Polymers Sealants and Adhesives in General Surgery
Y. Aylin Esquivel-Lozano, Pamela Martinez-Gomez, David Romero-Fierro, Lorena Duarte-Peña, Emilio Bucio
Polymers are of great importance in modern medicine due to their multiple and varied applications in this area, among which their use in the design of new adhesive materials and surgical sealants stand out. This alternative to conventional treatments offers better characteristics such as better application, prevention of infections in the treated areas and an effective hemostatic response. This chapter addresses some forms of synthesis in which natural and synthetic polymers are investigated, as well as their mechanisms of action and the different classes of sealants and adhesives that have been used.
Keywords
Polymers, Sealants, Adhesives, Hemostatic, Surgical
Published online 2/15/2025, 22 pages
Citation: Y. Aylin Esquivel-Lozano, Pamela Martinez-Gomez, David Romero-Fierro, Lorena Duarte-Peña, Emilio Bucio, Polymers Sealants and Adhesives in General Surgery, Materials Research Foundations, Vol. 172, pp 43-64, 2025
DOI: https://doi.org/10.21741/9781644903353-2
Part of the book on Applications of Polymers in Surgery II
References
[1] E. Rezvani Ghomi, M. Niazi, S. Ramakrishna, The evolution of wound dressings: From traditional to smart dressings, Polym Adv Technol 34 (2023) 520–530. https://doi.org/10.1002/pat.5929
[2] A. Sanyal, S. Roy, A. Ghosh, M. Chakraborty, A. Ghosh, D. Mandal, The next frontier in hemorrhagic management: A comprehensive review on development of natural polymer-based injectable hydrogels as promising hemostatic dressings, Chemical Engineering Journal 497 (2024) 1–49. https://doi.org/10.1016/j.cej.2024.155033
[3] R. Urban-Chmiel, A. Marek, D. Stępień-Pyśniak, K. Wieczorek, M. Dec, A. Nowaczek, J. Osek, Antibiotic Resistance in Bacteria—A Review, Antibiotics 11 (2022) 2–40. https://doi.org/10.3390/antibiotics11081079
[4] M. Erdi, A. Sandler, P. Kofinas, Polymer nanomaterials for use as adjuvant surgical tools, WIREs Nanomedicine and Nanobiotechnology 15 (2023) 1–27. https://doi.org/10.1002/wnan.1889
[5] K. Vishakha S, B. Kishor D, R. Sudha S., Natural Polymers-A comprehensive Review, International Journal of Research in Pharmaceutical and Biomedical Sciences 3 (2012) 1597–1613. https://www.researchgate.net/publication/236217541
[6] S.H. Imam, C. Bilbao-Sainz, B.-S. Chiou, G.M. Glenn, W.J. Orts, Biobased adhesives, gums, emulsions, and binders: current trends and future prospects, J Adhes Sci Technol 27 (2013) 1972–1997. https://doi.org/10.1080/01694243.2012.696892
[7] M. Brennan, Fibrin glue, Blood Rev 5 (1991) 240–244. https://doi.org/10.1016/0268-960X(91)90015-5
[8] M.R. Jackson, Fibrin sealants in surgical practice: An overview, The American Journal of Surgery 182 (2001) S1–S7. https://doi.org/10.1016/S0002-9610(01)00770-X
[9] C.J. Dunn, K.L. Goa, Fibrin Sealant, Drugs 58 (1999) 863–886. https://doi.org/10.2165/00003495-199958050-00010
[10] J. Huang, Y. Liu, L. Yang, F. Zhou, Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus, Int J Biol Macromol 129 (2019) 980–988. https://doi.org/10.1016/j.ijbiomac.2019.02.079
[11] F. Notario-Pérez, A. Martín-Illana, R. Cazorla-Luna, R. Ruiz-Caro, M. Veiga, Applications of Chitosan in Surgical and Post-Surgical Materials, Mar Drugs 20 (2022) 1–28. https://doi.org/10.3390/md20060396
[12] R. Franco, F. Gianfreda, M. Miranda, A. Barlattani, P. Bollero, The hemostatic properties of chitosan in oral surgery, Biomedical and Biotechnology Research Journal (BBRJ) 4 (2020) 186–188. https://doi.org/10.4103/bbrj.bbrj_43_20
