Polymers in Cardiovascular Surgery

$40.00

Polymers in Cardiovascular Surgery

Sithara Gopinath, P. Radhakrishnan Nair, Suresh Mathew

Polymers are very useful in developing cardiovascular surgery, with flexibility, biocompatibility, and possible adjustable mechanical strength. This chapter looks into different forms of polymers, such as natural and synthetic, used in cardiovascular devices, for instance, stents, heart valves, and vascular grafts. Some key advancements have been discussed in polymer synthesis, surface modifications for enhanced hemocompatibility, and their clinical performance. Areas of challenge include the degradation of polymers and future developments that involve biohybrid materials, smart polymers, and so on. The chapter includes discussions on regulatory and ethical considerations so that eventually, polymers shall play a central role in the future of cardiovascular interventions.

Keywords
Cardiovascular Polymers, Biocompatible Materials, Polymeric Biomaterials, Tissue Engineering, Drug-Eluting Polymers, Medical Devices, Surgical Implants

Published online 2/15/2025, 26 pages

Citation: Sithara Gopinath, P. Radhakrishnan Nair, Suresh Mathew, Polymers in Cardiovascular Surgery, Materials Research Foundations, Vol. 172, pp 87-112, 2025

DOI: https://doi.org/10.21741/9781644903353-4

Part of the book on Applications of Polymers in Surgery II

References
[1] B. Gaye, G.S. Tajeu, R.S. Vasan, C. Lassale, N.B. Allen, A. Singh-Manoux, X. Jouven, Association of changes in cardiovascular health metrics and risk of subsequent cardiovascular disease and mortality, J. Am. Heart Assoc. 9 (2020) e017458. https://doi.org/10.1161/JAHA.120.017458
[2] L.L. Boland, A.R. Folsom, P.D. Sorlie, H.A. Taylor, W.D. Rosamond, L.E. Chambless, L.S. Cooper, Occurrence of unrecognized myocardial infarction in subjects aged 45 to 65 years (the ARIC study), Am. J. Cardiol. 90 (2002) 927–931. https://doi.org/10.1016/S0002-9149(02)02691-0
[3] V. Fuster, R.A. O’Rourke, R. Walsh, P. Poole-Wilson, Hurst’s the Heart, McGraw Hill Professional, New York, NY, 2007.
[4] A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, M.J. Blaha, S. Dai, E.S. Ford, C.S. Fox, S. Franco, et al., Executive summary: Heart disease and stroke statistics—2014 update: A report from the American Heart Association, Circulation 129 (2014) 399–410. https://doi.org/10.1161/01.CIR.0000442015.53336.12
[5] ARIC Study, Community surveillance event rates. Atherosclerosis Risk in Communities (ARIC) Study Website, https://sites.cscc.unc.edu/aric/ (accessed on 30 September 2020).
[6] T. Thom, W.B. Kannel, H. Silbershatz, R.B. D’Agostino, Cardiovascular diseases in the United States and prevention approaches, in: V. Fuster, R.W. Alexander, R.A. O’Rourke, R. Roberts, S.B. King, H.J.J. Wellens (Eds.), Hurst’s the Heart, McGraw-Hill, New York, NY, 2001, pp. 3–18.
[7] C. Spadaccio, C. Antoniades, A. Nenna, C. Chung, R. Will, M. Chello, M.F.L. Gaudino, Preventing treatment failures in coronary artery disease: What can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries?, Cardiovasc. Res. 116 (2019) 505–519. https://doi.org/10.1093/cvr/cvz199
[8] L. Räber, S. Brugaletta, K. Yamaji, C.J. O’Sullivan, S. Otsuki, T. Koppara, M. Taniwaki, Y. Onuma, X. Freixa, F.R. Eberli, et al., Very late scaffold thrombosis: Intracoronary imaging and histopathological and spectroscopic findings, J. Am. Coll. Cardiol. 66 (2015) 1901–1914. https://doi.org/10.1016/j.jacc.2015.08.859
[9] A.V. Finn, G. Nakazawa, M. Joner, F.D. Kolodgie, E.K. Mont, H.K. Gold, R. Virmani, Vascular responses to drug eluting stents: Importance of delayed healing, Arterioscler. Thromb. Vasc. Biol. 27 (2007) 1500–1510. https://doi.org/10.1161/ATVBAHA.106.139154
