Polymers in Neurosurgery

$40.00

Polymers in Neurosurgery

Joy Hoskeri H., Preeti Gadyal, Preeti Shinde, Vidyashree Suryavanshi, Nivedita Pujari S., Arun K. Shettar

Neurosurgery, a field that operates at the intricate intersection of medicine and engineering, has long sought innovative solutions to address the complicated hindrances faced in the treatment of neurological disorders and nerve injuries. One such promising avenue is exploration of polymers in neurosurgical practice. Polymers can be employed as conjugated, doped polymers, or nanocarriers, fabricated hydrogels, scaffolds, or drug delivery vehicles, to treat brain tumors, craniotomies, spine surgery, and aneurysms. As the field of neurosurgery persists in pushing the horizon towards incorporating polymers in neurosurgery holds immense promise. This chapter covers polymer synthesis, polymer fabrication, and polymer applications in neurosurgery.

Keywords
Polymer, Neurosurgery, Nano-Polymers, Craniotomy, Spine Surgery

Published online 2/15/2025, 50 pages

Citation: Joy Hoskeri H., Preeti Gadyal, Preeti Shinde, Vidyashree Suryavanshi, Nivedita Pujari S., Arun K. Shettar, Polymers in Neurosurgery, Materials Research Foundations, Vol. 172, pp 113-162, 2025

DOI: https://doi.org/10.21741/9781644903353-5

Part of the book on Applications of Polymers in Surgery II

References
[1] Wang, S., Hou, J., Bei, J., & Zhao, Y. (2001). Tissue engineering and peripheral nerve regeneration (III) -Sciatic nerve regeneration with PDLLA nerve guide. Science in China Series B: Chemistry, 44, 419-426. https://doi.org/10.1007/BF02879817
[2] Qiu, L., See, A. A. Q., Steele, T. W., & King, N. K. K. (2019). Bioadhesives in neurosurgery: a review. Journal of neurosurgery, 133(6), 1928-1938. https://doi.org/10.3171/2019.8.JNS191592
[3] Echeverría, D., Rivera, R., Giacaman, P., Sordo, J. G., Einersen, M., & Badilla, L. (2023). A novel self-expanding shape memory polymer coil for intracranial aneurysm embolization: 1 year follow-up in Chile. Journal of NeuroInterventional Surgery, 15(8), 781-786. https://doi.org/10.1136/jnis-2022-018996
[4] DeAngelis, L. M. (2001). Brain tumors. New England journal of medicine, 344(2), 114-123. https://doi.org/10.1056/NEJM200101113440207
[5] Leong, K. W., D’Amore, P., Marletta, M., & Langer, R. (1986). Bioerodible polyanhydrides as drug‐carrier matrices. II. Biocompatibility and chemical reactivity. Journal of biomedical materials research, 20(1), 51-64. https://doi.org/10.1002/jbm.820200106
[6] Goel, V. K., Martz, E. O., & Park, J. B. (1998). Materials in Spine Surgery. Journal of Musculoskeletal Research, 2(02), 73-88. https://doi.org/10.1142/S021895779800010X
[7] Raucci, M. G., Gloria, A., De Santis, R., Ambrosio, L., & Tanner, K. E. (2012). Introduction to biomaterials for spinal surgery. In Biomaterials for Spinal Surgery (pp. 1-38). Woodhead Publishing. https://doi.org/10.1533/9780857096197.1
[8] Therin, M., Christel, P., Li, S., Garreau, H., & Vert, M. (1992). In vivo degradation of massive poly (α-hydroxy acids): validation of in vitro findings. Biomaterials, 13(9), 594-600. https://doi.org/10.1016/0142-9612(92)90027-L
[9] Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346. https://doi.org/10.1016/S0142-9612(00)00101-0
[10] Fiaschi, P., Pavanello, M., Imperato, A., Dallolio, V., Accogli, A., Capra, V., … &Piatelli, G. (2016). Surgical results of cranioplasty with a polymethylmethacrylate customized cranial implant in pediatric patients: a single-center experience. Journal of Neurosurgery: Pediatrics, 17(6), 705-710. https://doi.org/10.3171/2015.10.PEDS15489
[11] Ruggiero, C., Barbato, M., Spennato, P., Russo, C., Cicala, D., & Cinalli, G. (2020). Repair of giant lumbosacral pseudomeningocele with fast-resorbing polymer mesh in a pediatric patient operated for posterior dysraphism. Child’s Nervous System, 36, 1777-1780. https://doi.org/10.1007/s00381-020-04613-7
[12] Gregory, H., & Phillips, J. B. (2021). Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers?. Neurochemistry International, 143, 104953. https://doi.org/10.1016/j.neuint.2020.104953
[13] Zhang, X., Qu, W., Li, D., Shi, K., Li, R., Han, Y., … & Chen, X. (2020). Functional polymer‐based nerve guide conduits to promote peripheral nerve regeneration. Advanced Materials Interfaces, 7(14), 2000225. https://doi.org/10.1002/admi.202000225
[14] Shim, K. W., Park, E. K., Kim, D. S., & Choi, J. U. (2017). Neuroendoscopy: current and future perspectives. Journal of Korean Neurosurgical Society, 60(3), 322-326. https://doi.org/10.3340/jkns.2017.0202.006
[15] Codd, P. J., Veaceslav, A., Gosline, A. H., & Dupont, P. E. (2014). Novel pressure-sensing skin for detecting impending tissue damage during neuroendoscopy. Journal of Neurosurgery: Pediatrics, 13(1), 114-121. https://doi.org/10.3171/2013.9.PEDS12595
[16] Jain, K. K. (1983). Lasers in neurosurgery: a review. Lasers in Surgery and Medicine, 2(3), 217-230. https://doi.org/10.1002/lsm.1900020305
[17] Okishev, D. N., Cherebylo, S. A., Konovalov, A. N., Chelushkin, D. M., Shekhtman, O. D., Konovalov, N. A., … & Eliava, S. S. (2022). Features of modeling a polymer implant for closing a defect after decompressive craniotomy. ZhurnalVoprosyNeirokhirurgiiImeni NN Burdenko, 86(1), 17-27. https://doi.org/10.17116/neiro20228601117
[18] Suzuki, S., &Ikada, Y. (2015). Polymers for Surgery. Advanced Polymers in Medicine, 219-264. https://doi.org/10.1007/978-3-319-12478-0_8
[19] Naureen, Z., Zubair, M., Rasul, F., Nadeem, H., Siddique, M. H., Afzal, M., & Rasul, I. (2022). Applications of Polymers in Neurosurgery. Applications of Polymers in Surgery, 123, 92-122. https://doi.org/10.21741/9781644901892-4
[20] Velnar, T., Bosnjak, R., &Gradisnik, L. (2022). Clinical applications of poly-methyl-methacrylate in neurosurgery: The in vivo cranial bone reconstruction. Journal of functional biomaterials, 13(3), 156. https://doi.org/10.3390/jfb13030156
[21] Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3), 161-176. https://doi.org/10.1016/j.bsbt.2015.08.002
[22] Mussi, E., Mussa, F., Santarelli, C., Scagnet, M., Uccheddu, F., Furferi, R., … &Genitori, L. (2020). Current practice in preoperative virtual and physical simulation in neurosurgery. Bioengineering, 7(1), 7. https://doi.org/10.3390/bioengineering7010007
[23] Chuan, D., Wang, Y., Fan, R., Zhou, L., Chen, H., Xu, J., & Guo, G. (2020). Fabrication and properties of a biomimetic dura matter substitute based on stereocomplex poly (Lactic Acid) nanofibers. International journal of nanomedicine, 3729-3740. https://doi.org/10.2147/IJN.S248998
[24] Antikainen, T., Kallìoinen, M., Pohjonen, T., Törmälä, P., Waris, T., & Serlo, W. (1994). Polyglycolic acid membrane interpositioning for the prevention of skull deformity following experimental craniosynostosis. Pediatric neurosurgery, 21(1), 77-82. https://doi.org/10.1159/000120819
