Polymers in Blood Vessels Reconstruction
Joy Hoskeri H., Vidyashree Suryavanshi, Preeti Gadyal, Nivedita Pujari S., Arun K. Shettar
Vascular tissue architectural knowledge is the key for repairing vascular abnormalities and also offers opportunities for targeted therapies for vascular diseases. Despite the advancements in the field of biomaterials vascular implantation is still a challenge. Importance of natural polymers like collagen, elastin, chitosan, alginate, fibrin, gelatin, and synthetic polymers like polyethylene-glycol, poly(L-lactic-co-glycolic-acid), polyvinyl-alcohol, polypropylene, polycaprolactone, poly(phenylene-vinylene) in blood vessel reconstruction, primarily due to their biocompatibility and ability to support cellular activities essential for vascular repair is covered in this chapter. Polymeric aortic vessels using advanced 3D printing technique demonstrate the potential of polymer scaffolds in creating customized vascular replacements.
Keywords
Cardiovascular Diseases, Blood Vessel Reconstruction, Polymers, Haemostatics, Sealants
Published online 2/15/2025, 48 pages
Citation: Joy Hoskeri H., Vidyashree Suryavanshi, Preeti Gadyal, Nivedita Pujari S., Arun K. Shettar, Polymers in Blood Vessels Reconstruction, Materials Research Foundations, Vol. 172, pp 413-460, 2025
DOI: https://doi.org/10.21741/9781644903353-18
Part of the book on Applications of Polymers in Surgery II
References
[1] Raisa, Cristina, Teodoro, da, Silva., Patric, Emerson, Oliveira, Gonçalves., Ligia, de, Loiola, Cisneros. (2017). Anatomical Principles of the Circulatory System. doi: 10.1007/978-3-319-46059-8_2
[2] Marc, J., Klowden. (2013). Chapter 7 – Circulatory Systems. doi: 10.1016/B978-0-12-415819-1.00007-6
[3] Julia, Büchele. (2023). Circulatory System. doi: 10.1007/978-981-19-9538-5_7
[4] Michael, Sonnekalb., Sebastian, Fink. (2019). Circulatory system for fuel cell vehicle.
[5] Harjes, Daniel, I., Mercier, Nichole. (2021). Circulatory support systems including controller and plurality of sensors and methods of operating same.
[6] Tara, B., M., Smith. (2022). Architecture of the Blood Vessels. doi: 10.1007/978-981-19-7122-8_1
[7] Martin, Caon. (2024). Lecture 20: Anatomy, Structure and Function of Blood Vessels. doi: 10.1007/978-3-031-56296-9_1
[8] Phat, N., Vuong., Colin, Berry. (2002). Histology of vessels. doi: 10.1007/978-2-8178-0786-7_1
[9] J., Gordon, Betts., Kelly, A., Young., James, A., Wise., Eddie, Johnson., Brandon, Poe., Dean, H., Kruse., Oksana, Korol., Jody, E., Johnson., Mark, Womble., Peter, DeSaix. (2013). Structure and Function of Blood Vessels.
[10] Linda, M., Ernst., Michael, K., Fritsch. (2019). Blood Vessels and Lymphatic Vessels. doi: 10.1007/978-3-030-11425-1_2
[11] Michael, H., Birnbaum. (2022). Diseases of small and medium-sized blood vessels. doi: 10.1016/b978-0-12-822224-9.00020-7
[12] Meghan, Mott., Katherine, Pahigiannis., Walter, J., Koroshetz. (2014). Small Blood Vessels: Big Health Problems National Institute of Neurological Disorders and Stroke Update. Stroke. https://doi.org/10.1161/STROKEAHA.114.007113
[13] Mary, N., Sheppard. (2012). Diseases of blood vessels. Surgery (oxford). https://doi.org/10.1016/J.MPSUR.2015.04.006
[14] Michael, A., Briones. (2009). Vascular Bleeding Disorders. Transfusion Medicine and HemostasisClinical and Laboratory Aspects. https://doi.org/10.1016/B978-0-12-374432-6.00104-4
[15] Barbara, Schildkrout. (2014). Disease #68: Vascular Dementia. doi: 10.1002/9781394260447.ch96
[16] Salka, S., Staekenborg., Tanja, Su., Elisabeth, C.W., van, Straaten., Roger, Lane., Philip, Scheltens., Frederik, Barkhof., Wiesje, M., van, der, Flier. (2010). Behavioural and psychological symptoms in vascular dementia; differences between small- and large-vessel disease. Journal of Neurology, Neurosurgery, and Psychiatry. https://doi.org/10.1136/JNNP.2009.187500
[17] Quazi, S., Capuzzo, Am., Malik, Ja. (2021). Genomic Mapping in Detection of Vascular Disorders. doi: 10.20944/PREPRINTS202103.0209.V1
[18] Riwaj, Bhagat., Sandro, Marini., Jose, R., Romero. (2023). Genetic considerations in cerebral small vessel diseases. Frontiers in Neurology. https://doi.org/10.3389/fneur.2023.1080168
[19] Takayuki, Morisaki., Hiroko, Morisaki. (2017). Genetics of Hereditary Large Vessel Diseases. doi: 10.1002/9780470015902.A0027328
[20] GOLDBERG, V. M., & Stevenson, S. (1987). Natural history of autografts and allografts. Clinical Orthopaedics and Related Research®, 225, 7-16.