[10] M. Joner, A.V. Finn, A. Farb, E.K. Mont, F.D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H.K. Gold, R. Virmani, Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk, J. Am. Coll. Cardiol. 48 (2006) 193–202. https://doi.org/10.1016/j.jacc.2006.03.042
[11] G. Nakazawa, A.V. Finn, M. Joner, E. Ladich, R. Kutys, E.K. Mont, H.K. Gold, A.P. Burke, F.D. Kolodgie, R. Virmani, Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients, Circulation 118 (2008) 1138–1145. https://doi.org/10.1161/CIRCULATIONAHA.108.769331
[12] T. Tada, R.A. Byrne, I. Simunovic, L.A. King, S. Cassese, M. Joner, M. Fusaro, S. Schneider, S. Schulz, T. Ibrahim, et al., Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: Results from a registry of 18,334 patients, JACC Cardiovasc. Interv. 6 (2013) 1267–1274. https://doi.org/10.1016/j.jcin.2013.07.008
[13] M.S. Chen, J.M. John, D.P. Chew, D.S. Lee, S.G. Ellis, D.L. Bhatt, Bare metal stent restenosis is not a benign clinical entity, Am. Heart J. 151 (2006) 1260–1264. https://doi.org/10.1016/j.ahj.2006.01.021
[14] D.R. Holmes, B.G. Firth, D.L. Wood, Paradigm shifts in cardiovascular medicine, J. Am. Coll. Cardiol. 43 (2004) 507–512. https://doi.org/10.1016/j.jacc.2003.11.011
[15] F. Bozsak, D. Gonzalez-Rodríguez, Z. Sternberger, P. Belitz, T. Bewley, J.-M. Chomaz, A.I. Barakat, Optimization of drug delivery by drug-eluting stents, PLoS ONE 10 (2015) e0130182. https://doi.org/10.1371/journal.pone.0130182
[16] G. Acharya, K. Park, Mechanisms of controlled drug release from drug-eluting stents, Adv. Drug Deliv. Rev. 58 (2006) 387–401. https://doi.org/10.1016/j.addr.2006.01.016
[17] T. Seo, A. Lafont, S.-Y. Choi, A.I. Barakat, Drug-eluting stent design is a determinant of drug concentration at the endothelial cell surface, Ann. Biomed. Eng. 44 (2016) 302–314. https://doi.org/10.1007/s10439-015-1510-5
[18] C.-W. Hwang, A.D. Levin, M. Jonas, P.H. Li, E.R. Edelman, Thrombosis modulates arterial drug distribution for drug-eluting stents, Circulation 111 (2005) 1619–1626. https://doi.org/10.1161/01.CIR.0000158471.92910.59
[19] B. Balakrishnan, J.F. Dooley, G. Kopia, E.R. Edelman, Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution, J. Control. Release 123 (2007) 100–108. https://doi.org/10.1016/j.jconrel.2007.07.015
[20] J.E. Sousa, M.A. Costa, A. Abizaid, B.J. Rensing, A.S. Abizaid, L.F. Tanajura, K. Kozuma, G. Van Langenhove, A.G. Sousa, R. Falotico, et al., Sustained suppression of neointimal proliferation by sirolimus-eluting stents: One-year angiographic and intravascular ultrasound follow-up, Circulation 104 (2001) 2007–2011. https://doi.org/10.1161/hc440
[21] B. Nasseri, N. Soleimani, N. Rabiee, et al., Point-of-care microfluidic devices for pathogen detection, Biosens. Bioelectron. 117 (2018) 112–128. https://doi.org/10.1016/j.bios.2018.05.050
[22] S. Bahrami, N. Baheiraei, M. Mohseni, et al., Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering, J. Biomater. Appl. 34 (2019) 74–85. https://doi.org/10.1177/0885328219839037
[23] M.G. Toudeshkchoui, N. Rabiee, M. Rabiee, et al., Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review, Biomed. Microdevices 21 (2019) 93. https://doi.org/10.1007/s10544-019-0439-0
[24] C. Bearzi, C. Gargioli, D. Baci, et al., PlGF–MMP9-engineered iPS cells supported on a PEG–fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium, Cell Death Dis. 5 (2014) e1053. https://doi.org/10.1038/cddis.2014.12
[25] Shen, Yihong, Xiao Yu, Jie Cui, Fan Yu, Mingyue Liu, Yujie Chen, Jinglei Wu, Binbin Sun, and Xiumei Mo. “Development of biodegradable polymeric stents for the treatment of cardiovascular diseases.” Biomolecules 12, no. 9 (2022): 1245.
[26] S. Nour, et al., A review of accelerated wound healing approaches: biomaterial-assisted tissue remodeling, J. Mater. Sci. Mater. Med. 30 (2019) 120.
[27] W.-H. Zimmermann, T. Eschenhagen, Cardiac tissue engineering for replacement therapy, Heart Fail. Rev. 8 (2003) 259–269. https://doi.org/10.1023/A:1024725818835.