[25] Terasaka, S., Iwasaki, Y., Shinya, N., & Uchida, T. (2006). Fibrin glue and polyglycolic acid nonwoven fabric as a biocompatible dural substitute. Operative Neurosurgery, 58(1), ONS-134. https://doi.org/10.1227/01.NEU.0000193515.95039.49
[26] Inada, Y., Morimoto, S., Takakura, Y., & Nakamura, T. (2004). Regeneration of peripheral nerve gaps with a polyglycolic acid-collagen tube. Neurosurgery, 55(3), 640-648. https://doi.org/10.1227/01.NEU.0000134388.86603.11
[27] Tseng, Y. Y., Kao, Y. C., Liao, J. Y., Chen, W. A., & Liu, S. J. (2013). Biodegradable drug-eluting poly [lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS chemical neuroscience, 4(9), 1314-1321. https://doi.org/10.1021/cn400108q
[28] Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397. https://doi.org/10.3390/polym3031377
[29] Mondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255-265. https://doi.org/10.1080/00914037.2015.1103241
[30] Yang, Z., Zhang, Y., Yang, Y., Sun, L., Han, D., Li, H., & Wang, C. (2010). Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine: Nanotechnology, Biology and Medicine, 6(3), 427-441. https://doi.org/10.1016/j.nano.2009.11.007
[31] Cha, C., Shin, S. R., Annabi, N., Dokmeci, M. R., &Khademhosseini, A. (2013). Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS nano, 7(4), 2891-2897. https://doi.org/10.1021/nn401196a
[32] Schantz, J. T., Lim, T. C., Ning, C., Teoh, S. H., Tan, K. C., Wang, S. C., & Hutmacher, D. W. (2006). Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Operative Neurosurgery, 58(1), ONS-E176. https://doi.org/10.1227/01.NEU.0000193533.54580.3F
[33] Iijima, S. (1999). Helical microtubules of graphite carbon. Nature, 56, 354. https://doi.org/10.1038/354056a0
[34] J.Li, A.Cassell, L.Delzeit, J.Han, and M.Meyyappan, Novel three-dimensional electrodes: electro-chemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106, 9299 (2002) https://doi.org/10.1021/jp021201n
[35] Hong, K. Z. (1996). Poly (vinyl chloride) in medical device and packaging applications. Journal of Vinyl and Additive Technology, 2(3), 193-197. https://doi.org/10.1002/vnl.10123
[36] Osbun, J. W., Ellenbogen, R. G., Chesnut, R. M., Chin, L. S., Connolly, P. J., Cosgrove, G. R., … & Wilberger, J. E. (2012). A multicenter, single-blind, prospective randomized trial to evaluate the safety of a polyethylene glycol hydrogel (Duraseal Dural Sealant System) as a dural sealant in cranial surgery. World neurosurgery, 78(5), 498-504 https://doi.org/10.1016/j.wneu.2011.12.011
[37] Cosgrove, G. R., Delashaw, J. B., Grotenhuis, J. A., Tew, J. M., Van Loveren, H., Spetzler, R. F., … &Norbash, A. (2007). Safety and efficacy of a novel polyethylene glycol hydrogel sealant for watertight dural repair. Journal of neurosurgery, 106(1), 52-58. https://doi.org/10.3171/jns.2007.106.1.52
[38] Zhu, T., Wang, H., Jing, Z., Fan, D., Liu, Z., Wang, X., & Tian, Y. (2022). High efficacy of tetra-PEG hydrogel sealants for sutureless dural closure. Bioactive materials, 8, 12-19. https://doi.org/10.1016/j.bioactmat.2021.06.022
[39] Kawakami, Osamu M.D.; Miyamoto, Susumu M.D.; Hatano, Taketo M.D.; Yamada, Keisuke M.D.; Hashimoto, Nobuo M.D.; Tabata, Yasuhiko Ph.D., D.Med.Sci., D.Pharm.. Accelerated Embolization Healing of Aneurysms by Polyethylene Terephthalate Coils Seeded with Autologous Fibroblasts. Neurosurgery 56(5):p 1075-1081, May 2005.
[40] Schellhammer, F., Walter, M., Berlis, A., Bloss, H. G., Wellens, E., & Schumacher, M. (1999). Polyethylene terephthalate and polyurethane coatings for endovascular stents: Preliminary results in canine experimental arteriovenous fistulas. Radiology, 211(1), 169-175. https://doi.org/10.1148/radiology.211.1.r99ap14169
[41] Prajapati, H. P., & Singh, D. K. (2024). A Single Standard Polyvinyl Chloride 3D Skull Model to Create the Polymethyl Methacrylate Cranioplasty Flap: A Novel and Low-Cost Technique. Journal of Neurological Surgery Part A: Central European Neurosurgery. https://doi.org/10.1055/s-0044-1785648
[42] Verbraeken, B., Lavrysen, E., Aboukais, R., &Menovsky, T. (2021). Polyvinyl Alcohol Sponges to Facilitate Cerebral Bypass Surgery. World neurosurgery, 156, 53-55. https://doi.org/10.1016/j.wneu.2021.09.007
[43] Matsumoto, H., Terada, T., Tsuura, M., Itakura, T., & Ogawa, A. (2003). Experimental polyvinyl alcohol core coil for a drug delivery system. Interventional Neuroradiology, 9(1_suppl), 107-111. https://doi.org/10.1177/15910199030090S114
[44] Andrzejak, S., Fortuniak, J., Wróbel-Wiśniewska, G., &Zawirski, M. (2005). Clinical evaluation of the polypropylene-polyester knit used as a cranioplasty material. Acta Neurochirurgica, 147, 973-976. https://doi.org/10.1007/s00701-005-0581-8
[45] Kim, S., Nowicki, K. W., Ye, S., Jang, K., Elsisy, M., Ibrahim, M., … & Wagner, W. R. (2022). Bioabsorbable, elastomer-coated magnesium alloy coils for treating saccular cerebrovascular aneurysms. Biomaterials, 290, 121857. https://doi.org/10.1016/j.biomaterials.2022.121857
[46] Qi, Z., Zhang, T., Kong, W., Fu, C., Chang, Y., Li, H., … & Pan, S. (2022). A dual-drug enhanced injectable hydrogel incorporated with neural stem cells for combination therapy in spinal cord injury. Chemical Engineering Journal, 427, 130906. https://doi.org/10.1016/j.cej.2021.130906
[47] Jain, K. K. (1983). Lasers in neurosurgery: a review. Lasers in Surgery and Medicine, 2(3), 217-230. https://doi.org/10.1002/lsm.1900020305
[48] Iqbal, J., Courville, E., Kazim, S. F., Kogan, M., Schmidt, M. H., & Bowers, C. A. (2024). Role of nanotechnology in neurosurgery: A review of recent advances and their applications. World Neurosurgery: X, 100298. https://doi.org/10.1016/j.wnsx.2024.100298
[49] Than, K. D., Baird, C. J., & Olivi, A. (2008). Polyethylene glycol hydrogel dural sealant may reduce incisional cerebrospinal fluid leak after posterior fossa surgery. Operative neurosurgery, 63(1), ONS182-ONS187 https://doi.org/10.1227/01.NEU.0000313116.28200.67
[50] Paskal, A. M., Paskal, W., Pietruski, P., & Wlodarski, P. K. (2019). Polyethylene glycol: the future of posttraumatic nerve repair? Systemic review. International journal of molecular sciences, 20(6), 1478. https://doi.org/10.3390/ijms20061478
[51] Jia, X., Yeo, Y., Clifton, R. J., Jiao, T., Kohane, D. S., Kobler, J. B., … & Langer, R. (2006). Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules, 7(12), 3336-3344. https://doi.org/10.1021/bm0604956
[52] Rao, S. S., Nelson, M. T., Xue, R., DeJesus, J. K., Viapiano, M. S., Lannutti, J. J., … & Winter, J. O. (2013). Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials, 34(21), 5181-5190. https://doi.org/10.1016/j.biomaterials.2013.03.069
[53] Kaushik, K., Sharma, R. B., & Agarwal, S. (2016). Natural polymers and their applications. International Journal of Pharmaceutical Sciences Review and Research, 37(2), 30-36.