[21] Matsumura, G., Hibino, N., Ikada, Y., Kurosawa, H., & Shin’oka, T. (2003). Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials, 24(13), 2303-2308.
[22] Teebken, O. E., Pichlmaier, M. A., Brand, S., & Haverich, A. (2004). Cryopreserved arterial allografts for in situ reconstruction of infected arterial vessels. European journal of vascular and endovascular surgery, 27(6), 597-602.
[23] Gutowski, P., Guziewicz, M., Ilzecki, M., Kazimierczak, A., Lawson, J. H., Prichard, H. L., … & Niklason, L. E. (2023). Six-year outcomes of a phase II study of human-tissue engineered blood vessels for peripheral arterial bypass. JVS-Vascular Science, 4, 100092.
[24] Hu, K., Li, Y., Ke, Z., Yang, H., Lu, C., Li, Y., … & Wang, W. (2022). History, progress and future challenges of artificial blood vessels: A narrative review. Biomaterials Translational, 3(1), 81.
[25] Weiss, S., Bachofen, B., Widmer, M. K., Makaloski, V., Schmidli, J., & Wyss, T. R. (2021). Long-term results of cryopreserved allografts in aortoiliac graft infections. Journal of vascular surgery, 74(1), 268-275.
[26] Deng, X., Gould, M., & Ali, M. A. (2022). A review of current advancements for wound healing: Biomaterial applications and medical devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110(11), 2542-2573.
[27] Adigbli, G., Alshomer, F., Maksimcuka, J., & Ghali, S. (2016). Principles of plastic surgery, wound healing, skin grafts and flaps. Textbook of plastic and reconstructive surgery, 1, 3-37.
[28] Stegen, S., Van Gastel, N., & Carmeliet, G. (2015). Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone, 70, 19-27.
[29] Cunha-Melo, J. R., & Costa, G. (2014). Intestinal transplantation: evolution and current status. MedicalExpress, 1, 307-322.
[30] Sourav, Sadhukhan., Atanu, Pal., Aniruddha, Datta. (2023). Outcome of Central Venoplasty and AVFistuloplasty in a Tertiary Care Centre in Eastern India. Journal of the American Society of Nephrology. https://doi.org/10.1681/asn.20233411s1540c
[31] Anna, Olds., W., Hampton, Gray., Markian, Bojko., Carly, Weaver., Jeanette, N., Cleveland., Michael, E., Bowdish., Winfield, J., Wells., Vaughn, A., Starnes., Sandeep, Kumar. (2024). Surgical Pulmonary Arterioplasty at Bidirectional Cavopulmonary Anastomosis Leads to Favorable Pulmonary Hemodynamics at Final Stage Palliation. JTCVS open. https://doi.org/10.1016/j.xjon.2024.02.006
[32] Francesco, Giovanardi., Francesco, Nudo., Quirino, Lai., M., Garofalo., Adriano, Consolo., E., Choppin, de, Janvry., G.A., Arroyo, Murillo., P., Ursi., D., Stabile., Fabio, Melandro., P.B., Berloco., Renzo, Pretagostini., Luca, Poli. (2019). Surgical Technique Notes of Arterial Vascular Reconstruction During Kidney Transplantation: Personal Experience and Literature Review. doi: 10.1016/J.TRANSPROCEED.2018.04.072
[33] Leonid, S., Barbarash., Ehl, Gudin, Jakov, L, Vovich., V., V., Sevostyanova., A., S., Golovkin. (2013). Tissue-Engineered Vascular Graft and Its Fabrication Approach.