[28] G. Vunjak-Novakovic, N. Tandon, A. Godier, et al., Challenges in cardiac tissue engineering, Tissue Eng. Part B Rev. 16 (2009) 169–187. https://doi.org/10.1089/ten.teb.2009.0352
[29] G. Eng, et al., Cardiac tissue engineering, in: Principles of Tissue Engineering, Elsevier, 2014, pp. 771–792.
[30] M. Shachar, S. Cohen, Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors, Heart Fail. Rev. 8 (2003) 271–276. https://doi.org/10.1023/A:1024729919743
[31] S. Huang, Y. Yang, Q. Yang, et al., Engineered circulatory scaffolds for building cardiac tissue, J. Thorac. Dis. 10 (2018) S2312. https://doi.org/10.21037/jtd.2017.12.92
[32] Ambreen, Jaweria, Thasleema Parveen Malick, Jia Fu Tan, Harith Syahmie Zulfikree, Rathosivan Gopal, Yong Kim Hak, Sivakumar Sivalingam, Hirowati Ali, and Syafiqah Saidin. “Scientific evaluation on biodegradable and biofunctional polyurethane incorporated chitosan/elastin electrospun membranes in compared with synthetic polymeric expanded polytetrafluoroethylene and polyethylene terephthalate vascular membranes.” Journal of Drug Delivery Science and Technology (2024): 106221. https://doi.org/10.1016/j.jddst.2024.106221
[33] Slart, Riemer HJA, Andor WJM Glaudemans, Olivier Gheysens, Mark Lubberink, Tanja Kero, Marc R. Dweck, Gilbert Habib et al. “Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM.” European journal of nuclear medicine and molecular imaging 48 (2021): 1016-1039. https://doi.org/10.1007/s00259-020-05066-5
[34] Lauri, Chiara, Roberto Iezzi, Michele Rossi, Giovanni Tinelli, Simona Sica, Alberto Signore, Alessandro Posa et al. “Imaging modalities for the diagnosis of vascular graft infections: a consensus paper amongst different specialists.” Journal of Clinical Medicine 9, no. 5 (2020): 1510. https://doi.org/10.3390/jcm9051510
[35] Ciolacu, Diana Elena, Raluca Nicu, and Florin Ciolacu. “Natural polymers in heart valve tissue engineering: strategies, advances and challenges.” Biomedicines 10, no. 5 (2022): 1095. https://doi.org/10.3390/biomedicines10051095
[36] Rezvova, Maria A., Kirill Y. Klyshnikov, Aleksander A. Gritskevich, and Evgeny A. Ovcharenko. “Polymeric heart valves will displace mechanical and tissue heart valves: a new era for the medical devices.” International Journal of Molecular Sciences 24, no. 4 (2023): 3963. https://doi.org/10.3390/ijms24043963
[37] Mu, Lei, Ruonan Dong, and Baolin Guo. “Biomaterials‐based cell therapy for myocardial tissue regeneration.” Advanced Healthcare Materials 12, no. 10 (2023): 2202699. https://doi.org/10.1002/adhm.202202699
[38] Tamimi, Maryam, Sarah Rajabi, and Mohamad Pezeshki-Modaress. “Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application.” International Journal of Biological Macromolecules 164 (2020): 389-402. https://doi.org/10.1016/j.ijbiomac.2020.07.134
[39] Beltran-Vargas, Nohra E., Eduardo Peña-Mercado, Concepción Sánchez-Gómez, Mario Garcia-Lorenzana, Juan-Carlos Ruiz, Izlia Arroyo-Maya, Sara Huerta-Yepez, and José Campos-Terán. “Sodium alginate/chitosan scaffolds for cardiac tissue engineering: The influence of its three-dimensional material preparation and the use of gold nanoparticles.” Polymers 14, no. 16 (2022): 3233. https://doi.org/10.3390/polym14163233
[40] Bharadwaz, Angshuman, and Ambalangodage C. Jayasuriya. “Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.” Materials Science and Engineering: C 110 (2020): 110698. https://doi.org/10.1016/j.msec.2020.110698
[41] Suhag, Deepa. “Biomaterials for Cardiovascular Applications.” In Handbook of Biomaterials for Medical Applications, Volume 2: Applications, pp. 105-139. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-5906-4_4