[54] Yeh, J. Z., Wang, D. H., Cherng, J. H., Wang, Y. W., Fan, G. Y., Liou, N. H., … & Chou, C. H. (2020). A collagen-based scaffold for promoting neural plasticity in a rat model of spinal cord injury. Polymers, 12(10), 2245. https://doi.org/10.3390/polym12102245
[55] Mealy, J.E.; Chung, J.J.; Jeong, H.-H.; Issadore, D.; Lee, D.; Atluri, P.; Burdick, J.A. Injectable Granular Hydrogels with Multifunctional Properties for Biomedical Applications. Adv. Mater. 2018, 30, 1705912. https://doi.org/10.1002/adma.201705912
[56] Jensen, G., Holloway, J. L., &Stabenfeldt, S. E. (2020). Hyaluronic acid biomaterials for central nervous system regenerative medicine. Cells, 9(9), 2113. https://doi.org/10.3390/cells9092113
[57] Zeng, X., Wei, Q. S., Ye, J. C., Rao, J. H., Zheng, M. G., Ma, Y. H., … & Zeng, Y. S. (2023). A biocompatible gelatin sponge scaffold confers robust tissue remodeling after spinal cord injury in a non-human primate model. Biomaterials, 299, 122161. https://doi.org/10.1016/j.biomaterials.2023.122161
[58] McCrorie, P., Mistry, J., Taresco, V., Lovato, T., Fay, M., Ward, I., … & Rahman, R. (2020). Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 157, 108-120. https://doi.org/10.1016/j.ejpb.2020.10.005
[59] Amr, S. M., & Ekram, B. (2017). Speculations on the use of marine polysaccharides as scaffolds for artificial nerve ‘side-‘grafts. In Biological activities and application of marine polysaccharides (pp. 146-179). IntechOpen. https://doi.org/10.5772/66460
[60] Becker, T. A., Preul, M. C., Bichard, W. D., Kipke, D. R., & McDougall, C. G. (2007). Preliminary investigation of calcium alginate gel as a biocompatible material for endovascular aneurysm embolization in vivo. Neurosurgery, 60(6), 1119-1128. https://doi.org/10.1227/01.NEU.0000255447.90106.12
[61] Jarrah, R., El Sammak, S., Onyedimma, C., Ghaith, A. K., Moinuddin, F. M., Bhandarkar, A. R., … &Bydon, M. (2022). The role of alginate hydrogels as a potential treatment modality for spinal cord injury: a comprehensive review of the literature. Neurospine, 19(2), 272. https://doi.org/10.14245/ns.2244186.093
[62] Singh, B., & Kumar, A. (2020). Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications. International journal of biological macromolecules, 148, 248-257. https://doi.org/10.1016/j.ijbiomac.2020.01.147
[63] Kushchayev, S. V., Giers, M. B., Eng, D. H., Martirosyan, N. L., Eschbacher, J. M., Mortazavi, M. M., … &Preul, M. C. (2016). Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. Journal of Neurosurgery: Spine, 25(1), 114-124.S https://doi.org/10.3171/2015.9.SPINE15628
[64] Kil, D., Bovet Carmona, M., Ceyssens, F., Deprez, M., Brancato, L., Nuttin, B., … & Puers, R. (2019). Dextran as a resorbable coating material for flexible neural probes. Micromachines, 10(1), 61. https://doi.org/10.3390/mi10010061
[65] Panteleichuk, A., Kadzhaya, M., Biloschytsky, V., Shmeleva, A., Petriv, T., Gnatyuk, O., … &Tyortyh, V. (2020). Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats. Cell and Organ Transplantology, 8(1). https://doi.org/10.22494/cot.v8i1.105
[66] Martin, C. A., Radhakrishnan, S., Nagarajan, S., Muthukoori, S., Dueñas, J. M., Ribelles, J. L. G., … &Subbaraya, N. K. (2019). An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC advances, 9(25), 14452-14464. https://doi.org/10.1039/C8RA09688K
[67] Vepari, C.; Kaplan, D.L. Silk as a Biomaterial. Prog. Polym. Sci. 2007, 32, 991-1007 https://doi.org/10.1016/j.progpolymsci.2007.05.013
[68] Chon, J.-W.; Kim, H.; Jeon, H.-N.; Park, K.; Lee, K.-G.; Yeo, J.-H.; Kweon, H.; Lee, H.-S.; Jo, Y.-Y.; Park, Y.K. Silk fibroin hydrolysate inhibits osteoclastogenesis and induces apoptosis of osteoclasts derived from RAW 264.7 cells. Int. J. Mol. Med. 2012, 30, 1203-1210. https://doi.org/10.3892/ijmm.2012.1120
[69] Sirajudheen, P., Poovathumkuzhi, N. C., Vigneshwaran, S., Chelaveettil, B. M., & Meenakshi, S. (2021). Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water-A comprehensive review. Carbohydrate polymers, 273, 118604. https://doi.org/10.1016/j.carbpol.2021.118604
[70] Bayer, O. (1947). Das di‐isocyanat‐polyadditionsverfahren (polyurethane). AngewandteChemie, 59(9), 257-272. https://doi.org/10.1002/ange.19470590901
[71] Södergård, A. and M. Stolt, (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid), in Poly(Lactic Acid), John Wiley & Sons, Inc. p. 27-41. https://doi.org/10.1002/9780470649848.ch3
[72] Yang, Yadie& Zhang, Minglonghai& Ju, Zixin & Tam, Po & Hua, Tao & Waseem Younas, Muhammad & Hasan, Kamrul & Hu, Hong. (2020). Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Textile Research Journal. 91. 004051752098410. https://doi.org/10.1177/0040517520984101
[73] Munzeiwa, W.A., Omondi, B.O. &Nyamori, V.O. A perspective into ring-opening polymerization of ε-caprolactone and lactides: effect of, ligand, catalyst structure and system dynamics, on catalytic activity and polymer properties. Polym. Bull. 81, 9419-9464 (2024). https://doi.org/10.1007/s00289-024-05149-5
[74] Akindoyo, J. O., Beg, M., Ghazali, S., Islam, M. R., Jeyaratnam, N., & Yuvaraj, A. R. (2016). Polyurethane types, synthesis and applications-a review. Rsc Advances, 6(115), 114453-114482. https://doi.org/10.1039/C6RA14525F
[75] Huang, Y., Sohail, H. M., & Lu, J. (2020). Fabrication, assembly, and optoelectric properties of layered double hydroxide/conjugated polymer nanocomposites. In Layered Double Hydroxide Polymer Nanocomposites (pp. 497-529). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101903-0.00012-X
[76] C. Deslouis, T. El Moustafid, M. M. Musiani, B. Tribollet, Electrochim. Acta 1996, 41, 1343. https://doi.org/10.1016/0013-4686(95)00455-6
[77] ] J. Rivnay, S. Inal, B. A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D. M. Delongchamp, G. G. Malliaras, Nat. Commun. 2016, 7 https://doi.org/10.1038/ncomms11287
[78] Kausar, A. (2021). Conducting polymer-based nanocomposites: fundamentals and applications. Elsevier.