[34] Ziyu, Wang., Suzanne, M., Mithieux., Anthony, S., Weiss. (2019). Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Advanced Healthcare Materials. https://doi.org/10.1002/ADHM.201900742
[35] D., Vervoort., Malak, Elbatarny., Rodolfo, V., Rocha., Stephen, E., Fremes. (2023). Reconstruction Technique Options for Achieving Total Arterial Revascularization and Multiple Arterial Grafting. Stomatology. https://doi.org/10.3390/jcm12062275
[36] Guosheng, Wu., Yinglun, Wu., Mian, Wang., Wentong, Zhang., Chaoxu, Liu., Tingbo, Liang. (2021). Vascular reconstruction of segmental intestinal grafts using autologous internal iliac vessels.. Gastroenterology Report. https://doi.org/10.1093/GASTRO/GOAB016
[37] Chao, Lin, Chen., How, Ran, Guo., Ying, Jan, Wang., Hong, Tai, Chang., Chui, Yi, Pan., Ho, Yi, Tuan-Mu., Hsiu, Chuan, Lin., Chao, Yi, Chen., Jin, Jia, Hu. (2019). Combination of inductive effect of lipopolysaccharide and in situ mechanical conditioning for forming an autologous vascular graft in vivo. Scientific Reports. https://doi.org/10.1038/S41598-019-47054-2
[38] Serkan, Ketenciler., Kamil, Boyacıoğlu., İlknur, Akdemir., Gürkan, Kömürcü., Adil, Polat. (2018). Autologous Saphenous Vein Panel Graft for Vascular Reconstruction.. Annals of Vascular Surgery. https://doi.org/10.1016/J.AVSG.2018.05.037
[39] Alfonso, Lapergola., Alfonso, Lapergola., Emanuele, Felli., Thomas, Rebiere., Didier, Mutter., Patrick, Pessaux. (2020). Autologous peritoneal graft for venous vascular reconstruction after tumor resection in abdominal surgery: a systematic review.. Updates in Surgery. https://doi.org/10.1007/S13304-020-00730-9
[40] Wouter, J., Geelhoed., K.E.A., van, der, Bogt., T.C., Rothuizen., Febriyani, Damanik., Jaap, F., Hamming., Carlos, Mota., M.S., van, Agen., H.C., de, Boer., M., Tobón, Restrepo., Boris, Hinz., A., Kislaya., Christian, Poelma., A.J., van, Zonneveld., Ton, J., Rabelink., Lorenzo, Moroni., Joris, I., Rotmans. (2020). A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting.. Biomaterials. https://doi.org/10.1016/J.BIOMATERIALS.2019.119577
[41] Santh, Prakash, Lanka., Guruprasad, Rai., Revanth, Maramreddy., Arvind, Kumar, Bishnoi., V., M., Ruvin, Kumara., Ganesh, Kamath, Sevagur. (2023). Saphenous Vein Tributaries in Sequential Vein Grafting for Coronary Artery Disease. doi: 10.21203/rs.3.rs-3507838/v1
[42] Rasit Dinc (2023). In Situ Saphenous Vein Bypass Grafting in Peripheral Arterial Disease of the Lower Extremities. Cardio Open, doi: 10.33140/coa.08.03.04
[43] Lars, Saemann., L., Wernstedt., Sabine, Pohl., M., Stiller., Jan, Willsch., Britt, Hofmann., Gábor, Veres., Andreas, Simm., Gábor, Szabó. (2023). Impact of Age on Endothelial Function of Saphenous Vein Grafts in Coronary Artery Bypass Grafting. Stomatology. https://doi.org/10.3390/jcm12175454
[44] Ryo, Nakamura., Kentaro, Honda., Hideki, Kunimoto., Takahiro, Fujimoto., Kota, Agematsu., Yoshiharu, Nishimura. (2023). Impact of Graft Velocity on Saphenous Vein Graft Atherosclerosis after Coronary Artery Bypass Grafting.. Annals of Thoracic and Cardiovascular Surgery. https://doi.org/10.5761/atcs.oa.23-00066
[45] Huiru, Chen., Zilan, Wang., Ke, Si., Xiaoxiao, Wu., Hanyu, Ni., Yan-Chi, Tang., Wei, Li., Zheng, Wang. (2023). External stenting for saphenous vein grafts in coronary artery bypass grafting: A meta-analysis.. European Journal of Clinical Investigation. https://doi.org/10.1111/eci.14046
[46] C., A., Dietl. (2006). Angiographic Studies of the Radial Artery Graft. doi: 10.1007/3-540-30084-8_19
[47] Francesco, Cabrucci., Beatrice, Bacchi., Aleksander, Dokollari., Massimo, Bonacchi. (2023). Radial artery harvesting with harmonic scalpel: fully no-touch technique.. Multimedia Manual of Cardiothoracic Surgery. https://doi.org/10.1510/mmcts.2023.018
[48] Junjiro, Kobayashi. (2009). Radial artery as a graft for coronary artery bypass grafting.. Japanese Circulation Journal-english Edition. https://doi.org/10.1253/CIRCJ.CJ-09-0322
[49] Sun, Zong-quan. (2007). Role of Radial Artery Graft in Coronary Artery Bypass Grafting. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery,
[50] Prechtel, E. (2003). Design, Synthesis, and Characterization of a Tissue Engineered Small Caliber Vascular Graft. Drexel University.