[42] Major, Roman, Maciej Gawlikowski, Marek Sanak, Juergen M. Lackner, and Artur Kapis. “Design, manufacturing technology and in-vitro evaluation of original, polyurethane, petal valves for application in pulsating ventricular assist devices.” Polymers 12, no. 12 (2020): 2986. https://doi.org/10.3390/polym12122986
[43] Patel, Raj, and Dhruvi Patel. “Injectable Hydrogels in Cardiovascular Tissue Engineering.” Polymers 16, no. 13 (2024): 1878. https://doi.org/10.3390/polym16131878
[44] Zhao, Jing, and Yakai Feng. “Surface engineering of cardiovascular devices for improved hemocompatibility and rapid endothelialization.” Advanced Healthcare Materials 9, no. 18 (2020): 2000920. https://doi.org/10.1002/adhm.202000920
[45] Desai, Mital, and George Hamilton. “Graft Materials: Present and Future.” Mechanisms of Vascular Disease: A Textbook for Vascular Specialists (2020): 621-651. https://doi.org/10.1007/978-3-030-43683-4_28
[46] Şensu, Berna. “Design of electrospun cardiovascular bypass graft using derivative of poly (Alkylene terephthalate).” PhD diss., Institute of Science And Technology, 2020.
[47] Singh, Sameer K., Mateusz Kachel, Estibaliz Castillero, Yingfei Xue, David Kalfa, Giovanni Ferrari, and Isaac George. “Polymeric prosthetic heart valves: A review of current technologies and future directions.” Frontiers in Cardiovascular Medicine 10 (2023): 1137827. https://doi.org/10.3389/fcvm.2023.1137827
[48] Zhao, Jing, and Yakai Feng. “Surface engineering of cardiovascular devices for improved hemocompatibility and rapid endothelialization.” Advanced Healthcare Materials 9, no. 18 (2020): 2000920. https://doi.org/10.1002/adhm.202000920
[49] Badv, Maryam, Fereshteh Bayat, Jeffrey I. Weitz, and Tohid F. Didar. “Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants.” Biomaterials 258 (2020): 120291. https://doi.org/10.1016/j.biomaterials.2020.120291
[50] Hong, Jun Ki. “Liquid-Infused Surfaces for Anti–Thrombogenic Cardiovascular Medical Devices.” PhD diss., 2023.
[51] Kumar, Vijay Bhooshan, Om Shanker Tiwari, Gal Finkelstein-Zuta, Sigal Rencus-Lazar, and Ehud Gazit. “Design of functional RGD peptide-based biomaterials for tissue engineering.” Pharmaceutics 15, no. 2 (2023): 345. https://doi.org/10.3390/pharmaceutics15020345
[52] Luu, Cuong Hung, Nam‐Trung Nguyen, and Hang Thu Ta. “Unravelling Surface Modification Strategies for Preventing Medical Device‐Induced Thrombosis.” Advanced Healthcare Materials 13, no. 1 (2024): 2301039. https://doi.org/10.1002/adhm.202301039
[53] Escobar, Ane, Nicolas Muzzio, and Sergio Enrique Moya. “Antibacterial layer-by-layer coatings for medical implants.” Pharmaceutics 13, no. 1 (2021): 16. https://doi.org/10.3390/pharmaceutics13010016
[54] Negut, Irina, Bogdan Bita, and Andreea Groza. “Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections.” Polymers 14, no. 8 (2022): 1611. https://doi.org/10.3390/polym14081611
[55] Fooladi, Saba, Mohammad Hadi Nematollahi, Navid Rabiee, and Siavash Iravani. “Bacterial cellulose-based materials: A perspective on cardiovascular tissue engineering applications.” ACS Biomaterials Science & Engineering 9, no. 6 (2023): 2949-2969. https://doi.org/10.1021/acsbiomaterials.3c00300
[56] Patel, Unnati, and Emily C. Hunt. “Recent advances in combating bacterial infections by using hybrid Nano-Systems.” Journal of Nanotheranostics 4, no. 3 (2023): 429-462. https://doi.org/10.3390/jnt4030019
[57] Cassa, Maria Antonia, Piergiorgio Gentile, Joel Girón-Hernández, Gianluca Ciardelli, and Irene Carmagnola. “Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices.” Biomaterials Science (2024). https://doi.org/10.1039/D4BM00936C
[58] Abizaid, Alexandre, and J. Ribamar Costa Jr. “New drug-eluting stents: an overview on biodegradable and polymer-free next-generation stent systems.” Circulation: Cardiovascular Interventions 3, no. 4 (2010): 384-393. https://doi.org/10.1161/CIRCINTERVENTIONS.109.891192