[79] P. Moutsatsou, K. Coopman, S. Georgiadou, Biocompatibility assessment of conducting pani/chitosan nanofibers for wound healing applications, Polymers 9 (2017) 687, https://doi.org/10.3390/polym9120687
[80] P.T. Bertuoli, J. Ordono, E. Armelin, S. P’erez-Amodio, A.F. Baldissera, C. A. Ferreira, J. Puiggalí, E. Engel, L.J. Del Valle, C. Alem’ an, Electrospun conducting and biocompatible uniaxial and core-shell fibers having poly(lactic acid), poly(ethylene glycol), and polyaniline for cardiac tissue engineering, ACS Omega 4 (2019) 3660-3672, https://doi.org/10.1021/acsomega.8b03411
[81] Qiu, Z., Hammer, B. A., &Müllen, K. (2020). Conjugated polymers-Problems and promises. Progress in Polymer Science, 100, 101179. https://doi.org/10.1016/j.progpolymsci.2019.101179
[82] G. Jia, A. Zheng, X. Wang, L. Zhang, L. Li, C. Li, Y. Zhang, L. Cao, Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor, Sens. Actuators B Chem. 346 (2021), 130507, https://doi.org/10.1016/j.snb.2021.130507
[83] Lubanska, D., Alrashed, S., Mason, G. T., Nadeem, F., Awada, A., DiPasquale, M., … & Rondeau-Gagné, S. (2022). Impairing proliferation of glioblastoma multiforme with CD44+ selective conjugated polymer nanoparticles. Scientific Reports, 12(1), 12078. https://doi.org/10.1038/s41598-022-15244-0
[84] Hicks, J., Platt, R. S., Holmes, P. S., Howerth, E., Haley, A., Kaplan, M. J., & Kaplan, J. E. (2016). Clinical, imaging and pathological characteristics of brain implanted polylactic co-glycolic acid polymers conjugated with temozolomide. https://doi.org/10.4172/2157-7579.1000325
[85] Caverzán, M. D., Oliveda, P. M., Beaugé, L., Palacios, R. E., Chesta, C. A., & Ibarra, L. E. (2023). Metronomic photodynamic therapy with conjugated polymer nanoparticles in glioblastoma tumor microenvironment. Cells, 12(11), 1541. https://doi.org/10.3390/cells12111541
[86] Ibarra, L. E., Porcal, G. V., Macor, L. P., Ponzio, R. A., Spada, R. M., Lorente, C., … Palacios, R. E. (2018). Metallated porphyrin-doped Conjugated Polymer Nanoparticles for Efficient Photodynamic Therapy of Brain and Colorectal Tumor Cells. Nanomedicine, 13(6), 605-624. https://doi.org/10.2217/nnm-2017-0292
[87] Zhai, D., Liu, B., Shi, Y., Pan, L., Wang, Y., Li, W., … & Yu, G. (2013). Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS nano, 7(4), 3540-3546. https://doi.org/10.1021/nn400482d
[88] Olayo, R., Ríos, C., Salgado-Ceballos, H., Cruz, G. J., Morales, J., Olayo, M. G., … & Diaz-Ruiz, A. (2008). Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma. Journal of materials science: materials in medicine, 19, 817-826 https://doi.org/10.1007/s10856-007-3080-z
[89] Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg2006;104:469 79. https://doi.org/10.3171/jns.2006.104.4.469
[90] Guerra WK, Gaab MR, Dietz H, Mueller JU, Piek J, Fritsch MJ. Surgical decompression for traumatic brain swelling: Indications and results. J Neurosurg1999;90:187 96 https://doi.org/10.3171/jns.1999.90.2.0187
[91] Baumeister S, Peek A, Friedman A, Levin LS, Marcus JR. Management of postneurosurgical bone flap loss caused by infection. PlastReconstr Surg 2008;122:195e 208e. https://doi.org/10.1097/PRS.0b013e3181858eee
[92] Binyamin, G., Shafi, B. M., & Mery, C. M. (2006, November). Biomaterials: a primer for surgeons. In Seminars in pediatric surgery (Vol. 15, No. 4, pp. 276-283). WB Saunders. https://doi.org/10.1053/j.sempedsurg.2006.07.007
[93] Charnley, J. Total hip replacement by low-friction arthroplasty. Clin. Orthop. Relat. Res. 1970, 72, 7-21. https://doi.org/10.1097/00003086-197009000-00003
[94] Galicich, J.H.; Hovind, K.H. Stainless Steel Mesh-Acrylic Cranioplasty. J. Neurosurg. 1967, 27, 376-378. https://doi.org/10.3171/jns.1967.27.4.0376
[95] Kwarcinski, J.; Boughton, P.; Ruys, A.; Doolan, A.; Van Gelder, J. Cranioplasty and Craniofacial Reconstruction: A Review of Implant Material, Manufacturing Method and Infection Risk. Appl. Sci. 2017, 7, 276. https://doi.org/10.3390/app7030276
[96] Gosain, A.K. Biomaterials in facial reconstruction. Oper. Tech. Plast. Reconstr. Surg. 2002, 9, 23-30. https://doi.org/10.1016/S1071-0949(03)90005-9
[97] Antonelli, V.; Maimone, G.; D’Andrea, M.; Tomassini, A.; Bassi, M.; Tosatto, L. “Single-step” resection and cranio-orbital reconstruction for spheno-orbital metastasis with custom made implant. A case report and review of the literature. Int. J. Surg. Case Rep. 2021, 81, 105755. https://doi.org/10.1016/j.ijscr.2021.105755
[98] Eppley, B.L. Alloplastic cranioplasty. Oper. Tech. Plast. Reconstr. Surg. 2002, 9, 16-22. https://doi.org/10.1016/S1071-0949(03)90004-7
[99] Velnar, T.; Bosnjak, R.; Gradisnik, L. Clinical Applications of Poly-Methyl-Methacrylate in Neurosurgery: The In Vivo Cranial Bone Reconstruction. J. Funct. Biomater. 2022, 13, 156 https://doi.org/10.3390/jfb13030156
[100] Unterhofer, C., Wipplinger, C., Verius, M., Recheis, W., Thomé, C., & Ortler, M. (2017). Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling. Neurologiaineurochirurgiapolska, 51(3), 214-220. https://doi.org/10.1016/j.pjnns.2017.02.007