[13] K. Su, C. Wang, Recent advances in the use of gelatin in biomedical research, Biotechnol Lett 37 (2015) 2139–2145. https://doi.org/10.1007/s10529-015-1907-0
[14] G.K. Saraogi, P. Gupta, U.D. Gupta, N.K. Jain, G.P. Agrawal, Gelatin nanocarriers as potential vectors for effective management of tuberculosis, Int J Pharm 385 (2010) 143–149. https://doi.org/10.1016/j.ijpharm.2009.10.004
[15] H.J. Zhang, S. Zha, X. Wang, L. Xie, S. Liang, X. Zou, X. Liu, X. Dang, X. Wang, Dual Cross-Linked Gelatin-Based Adhesive for Leather with Low Curing Temperature and Improved Bonding Strength, ACS Appl Polym Mater 5 (2023) 10515–10525. https://doi.org/10.1021/acsapm.3c02526
[16] M. Hou, X. Wang, O. Yue, M. Zheng, H. Zhang, X. Liu, Development of a multifunctional injectable temperature-sensitive gelatin-based adhesive double-network hydrogel, Biomaterials Advances 134 (2022) 1–11. https://doi.org/10.1016/j.msec.2021.112556
[17] S.U.D. Wani, S.P. Gautam, Z.L. Qadrie, H.V. Gangadharappa, Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review, Int J Biol Macromol 163 (2020) 2145–2161. https://doi.org/10.1016/j.ijbiomac.2020.09.057
[18] Y. Wang, U.-J. Kim, D.J. Blasioli, H.-J. Kim, D.L. Kaplan, In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells, Biomaterials 26 (2005) 7082–7094. https://doi.org/10.1016/j.biomaterials.2005.05.022
[19] Md.T. Sultan, H. Hong, O.J. Lee, O. Ajiteru, Y.J. Lee, J.S. Lee, H. Lee, S.H. Kim, C.H. Park, Silk Fibroin-Based Biomaterials for Hemostatic Applications, Biomolecules 12 (2022) 1–14. https://doi.org/10.3390/biom12050660
[20] A.E. Brooks, The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery, Front Chem 3 (2015) 1–8. https://doi.org/10.3389/fchem.2015.00065
[21] M. Abate, C. Schiavone, V. Salini, The Use of Hyaluronic Acid after Tendon Surgery and in Tendinopathies, Biomed Res Int 2014 (2014) 1–6. https://doi.org/10.1155/2014/783632
[22] K.L. Goa, P. Benfield, Hyaluronic Acid, Drugs 47 (1994) 536–566. https://doi.org/10.2165/00003495-199447030-00009
[23] F. Scognamiglio, A. Travan, I. Rustighi, P. Tarchi, S. Palmisano, E. Marsich, M. Borgogna, I. Donati, N. de Manzini, S. Paoletti, Adhesive and sealant interfaces for general surgery applications, J Biomed Mater Res B Appl Biomater 104 (2016) 626–639. https://doi.org/10.1002/jbm.b.33409
[24] D.M. Fitzgerald, Y.L. Colson, M.W. Grinstaff, Synthetic pressure sensitive adhesives for biomedical applications, Prog Polym Sci 142 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101692
[25] S. Magalhães, L. Alves, B. Medronho, A.C. Fonseca, A. Romano, J.F.J. Coelho, M. Norgren, Brief Overview on Bio-Based Adhesives and Sealants, Polymers (Basel) 11 (2019) 1685. https://doi.org/10.3390/polym11101685
[26] T. Dunn, Adhesives, in: William Andrew Publishing, Oxford, 2015: pp. 233–238. https://doi.org/10.1016/B978-0-323-26436-5.00028-X
[27] G.-Y. Han, S.-K. Hwang, K.-H. Cho, H.-J. Kim, C.-S. Cho, Progress of tissue adhesives based on proteins and synthetic polymers, Biomater Res 27 (2023). https://doi.org/10.1186/s40824-023-00397-4
[28] P.A. Leggat, D.R. Smith, U. Kedjarune, SURGICAL APPLICATIONS OF CYANOACRYLATE ADHESIVES: A REVIEW OF TOXICITY, ANZ J Surg 77 (2007) 209–213. https://doi.org/10.1111/J.1445-2197.2007.04020.X
[29] K.L. Mittal, Progress in Adhesion and Adhesives, Progress in Adhesion and Adhesives (2015) 1–496. https://doi.org/10.1002/9781119162346
[30] E.M. Verhulst, R.R. Galarza, I.P. Herring, R.V. Ramos, Comparison of conjunctival pedicle flap to corneal adhesion achieved by Tisseel® fibrin glue, ethyl cyanoacrylate adhesive, ReSure® hydrogel sealant, and conventional suturing with 8-0 VICRYL® suture, (2023). http://hdl.handle.net/10919/113762 (accessed August 19, 2024).
