. Alemany, P.S. Engel, A.G. Mikos, Characterization of partially saturated poly(propylene fumarate) for orthopedic application, J Biomater Sci Polym Ed 8 (1997) 893–904. https://doi.org/10.1163/156856297X00074
[31] S.J. Peter, M.J. Yaszemski, L.J. Suggs, R.G. Payne, R. Langer, W.C. Hayes, M.R. Unroe, L.B. Alemany, P.S. Engel, A.G. Mikos, Characterization of partially saturated poly(propylene fumarate) for orthopedic application, J Biomater Sci Polym Ed 8 (1997) 893–904. https://doi.org/10.1163/156856297X00074
[32] S.J. Peter, M.J. Yaszemski, L.J. Suggs, R.G. Payne, R. Langer, W.C. Hayes, M.R. Unroe, L.B. Alemany, P.S. Engel, A.G. Mikos, Characterization of partially saturated poly(propylene fumarate) for orthopedic application, J Biomater Sci Polym Ed 8 (1997) 893–904. https://doi.org/10.1163/156856297X00074
[33] M. Martina, D.W. Hutmacher, Biodegradable polymers applied in tissue engineering research: a review, Polym Int 56 (2007) 145–157. https://doi.org/10.1002/pi.2108
[34] N. Akram, M. Shahbaz, K.M. Zia, M. Usman, A. Ali, R. Al-Salahi, H.A. Abuelizz, C. Delattre, Investigation of the in vitro biological activities of polyethylene glycol-based thermally stable polyurethane elastomers, RSC Adv 14 (2024) 779–793. https://doi.org/10.1039/D3RA06997D
[35] M. Marzec, J. Kucińska-Lipka, I. Kalaszczyńska, H. Janik, Development of polyurethanes for bone repair, Materials Science and Engineering: C 80 (2017) 736–747. https://doi.org/10.1016/j.msec.2017.07.047
[36] N. Filip, I. Radu, B. Veliceasa, C. Filip, M. Pertea, A. Clim, A.C. Pinzariu, I.C. Drochioi, R.L. Hilitanu, I.L. Serban, Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives, Coatings 12 (2022) 1544. https://doi.org/10.3390/coatings12101544
[37] M.P. Mandarino, J.E. Salvatore, Polyurethane polymer—Its use in fractured and diseased bones, The American Journal of Surgery 97 (1959) 442–446. https://doi.org/10.1016/0002-9610(59)90011-X
[38] Y.-H. Yu, S.-J. Liu, Polyetheretherketone for orthopedic applications: a review, Curr Opin Chem Eng 32 (2021) 100687. https://doi.org/10.1016/j.coche.2021.100687
[39] P.B. Maurus, C.C. Kaeding, Bioabsorbable implant material review, Oper Tech Sports Med 12 (2004) 158–160.
[40] H.H. Lu, J.A. Cooper Jr, S. Manuel, J.W. Freeman, M.A. Attawia, F.K. Ko, C.T. Laurencin, Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies, Biomaterials 26 (2005) 4805–4816.
[41] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review, Int J Polym Sci 2011 (2011) 1–19. https://doi.org/10.1155/2011/290602
[42] C.W. Pouton, S. Akhtar, Biosynthetic polyhydroxyalkanoates and their potential in drug delivery, Adv Drug Deliv Rev 18 (1996) 133–162.
[43] I.C. Bonzani, R. Adhikari, S. Houshyar, R. Mayadunne, P. Gunatillake, M.M. Stevens, Synthesis of two-component injectable polyurethanes for bone tissue engineering, Biomaterials 28 (2007) 423–433.
[44] Y. Teng, H. Giambini, A. Rezaei, X. Liu, A. Lee Miller, B.E. Waletzki, L. Lu, Poly(Propylene Fumarate)–Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages, J Biomech Eng 140 (2018). https://doi.org/10.1115/1.4040458
[45] A.L. Baillargeon, K. Mequanint, Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics, Biomed Res Int 2014 (2014) 1–16. https://doi.org/10.1155/2014/761373
[46] P. Wang, P. Liu, H. Peng, X. Luo, H. Yuan, J. Zhang, Y. Yan, Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo, J Biomater Sci Polym Ed 27 (2016) 1170–1186. https://doi.org/10.1080/09205063.2016.1184123
[47] S.V. Gohil, S. Suhail, J. Rose, T. Vella, L.S. Nair, Polymers and Composites for Orthopedic Applications, in: Materials for Bone Disorders, Elsevier, 2017: pp. 349–403. https://doi.org/10.1016/B978-0-12-802792-9.00008-2
[48] V. Bagaria, R. Bhansali, P. Pawar, 3D printing- creating a blueprint for the future of orthopedics: Current concept review and the road ahead!, J Clin Orthop Trauma 9 (2018) 207–212. https://doi.org/10.1016/j.jcot.2018.07.007
[49] C. Sakib-Uz-Zaman, M.A.H. Khondoker, Polymer-Based Additive Manufacturing for Orthotic and Prosthetic Devices: Industry Outlook in Canada, Polymers (Basel) 15 (2023) 1506. https://doi.org/10.3390/polym15061506
[50] D. Acierno, A. Patti, Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview, Materials 16 (2023) 7664. https://doi.org/10.3390/ma16247664
[51] W. Han, L. Kong, M. Xu, Advances in selective laser sintering of polymers, International Journal of Extreme Manufacturing 4 (2022) 042002. https://doi.org/10.1088/2631-7990/ac9096
[52] M. Ziaee, N.B. Crane, Binder jetting: A review of process, materials, and methods, Addit Manuf 28 (2019) 781–801. https://doi.org/10.1016/j.addma.2019.05.031
[53] D.-H. Kim, J. Lee, J. Bae, S. Park, J. Choi, J.H. Lee, E. Kim, Mechanical Analysis of Ceramic/Polymer Composite with Mesh-Type Lightweight Design Using Binder-Jet 3D Printing, Materials 11 (2018) 1941. https://doi.org/10.3390/ma11101941