[101] Shash, Y. H. (2024). Assessment of cranial reconstruction utilizing various implant materials: finite element study. Journal of Materials Science: Materials in Medicine, 35(1), 50. https://doi.org/10.1007/s10856-024-06816-9
[102] Alkhaibary, A.; Alharbi, A.; Alnefaie, N.; Almubarak, A.O.; Aloraidi, A.; Khairy, S. Cranioplasty: A Comprehensive Re-view of the History, Materials, Surgical Aspects, and Complications. World Neuros. 2020, 139, 445-452. https://doi.org/10.1016/j.wneu.2020.04.211
[103] Morselli, C.; Zaed, I.; Tropeano, M.P.; Cataletti, G.; Iaccarino, C.; Rossini, Z.; Servadei, F. Comparison between the different types of heterologous materials used in cranioplasty: A systematic review of the literature. J. Neurosurg. Sci. 2020, 63, 723-736. https://doi.org/10.23736/S0390-5616.19.04779-9
[104] Zhang, J.; Tian, W.; Chen, J.; Yu, J.; Zhang, J.; Chen, J. The application of polyetheretherketone (PEEK) implants in cranioplasty. Brain Res. Bull. 2019, 153, 143-149. https://doi.org/10.1016/j.brainresbull.2019.08.010
[105] Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12-19. https://doi.org/10.1016/j.jpor.2015.10.001
[106] Kwarcinski, J.; Boughton, P.; Ruys, A.; Doolan, A.; Van Gelder, J. Cranioplasty and Craniofacial Reconstruction: A Review of Implant Material, Manufacturing Method and Infection Risk. Appl. Sci. 2017, 7, 276. https://doi.org/10.3390/app7030276
[107] DeBarros, A.; Brauge, D.; Quehan, R.; Cavallier, Z.; Roux, F.E.; Moyse, E. One-step customized peek cranioplasty after 3D printed resection template assisted surgery for a frontal intraosseous meningioma: A case report. Turk. Neurosurg. 2020, 31, 142-147. https://doi.org/10.5137/1019-5149.JTN.30192-20.2
[108] Abuzayed, B.; Tuzgen, S.; Canbaz, B.; Yuksel, O.; Tutunculer, B.; Sanus, G.Z. Reconstruction of Growing Skull Fracture within Situ Galeal Graft Duraplasty and Porous Polyethylene Sheet. J. Craniofacial Surg. 2009, 20, 1245-1249. https://doi.org/10.1097/SCS.0b013e3181acdfaf
[109] Kucukyuruk, B.; Biceroglu, H.; Abuzayed, B.; Ulu, M.O.; Sanus, G.Z. Intraosseous meningioma: A rare tumor reconstructed with porous polyethylene. J. Craniofacial Surg. 2010, 21, 936-939. https://doi.org/10.1097/SCS.0b013e3181d84050
[110] Liu, J.K.; Gottfried, O.N.; Cole, C.D.; Dougherty, W.R.; Couldwell, W.T. Porous polyethylene implant for cranioplasty and skull base reconstruction. Neurosurg. Focus 2004, 16, 1-5. https://doi.org/10.3171/foc.2004.16.3.14
[111] Janecka, I.P. New reconstructive technologies in skull base surgery: Role of titanium mesh and porous polyethylene. Arch. Otolaryngol. Head Neck Surg. 2000, 126, 396-401. https://doi.org/10.1001/archotol.126.3.396
[112] Ridwan-Pramana, A.; Wolff, J.; Raziei, A.; Ashton-James, C.E.; Forouzanfar, T. Porous polyethylene implants in facial reconstruction: Outcome and complications. J. Cranio-Maxillofac. Surg. 2015, 43, 1330-1334. https://doi.org/10.1016/j.jcms.2015.06.022
[113] Wang, J.-C.; Wei, L.; Xu, J.; Liu, J.-F.; Gui, L. Clinical Outcome of Cranioplasty With High-Density Porous Polyethylene. J. Craniofacial Surg. 2012, 23, 1404-1406. https://doi.org/10.1097/SCS.0b013e31825e3aeb
[114] Gosain, A.K. Biomaterials in facial reconstruction. Oper. Tech. Plast. Reconstr. Surg. 2002, 9, 23-30. https://doi.org/10.1016/S1071-0949(03)90005-9
[115] Pathak, A., Dhamande, M. M., Pisulkar, S. G., Dubey, S. A., Bhoyar, A., Beri, A., & Sonar, P. R. (2024). The Reconstruction of Post-traumatic Cranial Bone Depression by Duplicating an Autogenous Bone Flap With a Prosthetic Polymethyl Methacrylate Cranial Stent. Cureus, 16(7). https://doi.org/10.7759/cureus.65353
[116] Laakman, R. W., Kaufman, B., Han, J. S., Nelson, A. D., Clampitt, M., O’Block, A. M., Haaga, J. R. and Alfidi, R. J. (1985) ‘MR imaging in patients with metallic implants’, Radiol J, 157, 711-714. https://doi.org/10.1148/radiology.157.3.4059558
[117] Ciccone, W. J., Motz, C., Bentley, C. and Tasto, J. P. (2001) ‘Bioabsorbable implants in orthopaedics: new developments and clinical applications’, J Am AcadOrthop Surg, 9, 280-288. https://doi.org/10.5435/00124635-200109000-00001
[118] therin, M., christel, P., li, S., Garreau, H. and Vert, M. (1992) ‘In vivo degradation of massive poly(alpha hydroxy acids): validation of in vitro findings’, Biomater, 13, 594-600. https://doi.org/10.1016/0142-9612(92)90027-L
[119] Middleton, J. c. and tipton, a. J. (2000) ‘Synthetic biodegradable polymers as orthopaedic devices’, Biomater, 21, 2335-2346. https://doi.org/10.1016/S0142-9612(00)00101-0
[120] Vert, M. (2004) ‘Poly (lactic acid) s’, in Wnek, G.E. and Bowlin, G.L., Encyclopedia of Biomaterials and Biomedical Engineering, New York: Marcel Dekker, pp. 1254-1264.
[121] Wright, D. D. (2004) ‘Degradable polymer composites’, in Wnek, G. E. and Bowlin, G. l., Encyclopedia of Biomaterials and Biomedical Engineering, New York: Marcel Dekker, pp. 423-432.