[31] C. Shen, Y. Li, Q. Meng, Adhesive polyethylene glycol-based hydrogel patch for tissue repair, Colloids Surf B Biointerfaces 218 (2022). https://doi.org/10.1016/j.colsurfb.2022.112751
[32] Z. Zhu, Y. Zhai, N. Zhang, D. Leng, P. Ding, The development of polycarbophil as a bioadhesive material in pharmacy, Asian J Pharm Sci 8 (2013) 218–227. https://doi.org/10.1016/j.ajps.2013.09.003
[33] X. Tang, C. Wang, Study on the physical properties of bioadhesive polymers, Chinese Pharmaceutical Journal 39 (2005) 361–364.
[34] L. Ge, S. Chen, Recent Advances in Tissue Adhesives for Clinical Medicine, Polymers 12 (2020). https://doi.org/10.3390/polym12040939
[35] N. Artzi, T. Shazly, C. Crespo, A.B. Ramos, H.K. Chenault, E.R. Edelman, Characterization of star adhesive sealants based on PEG/dextran hydrogels., Macromolecular Bioscience 9 (2009) 754–765. https://doi.org/10.1002/mabi.200800355
[36] C. Shen, Y. Li, Q. Meng, Adhesive polyethylene glycol-based hydrogel patch for tissue repair, Colloids and Surfaces B: Biointerfaces 218 (2022) 112751. https://doi.org/https://doi.org/10.1016/j.colsurfb.2022.112751
[37] M. Ghovvati, S. Baghdasarian, A. Baidya, J. Dhal, N. Annabi, Engineering a highly elastic bioadhesive for sealing soft and dynamic tissues., Journal of Biomedical Materials Research. Part B, Applied Biomaterials 110 (2022) 1511–1522. https://doi.org/10.1002/jbm.b.35012
[38] M. Li, Y. Zhang, Y. Liu, G. Chen, N. Zhao, C. Liu, X. Li, M. Wang, J. Song, Z. Luo, A semi-interpenetrating network acrylic pressure-sensitive adhesive for efficient transdermal application with high cohesion and adhesion, Materials & Design 241 (2024) 112970. https://doi.org/https://doi.org/10.1016/j.matdes.2024.112970
[39] J.F. Kenney, T.H. Haddock, R.L. Sun, H.C. Parreira, Medical-grade acrylic adhesives for skin contact, Journal of Applied Polymer Science 45 (1992) 355–361. https://doi.org/https://doi.org/10.1002/app.1992.070450218
[40] J.K. Aronson, ed., Cyanoacrylates, in: Meyler’s Side Effects of Drugs (Sixteenth Edition), Sixteenth, Elsevier, Oxford, 2016: p. 776. https://doi.org/https://doi.org/10.1016/B978-0-444-53717-1.00565-5
[41] H.S. Samuel, U. Nweke-Maraizu, E.E. Etim, Cyanoacrylate Chemistry and Polymerization Mechanisms, Progress in Chemical and Biochemical Research 7 (2024) 129–142. https://doi.org/10.48309/pcbr.2024.422869.1304
[42] P.A. Leggat, D.R. Smith, U. Kedjarune, Surgical applications of cyanoacrylate adhesives: a review of toxicity., ANZ Journal of Surgery 77 (2007) 209–213. https://doi.org/10.1111/j.1445-2197.2007.04020.x
[43] J. Ilgenfritz Neto, R.D. Aydos, I.S. Silva, L.C. Takita, A.C. de Abreu, C.A.C. Silva, K.B. Faleiros, E.M. de L. Santiago, R.T. Ramalho, Use of cyanoacrylate-based surgical adhesives associated to the macroporous tape in skin synthesis in rats., Acta Cirurgica Brasileira 34 (2019) e201900701. https://doi.org/10.1590/s0102-865020190070000001
[44] L. Yu, Z. Liu, Z. Tong, Y. Ding, Z. Qian, W. Wang, Z. Mao, Y. Ding, Sequential-Crosslinking Fibrin Glue for Rapid and Reinforced Hemostasis, Advanced Science 11 (2024) 2308171. https://doi.org/https://doi.org/10.1002/advs.202308171
[45] J.B. Cavichiolo, M. Buschle, B. Carvalho, Comparison of fibrin adhesives prepared by 3 different methods., International Archives of Otorhinolaryngology 17 (2013) 62–65. https://doi.org/10.7162/S1809-97772013000100011
[46] H.H.G. Witjes, W.A. Draaisma, M. Gagner, E.C.J. Consten, 6.637 – Staple Line Reinforcement Materials, in: P.B.T.-C.B. Ducheyne (Ed.), Elsevier, Oxford, 2011: pp. 589–592. https://doi.org/https://doi.org/10.1016/B978-0-08-055294-1.00246-4