[122] Bostman, o. M. and Pihlajamaki, H. K. (2000) ‘adverse tissue reactions to bioabsorbable fixation devices’, Clin Orthop, 371, 216-227. https://doi.org/10.1097/00003086-200002000-00026
[123] Briscoe, B., Luckham, P. and Zhu, S. (2000) ‘The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions’, Polymer, 41, 3851-3860. https://doi.org/10.1016/S0032-3861(99)00550-9
[124] Cai, W. and Gupta, R. B. (2002) ‘Hydrogels’, in Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley & Sons. https://doi.org/10.1002/0471238961.0825041807211620.a01
[125] Molyneux, P. (1983) Water-Soluble Synthetic Polymers, Boca Raton, FL: CRC Press
[126] Marten, F. L. (2002) ‘Vinyl alcohol polymers’, in Kirk-Othmer Encyclopedia of Chemical Technology, New York: John wiley& Sons. https://doi.org/10.1002/0471238961.2209142513011820.a01.pub2
[127] Mallapragada, S. K. and Peppas, N. A. (1996) ‘Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water’, J Polym Sci Polym Phys Ed, 34, 1339-1346. https://doi.org/10.1002/(SICI)1099-0488(199605)34:7<1339::AID-POLB15>3.0.CO;2-B
[128] Thomas, J., Lowman, A. and Marcolongo, M. (2003) ‘Novel associated hydrogels for nucleus pulposus replacement’, J Biomed Mater Res, 67A, 1329-1337. https://doi.org/10.1002/jbm.a.10119
[129] Joshi, A., Mehta, S., Vresilovic, E., Karduna, A. and Marcolongo, M. (2005) ‘Nucleus implant parameters significantly change the compressive stiffness of the human lumbar intervertebral disc’, J Biomech Eng, 127, 536-540. https://doi.org/10.1115/1.1894369
[130] Dornish, M., Kaplan, D. and Skaugrud, O. (2001) ‘Standards and guidelines for biopolymers in tissue-engineered medical products’, Ann NY Acad Sci, 944, 388-397 https://doi.org/10.1111/j.1749-6632.2001.tb03850.x
[131] Athanasiou, K. A., Shah, A. R., Hernandez, R. J. and LeBaron, R. G. (2001) ‘Basic science of articular cartilage repair’, Clin Sports Med, 20, 223-247 https://doi.org/10.1016/S0278-5919(05)70304-5
[132] Madihally, S. V. and Matthew, H. W. T. (1999) ‘Porous chitosan scaffolds for tissue engineering’, Biomater, 20, 1133-1142. https://doi.org/10.1016/S0142-9612(99)00011-3
[133] Suh, J. K. F. and Matthew, H. W. T. (2000) ‘Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering’, Biomater, 21, 2589-2598. https://doi.org/10.1016/S0142-9612(00)00126-5
[134] Aimin, C., Chunlin, H., Juliang, B., Tinyin, Z. and Zhichao, D. (1999) ‘Antibiotic loaded chitosan bar. An in vitro, in vivo study of a possible treatment for osteomyelitis’, Clin Orthop, 366, 239-247. https://doi.org/10.1097/00003086-199909000-00031
[135] Domininghaus, H. (1993) Plastics for Engineers, Materials Properties, Applications, Munich, Carl-Hanser Verlag.
[136] Pohler, O. (1983) ‘Degradation of metallic orthopaedic implants in biomaterials’, in Rubin, L., Biomaterials in Reconstructive Surgery, St Louis, MO: Mosby, pp. 158-228.
[137] Horowitz G, Fliss DM, Margalit N, et al. Association between cerebrospinal fluid leak and meningitis after skull base surgery. Otolaryngol Head Neck Surg. 2011;145(4):689-693. https://doi.org/10.1177/0194599811411534
[138] Barth M, Tuettenberg J, Thome C, et al. Watertight dural closure: is it necessary? A prospective randomized trial in patients with supratentorial craniotomies. Neurosurgery. 2008;63(4 Suppl 2): 352-358. discussion 8 https://doi.org/10.1227/01.NEU.0000310696.52302.99
[139] Epstein NE. Dural repair with four spinal sealants: focused review of the manufacturers’ inserts and the current literature. Spine J. 2010;10(12):1065-1068 https://doi.org/10.1016/j.spinee.2010.09.017
[140] Kumar A, Maartens NF, Kaye AH. Evaluation of the use of BioGlue® in neurosurgical procedures. J Clin Neurosci. 2003;10(6):661-664 https://doi.org/10.1016/S0967-5868(03)00163-2
[141] Hutter G, von Felten S, Sailer MH, et al. Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: a randomized controlled trial. J Neurosurg. 2014;121(3):735-744. • One of the few tandomized control trials testing the effectiveness of a dural sea https://doi.org/10.3171/2014.6.JNS131917
[142] Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules. 2017;18(10):3009-3039. https://doi.org/10.1021/acs.biomac.7b00969
[143] Bouten PJM, Zonjee M, Bender J, et al. The chemistry of tissue adhesive materials. Prog Polym Sci. 2014;39:1375-1405. A great overview of the current adhesive biomaterials that could potentially used for dural sealant development https://doi.org/10.1016/j.progpolymsci.2014.02.001
[144] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8-9): 762-798. %@ 0079-6700 https://doi.org/10.1016/j.progpolymsci.2007.05.017
[145] Miki D, Dastgheib K, Kim T, et al. A photopolymerized sealant for corneal lacerations. Cornea. 2002;21(4):393-399 https://doi.org/10.1097/00003226-200205000-00012
[146] Annabi N, Yue K, Tamayol A, et al. Elastic sealants for surgical applications. Eur J Pharm Biopharm. 2015;95(Pt A):27-39. https://doi.org/10.1016/j.ejpb.2015.05.022
[147] Singer AJ, Quinn JV, Hollander JE. The cyanoacrylate topical skin adhesives. Am J Emerg Med. 2008;26(4):490-496 https://doi.org/10.1016/j.ajem.2007.05.015
[148] Mertz PM, Davis SC, Cazzaniga AL, et al. Barrier and antibacterial properties of 2-octyl cyanoacrylate-derived wound treatment films. J Cutan Med Surg. 2003;7(1):1-6 https://doi.org/10.1177/120347540300700101
[149] Leggat PA, Smith DR, Kedjarune U. Surgical applications of cyanoacrylate adhesives: a review of toxicity. ANZ J Surg. 2007;77 (4):209-213 https://doi.org/10.1111/j.1445-2197.2007.04020.x
[150] Preul MC, Bichard WD, Spetzler RF. Toward optimal tissue sealants for neurosurgery: use of a novel hydrogel sealant in a canine durotomy repair model. Neurosurgery. 2003;53(5): 1189-1198. discussion 98-9 https://doi.org/10.1227/01.NEU.0000089481.87226.F7
[151] Campbell, P. K., Bennett, S. L., Driscoll, A., & Sawhney, A. S. (2005). Evaluation of absorbable surgical sealants: in-vitro testing. In-vitro testing, 1170576081-1559295193..
[152] Miller RA, Brady JM, Cutright DE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res. 1977;11(5):711-719 https://doi.org/10.1002/jbm.820110507
[153] Ko WH, Meyrick CW, Rekate HL (1988) Cerebrospinal fluid control system. Proc IEEE 76:1226-1235 https://doi.org/10.1109/5.9669
[154] Silva GA (2004) Introduction to nanotechnology and its applications to medicine. Surg Neurol 61(3):216-220 https://doi.org/10.1016/j.surneu.2003.09.036
[155] Liu CY, Wang MY, Apuzzo ML (2004) The evolution and future of minimalism in neurological surgery. Childs Nerv Syst 20(11-12): 783-789 https://doi.org/10.1007/s00381-004-0931-5
[156] Andrews RJ (2009) Nanotechnology and neurosurgery. J NanosciNanotechnol 9(8):5008-5013 https://doi.org/10.1166/jnn.2009.GR03
[157] Saini R, Saini S, Sharma S (2010) Nanotechnology: the future of medicine. J CutanAesthet Surg 3(1):32-33 https://doi.org/10.4103/0974-2077.63301
[158] Ott B, Constantinescu MA, Erni D, Banic A, Schaffner T, Frenz M (2004) Intramural laser light source and external solder: in vivo evaluation of a new technique for microvascular anastomosis. Lasers Surg Med 35(4):312-316 https://doi.org/10.1002/lsm.20096
[159] Stewart RB, Benbrahim A, LaMuraglia GM et al (1996) Laser assisted vascular welding with real time temperature control. Lasers Surg Med 19(1):9-16 https://doi.org/10.1002/(SICI)1096-9101(1996)19:1<9::AID-LSM2>3.0.CO;2-W
[160] Chang WC, Sretaven DW (2007) Microtechnology in medicine: the emergence of surgical microdevices. Clin Neurosurg 54:137-147
[161] Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300(5616):112-115 https://doi.org/10.1126/science.1081940
[162] Roy S, Ferrara LA, Fleischman AJ, Benzel EC (2001) Microelectromechanical systems and neurosurgery: a new era in a new millennium. Neurosurgery 49(4):779-797 https://doi.org/10.1227/00006123-200110000-00003
[163] Hollenberg BA, Richards CD, Richards R, Bahr DF, Rector DM (2006) A MEMS fabricated flexible electrode array for recording surface field potentials. J Neurosci Methods 153(1):147-153 https://doi.org/10.1016/j.jneumeth.2005.10.016
[164] Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M (2009) 5-ALA Recurrent Glioma Study Group. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study. Neurosurgery 65(6):1070-1076 https://doi.org/10.1227/01.NEU.0000360128.03597.C7
[165] He W, Bellamkonda RV (2005) Nanoscale neuro-integrative coatings for neural implants. Biomaterials 26(16):2983-2990 https://doi.org/10.1016/j.biomaterials.2004.08.021
[166] He W, McConnell GC, Bellamkonda RV (2006) Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng 3(4): 316-326 https://doi.org/10.1088/1741-2560/3/4/009
[167] Ignatius MJ, Sawhney N, Gupta A, Thibadeau BM, Monteiro OR, Brown IG (1998) Bioactive surface coatings for nanoscale instruments: effects on CNS neurons. J Biomed Mater Res 40(2):264-274 https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<264::AID-JBM11>3.0.CO;2-M
[168] Ko WH, Meyrick CW, Rekate HL (1988) Cerebrospinal fluid control system. Proc IEEE 76:1226-1235 https://doi.org/10.1109/5.9669
[169] Elder JB, Liu CY, Apuzzo ML (2008) Neurosurgery in the realm of 10(−9), part 1: stardust and nanotechnology in neuroscience. Neurosurgery 62(1):1-20 https://doi.org/10.1227/01.NEU.0000311058.80249.6B
[170] Chang WC, Hawkes EA, Kliot M, Sretaven DW (2007) In vivo use of a nanoknife for axon microsurgery. Neurosurgery 61(4):683-691 https://doi.org/10.1227/01.NEU.0000298896.31355.80
[171] Lundborg G (1990) Nerve regeneration problems in a clinical perspective. Restor Neurol Neurosci 1(3):297-302 https://doi.org/10.3233/RNN-1990-13418
[172] Chang WC, Kilot M, Sretavan DW (2008) Microtechnology and nanotechnology in nerve repair. Neurol Res 30(10):1053-1062 https://doi.org/10.1179/174313208X362532
[173] Jiang X, Mi R, Hoke A, Chew SY (2012) Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J Tissue Eng Regen Med. doi:10.1002/term.1531 https://doi.org/10.1002/term.1531
[174] Ko WH, Meyrick CW, Rekate HL (1988) Cerebrospinal fluid control system. Proc IEEE 76:1226-1235 https://doi.org/10.1109/5.9669
[175] Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3(3):034002 https://doi.org/10.1088/1748-6041/3/3/034002
[176] Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers 2011; 3(3): 2888-903. https://doi.org/10.3390/cancers3032888
[177] Antunes AM, Alencar MS, da Silva CH, Nunes J, Mendes FM. Trends in nanotechnology patents applied to the health sector. Recent Pat Nanotechnol 2012; 6(1): 29-43. https://doi.org/10.2174/187221012798109309
[178] Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72 https://doi.org/10.1517/17425247.2013.790887
[179] Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 2014; 189: 133-40. https://doi.org/10.1016/j.jconrel.2014.06.053
[180] Kozler P, Pokorny J. Effect of methylprednisolone on the axonal impairment accompanying cellular brain oedema induced by water intoxication in rats. Neuroendocrinol Lett 2012; 33(8): 782-6.
[181] Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL. Real-time imaging of perivascular transport of nanoparticles during convection-enhanced delivery in the rat cortex. Ann Biomed Eng 2012; 40(2): 292-303 https://doi.org/10.1007/s10439-011-0440-0
[182] Diaz RJ, McVeigh PZ, O’Reilly MA, et al. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. Nanomedicine 2014; 10(5): 1075-87. https://doi.org/10.1016/j.nano.2013.12.006
[183] Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts bloodbrain barrier integrity by a gap junction-dependent mechanism. J Neurosci 2011; 31(26): 9456-65 https://doi.org/10.1523/JNEUROSCI.1460-11.2011
[184] Balducci A, Wen Y, Zhang Y, et al. A novel probe for the noninvasive detection of tumor-associated inflammation. OncoImmunology 2013; 2(2): e23034. https://doi.org/10.4161/onci.23034
[185] Kuo YC, Ko HF. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials 2013; 34(20): 4818-30 https://doi.org/10.1016/j.biomaterials.2013.03.013
[186] van Kuyck, K. et al. Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res 140, 165-173 (2003). https://doi.org/10.1016/S0166-4328(02)00295-4
[187] van Kuyck, K., Brak, K., Das, J., Rizopoulos, D. &Nuttin, B. Comparative study of the effects of electrical stimulation in the nucleus accumbens, the mediodorsal thalamic nucleus and the bed nucleus of the stria terminalis in rats with schedule-induced polydipsia. Brain Res 1201, 93-99 (2008). https://doi.org/10.1016/j.brainres.2008.01.043
[188] Aggarwal, M., Zhang, J., Miller, M. I., Sidman, R. L. & Mori, S. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162, 1339-1350 (2009). https://doi.org/10.1016/j.neuroscience.2009.05.070
[189] Li, X., Aggarwal, M., Hsu, J., Jiang, H. & Mori, S. AtlasGuide: Software for stereotaxic guidance using 3D CT/MRI hybrid atlases of developing mouse brains. J. Neurosci. Methods 220, 75-84 (2013). https://doi.org/10.1016/j.jneumeth.2013.08.017
[190] Chan, E., Kovacevíc, N., Ho, S. K. Y., Henkelman, R. M. & Henderson, J. T. Development of a high resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and C57Bl/6J using magnetic resonance imaging and micro-computed tomography. Neuroscience 144, 604-615 (2007). https://doi.org/10.1016/j.neuroscience.2006.08.080
[191] Ramrath, L., Hofmann, U. G. & Schweikard, A. A robotic assistant for stereotactic neurosurgery on small animals,. Int J Med Robot Comp 4(4), 295-303 (2008). https://doi.org/10.1002/rcs.218
[192] Waspe, A. C. et al. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions. Med. Phys. 37, 1647-1659 (2010). https://doi.org/10.1118/1.3312520
[193] Tabaczynski, J.R.; Stoll, T.; Shepard, L.M.; Siddiqui, M.I.G.; Karkhanis, N.V.; Sommer, K. Use of Patient Specific 3D Printed (3DP) Neurovascular Phantoms for Mechanical Assessment of Devices Used in Image Guided Minimally Invasive Procedures. Available online: https://lens.org/035-591-417-289-741 (accessed on 27 September 2021).