[47] L. Fernández-Vega-Cueto, M. Persinal-Medina, N. Vázquez, M. Chacón, B. Alfonso-Bartolozzi, S. Alonso-Alonso, T. Sánchez, S. Berisa-Prado, L.M. Martínez-López, J. Merayo-Lloves, Á. Meana, A Simple, Safe, and Effective Method for Preparing Autologous Bio-Based Fibrin Glue for Ophthalmic Use., Pharmaceutics 14 (2022). https://doi.org/10.3390/pharmaceutics14112325
[48] W. Jiang, R. Hosseinpourpia, V. Biziks, S.A. Ahmed, H. Militz, S. Adamopoulos, Preparation of Polyurethane Adhesives from Crude and Purified Liquefied Wood Sawdust., Polymers 13 (2021). https://doi.org/10.3390/polym13193267
[49] G. Malucelli, A. Priola, F. Ferrero, A. Quaglia, M. Frigione, C. Carfagna, Polyurethane resin-based adhesives: curing reaction and properties of cured systems, International Journal of Adhesion and Adhesives 25 (2005) 87–91. https://doi.org/https://doi.org/10.1016/j.ijadhadh.2004.04.003
[50] S. Wendels, R. Balahura, S. Dinescu, M. Costache, L. Avérous, Synthesis and properties of biobased polyurethane tissue adhesives from bacterial polyester, Sustainable Materials and Technologies 34 (2022) e00515. https://doi.org/https://doi.org/10.1016/j.susmat.2022.e00515
[51] P. Król, Ł. Uram, B. Król, K. Pielichowska, M. Sochacka-Piętal, M. Walczak, Synthesis and property of polyurethane elastomer for biomedical applications based on nonaromatic isocyanates, polyesters, and ethylene glycol, Colloid and Polymer Science 298 (2020) 1077–1093. https://doi.org/10.1007/s00396-020-04667-8
[52] Z. Yang, X. Yu, P. Wei, Y. Huang, S. Zhou, W. Jing, Y. Zhang, L. Sun, G. Bao, X. He, B. Zhao, Tetra-armed PEG-based rapid high-adhesion, antibacterial and biodegradable pre-clinical bioadhesives for preventing pancreas leakage, Materials & Design 224 (2022) 111281. https://doi.org/https://doi.org/10.1016/j.matdes.2022.111281
[53] P.K. Deb, S.F. Kokaz, S.N. Abed, A. Paradkar, R.K. Tekade, Chapter 6 – Pharmaceutical and Biomedical Applications of Polymers, in: R.K.B.T.-B.F. of D.D. Tekade (Ed.), Advances in Pharmaceutical Product Development and Research, Academic Press, 2019: pp. 203–267. https://doi.org/https://doi.org/10.1016/B978-0-12-817909-3.00006-6
[54] H. Kamali, R. Mollaee, E. Khodaverdi, F. Hadizadeh, G.H. Zohuri, Ring-opening polymerization of poly (d,l-lactide-co-glycolide)-poly(ethylene glycol) diblock copolymer using supercritical CO2, The Journal of Supercritical Fluids 145 (2019) 133–139. https://doi.org/https://doi.org/10.1016/j.supflu.2018.12.005
[55] F. Fang, R.T.H. Linstadt, G.M. Genin, K. Ahn, S. Thomopoulos, Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair, Advanced Healthcare Materials 11 (2022) 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344
[56] F. Notario-Pérez, A. Martín-Illana, R. Cazorla-Luna, R. Ruiz-Caro, M.D. Veiga, Applications of Chitosan in Surgical and Post-Surgical Materials., Marine Drugs 20 (2022). https://doi.org/10.3390/md20060396
[57] H. Hamedi, S. Moradi, S.M. Hudson, A.E. Tonelli, M.W. King, Chitosan based bioadhesives for biomedical applications: A review, Carbohydrate Polymers 282 (2022) 119100. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.119100
[58] X. Du, Y. Liu, H. Yan, M. Rafique, S. Li, X. Shan, L. Wu, M. Qiao, D. Kong, L. Wang, Anti-Infective and Pro-Coagulant Chitosan-Based Hydrogel Tissue Adhesive for Sutureless Wound Closure, Biomacromolecules 21 (2020) 1243–1253. https://doi.org/10.1021/acs.biomac.9b01707
[59] S.A. Sideek, H.B. El-Nassan, A.R. Fares, N.A. Elkasabgy, A.N. ElMeshad, Cross-Linked Alginate Dialdehyde/Chitosan Hydrogel Encompassing Curcumin-Loaded Bilosomes for Enhanced Wound Healing Activity, Pharmaceutics 16 (2024). https://doi.org/10.3390/pharmaceutics16010090
[60] F. Sun, Y. Bu, Y. Chen, F. Yang, J. Yu, D. Wu, An Injectable and Instant Self-Healing Medical Adhesive for Wound Sealing, ACS Appl Mater Interfaces 12 (2020) 9132–9140. https://doi.org/10.1021/acsami.0c01022
[61] J. Rosenquist, M. Folkesson, L. Höglund, J. Pupkaite, J. Hilborn, A. Samanta, An Injectable, Shape-Retaining Collagen Hydrogel Cross-linked Using Thiol-Maleimide Click Chemistry for Sealing Corneal Perforations, ACS Appl Mater Interfaces 15 (2023) 34407–34418. https://doi.org/10.1021/acsami.3c03963
[62] H. Ren, Z. Zhang, X. Cheng, Z. Zou, X. Chen, C. He, Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure, Science Advances 9 (2023) 1–18. https://doi.org/10.1126/sciadv.adh4327
[63] P. Mondal, I. Chakraborty, K. Chatterjee, Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective, Chemical Record 22 (2022) 1–28. https://doi.org/10.1002/tcr.202200155
[64] C. Correia, R.L. Reis, I. Pashkuleva, N.M. Alves, Adhesive and self-healing materials for central nervous system repair, Biomaterials Advances 151 (2023) 1–17. https://doi.org/10.1016/j.bioadv.2023.213439
[65] F. Ofridam, M. Tarhini, N. Lebaz, É. Gagnière, D. Mangin, A. Elaissari, pH-sensitive polymers: Classification and some fine potential applications, Polym Adv Technol 32 (2021) 1455–1484. https://doi.org/10.1002/pat.5230
[66] E. Khadem, M. Kharaziha, H. Reza Bakhsheshi-Rad, O. Das, F. Berto, Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications, Polymers (Basel) 14 (2022) 1–37. https://doi.org/10.3390/polym
[67] Y. Zhao, B. Yi, J. Hu, D. Zhang, G. Li, Y. Lu, Q. Zhou, Double Cross-Linked Biomimetic Hyaluronic Acid-Based Hydrogels with Thermo-Stimulated Self-Contraction and Tissue Adhesiveness for Accelerating Post-Wound Closure and Wound Healing, Adv Funct Mater 33 (2023) 1–12. https://doi.org/10.1002/adfm.202300710
[68] S.M. Hwang, E. Kim, J. Wu, M.H. Kim, H. Lee, W.H. Park, Temperature- and pH-induced dual-crosslinked methylcellulose/chitosan-gallol conjugate composite hydrogels with improved mechanical, tissue adhesive, and hemostatic properties, Int J Biol Macromol 277 (2024) 1–17. https://doi.org/10.1016/j.ijbiomac.2024.134098
[69] J. Guo, W. Sun, J.P. Kim, X. Lu, Q. Li, M. Lin, O. Mrowczynski, E.B. Rizk, J. Cheng, G. Qian, J. Yang, Development of tannin-inspired antimicrobial bioadhesives, Acta Biomater 72 (2018) 35–44. https://doi.org/10.1016/j.actbio.2018.03.008
[70] C. Radhakumary, M. Antonty, K. Sreenivasan, Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing, Carbohydr Polym 83 (2011) 705–713. https://doi.org/10.1016/j.carbpol.2010.08.042
[71] Y. Huang, H. Li, C.G. Zhu, X. Zhou, H. Wang, Q. Han, B. Ren, L. Cheng, Anti-bacterial and anti-microbial aging effects of resin-based sealant modified by quaternary ammonium monomers, J Dent 112 (2021) 1–8. https://doi.org/10.1016/j.jdent.2021.103767
[72] J. Yang, H. Yu, L. Wang, J. Liu, X. Liu, Y. Hong, Y. Huang, S. Ren, Advances in adhesive hydrogels for tissue engineering, Eur Polym J 172 (2022) 1–16. https://doi.org/10.1016/j.eurpolymj.2022.111241
[73] M.J. Sánchez-Fernández, H. Hammoudeh, R.P. Félix Lanao, M. van Erk, J.C.M. van Hest, S.C.G. Leeuwenburgh, Bone-Adhesive Materials: Clinical Requirements, Mechanisms of Action, and Future Perspective, Adv Mater Interfaces 6 (2019) 1–11. https://doi.org/10.1002/admi.201802021