[194] Udelson, J.E.; Stevenson, L.W. The Future of Heart Failure Diagnosis, Therapy, and Management. Circulation 2016, 133, 2671-2686. https://doi.org/10.1161/CIRCULATIONAHA.116.023518
[195] Mandelbaum, B.R.; Browne, J.E.; Fu, F.; Micheli, L.; Mosely, J.B.; Erggelet, C.; Minas, T.; Peterson, L. Articular Cartilage Lesions of the Knee. Am. J. Sports Med. 1998, 26, 853-861. https://doi.org/10.1177/03635465980260062201
[196] Miriyev, A.; Xia, B.; Joseph, J.C.; Lipson, H. Additive Manufacturing of Silicone Composites for Soft Actuation. 3D Print. Addit. Manuf. 2019, 6, 309-318. https://doi.org/10.1089/3dp.2019.0116
[197] Michler, R.E. Stem Cell Therapy for Heart Failure. Cardiol. Rev. 2014, 22, 105-116. https://doi.org/10.1097/CRD.0000000000000018
[198] Punyaratabandhu, T.; Liacouras, P.C.; Pairojboriboon, S. Using 3D models in orthopedic oncology: Presenting personalized advantages in surgical planning and intraoperative outcomes. 3D Print. Med. 2018, 4, 12. https://doi.org/10.1186/s41205-018-0035-6
[199] Moldovanu, C.-G.; Lebovici, A.; Buruian, M.M. A systematic review of the clinical value and applications of three-dimensional virtual reconstructions in renal tumors. Med. Pharm. Rep. 2021, 95, 11-23. https://doi.org/10.15386/mpr-2129
[200] Lupulescu, C.; Sun, Z. A Systematic Review of the Clinical Value and Applications of Three-Dimensional Printing in Renal Surgery. J. Clin. Med. 2019, 8, 990. https://doi.org/10.3390/jcm8070990
[201] Lee, H.; Nguyen, N.H.; Hwang, S.I.; Lee, H.J.; Hong, S.K.; Byun, S.S. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int. Braz. J. Urol. 2018, 44, 952-957. https://doi.org/10.1590/s1677-5538.ibju.2018.0162
[202] Dai, S.; Wang, Q.; Jiang, Z.; Liu, C.; Teng, X.; Yan, S.; Xia, D.; Tuo, Z.; Bi, L. Application of Three-Dimensional Printing Technology in Renal Diseases. Front. Med. 2022, 9, 1088592. https://doi.org/10.3389/fmed.2022.1088592
[203] Hoon Kang, S. 3D Printing and Characterization of a Soft and Biostable Elastomer with High Flexibility and Strength for Biomedical Applications. Morressier. 18 September 2020. https://doi.org/10.26226/morressier.5f5f8e69aa777f8ba5bd6150
[204] Bandyopadhyay, A.; Traxel, K.D.; Bose, S. Nature-inspired materials and structures using 3D Printing. Mater. Sci. Eng. R Rep. 2021, 145, 100609. https://doi.org/10.1016/j.mser.2021.100609
[205] Piao, Y.; You, H.; Xu, T.; Bei, H.P.; Piwko, I.Z.; Kwan, Y.Y.; Zhao, X. Biomedical applications of gelatin methacryloyl hydrogels. Eng. Regen. 2021, 2, 47-56. https://doi.org/10.1016/j.engreg.2021.03.002
[206] Kreider, P.B.; Cardew-Hall, A.; Sommacal, S.; Chadwick, A.; Hümbert, S.; Nowotny, S.; Nisbet, D.; Tricoli, A.; Compston, P. The effect of a superhydrophobic coating on moisture absorption and tensile strength of 3D-printed carbon-fibre/polyamide. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106380. https://doi.org/10.1016/j.compositesa.2021.106380
[207] Wu, G.-H.; Hsu, S. Review: Polymeric-Based 3D Printing for Tissue Engineering. J. Med. Biol. Eng. 2015, 35, 285-292. [PubMed] https://doi.org/10.1007/s40846-015-0038-3
[208] Morteza, Z.; James, W.J.; Mostafa, Y. 3D Printing of Short-Carbon-Fiber-Reinforced Thermoset Polymer Composites via Frontal Polymerization. ACS Appl. Mater. Interfaces 2022, 14, 16694-16702. https://doi.org/10.1021/acsami.2c02076
[209] Yang, W.; Liu, L.; Zhou, Z.; Liu, H.; Xie, B.; Xu, W. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization. Appl. Surf. Sci. 2013, 282, 809-819. https://doi.org/10.1016/j.apsusc.2013.06.063
[210] Okubo, M.; Yonehara, H.; Kurino, T. Influence of viscosity within polymerizing particle on the morphology of micron-sized, monodisperse composite polymer particles produced by seeded polymerization for the dispersion of highly monomer-swollen polymer particles. Colloid Polym. Sci. 2003, 281, 1002-1005. https://doi.org/10.1007/s00396-003-0875-4
[211] Coppola, A.M.; Huelskamp, S.R.; Tanner, C.; Rapking, D.; Ricchi, R.D. Application of tailored fiber placement to fabricate automotive composite components with complex geometries. Compos. Struct. 2023, 313, 116855. https://doi.org/10.1016/j.compstruct.2023.116855
[212] Khan, S.B.; Li, N.; Liang, J.; Xiao, C.; Sun, X.; Chen, S. Influence of Exposure Period and Angle Alteration on the Flexural Resilience and Mechanical Attributes of Photosensitive Resin. Nanomaterials 2022, 12, 2566. https://doi.org/10.3390/nano12152566
[213] Tashima, T. (2020). Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 25 (21). https://doi.org/10.3390/molecules25215188
[214] Sandberg, D. I., Peet, M. M., Johnson, M. D., Cole, P., Koru-Sengul, T., and Luqman, A. W. (2012). Chemotherapy Administration Directly into the Fourth Ventricle in a Nonhuman Primate Model. Ped 9 (5), 530-541. https://doi.org/10.3171/2012.1.PEDS11410
[215] Sandberg, D. I., Rytting, M., Zaky, W., Kerr, M., Ketonen, L., Kundu, U., et al. (2015). Methotrexate Administration Directly into the Fourth Ventricle in Children with Malignant Fourth Ventricular Brain Tumors: a Pilot Clinical Trial. J. Neurooncol. 125 (1), 133-141. https://doi.org/10.1007/s11060-015-1878-y
[216] Bottros, M. M., and Christo, P. J. (2014). Current Perspectives on Intrathecal Drug Delivery. J. Pain Res. 7, 615-626. https://doi.org/10.2147/JPR.S37591
[217] Householder, K. T., Dharmaraj, S., Sandberg, D. I., Wechsler-Reya, R. J., and Sirianni, R. W. (2019). Fate of Nanoparticles in the central Nervous System after Intrathecal Injection in Healthy Mice. Sci. Rep. 9 (1), 12587. https://doi.org/10.1038/s41598-019-49028-w
[218] Lammers, T., Kiessling, F., Hennink, W. E., and Storm, G. (2010). Nanotheranostics and Image-Guided Drug Delivery: Current Concepts and Future Directions. Mol. Pharmaceutics 7 (6), 1899-1912. https://doi.org/10.1021/mp100228v