[51] Moore, W. R., Graves, S. E., & Bain, G. I. (2001). Synthetic bone graft substitutes. ANZ journal of surgery, 71(6), 354-361.
[52] Edward, Chen., Lih-Sheng, Turng. (2024). A double‐expanded polytetrafluoroethylene fabrication method for increased mechanical compliance in tubular vascular graft applications. doi: 10.1002/pen.26652
[53] Roberta, Cassano., P., Perri., Antonio, Esposito., F, Intrieri., Roberta, Sole., Federica, Curcio., Sonia, Trombino. (2023). Expanded Polytetrafluoroethylene Membranes for Vascular Stent Coating: Manufacturing, Biomedical and Surgical Applications, Innovations and Case Reports. Membranes. https://doi.org/10.3390/membranes13020240
[54] Dongfang, Wang., Yiyang, Xu., Lixia, Wang., Xiaofeng, Wang., Cuihong, Ren., Bo, Zhang., Qian, Li., James, A., Thomson., Lih-Sheng, Turng. (2020). Expanded Poly(tetrafluoroethylene) Blood Vessel Grafts with Embedded Reactive Oxygen Species (ROS)-Responsive Antithrombogenic Drug for Elimination of Thrombosis. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.0C07868
[55] Marco, Amabili., Prabakaran, Balasubramanian., Giovanni, Ferrari., Giulio, Franchini., Francesco, Giovanniello., Eleonora, Tubaldi. (2020). Identification of viscoelastic properties of Dacron aortic grafts subjected to physiological pulsatile flow.. Journal of The Mechanical Behavior of Biomedical Materials. https://doi.org/10.1016/J.JMBBM.2020.103804
[56] Cristiano, Spadaccio., Alberto, Rainer., Raffaele, Barbato., Marcella, Trombetta., Massimo, Chello., Bart, Meyns. (2019). The long-term follow up of large-diameter Dacron® vascular grafts in surgical practice: a review.. Journal of Cardiovascular Surgery. https://doi.org/10.23736/S0021-9509.16.08061-7
[57] Turkmen, Arikan., Elmar, Mammadov., Ertan, Emek., Birkan, Bozkurt., N., Inan, Gurcan., Pinar, Yazici., Tolga, Sahin., Ayfer, Serin., Unal, Aydin., Yaman, Tokat. (2019). Utility of Polyethylene Terephthalate (Dacron) Vascular Grafts for Venous Outflow Reconstruction in Living-Donor Liver Transplantations.. doi: 10.1016/J.TRANSPROCEED.2019.02.040
[58] Asik, Ali, Mohamed, Ali., Praveen, Sharma., Rujuta, Rege., Saveetha, Rajesh., Kulasekaran, Nadhamuni. (2016). Dacron graft aneurysm with dissection.. Indian Journal of Radiology and Imaging. https://doi.org/10.4103/0971-3026.195783
[59] John, M., Trahanas., Omar, A., Jarral., G., Chad, Hughes. (2022). A dissection … of the Dacron?. JTCVS techniques. https://doi.org/10.1016/j.xjtc.2022.03.022
[60] Gavin, R., Meehan., Hannah, E., Scales., Rowland, Osii., Mariana, De, Niz., Mariana, De, Niz., Jennifer, C., Lawton., Matthias, Marti., Paul, Garside., Alister, Craig., James, M., Brewer. (2020). Developing a xenograft model of human vasculature in the mouse ear pinna.. Scientific Reports. https://doi.org/10.1038/S41598-020-58650-Y
[61] Zhihong, Dong., Atsushi, Imai., Sudha, Krishnamurthy., Zhaocheng, Zhang., Benjamin, David, Zeitlin., Jacques, E., Nör. (2013). Xenograft Tumors Vascularized with Murine Blood Vessels May Overestimate the Effect of Anti-Tumor Drugs: A Pilot Study. PLOS ONE. https://doi.org/10.1371/JOURNAL.PONE.0084236
[62] Stefan, Schlatt., Birgit, Westernströer., Kathrin, Gassei., Jens, Ehmcke. (2010). Short title: Testis xenografting Summary sentence: The circulatory connection between donor and host in testis xenografting is established by outgrowing donor and ingrowing host blood vessels.
[63] Marius, Harpa., Sânziana, Flămând, Oltean., Alexandra, Iulia, Puscas., Raluca, Truta., David, Emanuel, Anitei., Claudiu, Ghiragosian., Cosmin, Banceu., I., Movileanu., Ovidiu, Simion, Cotoi., Raluca, Niculescu., Horatiu, Suciu., Dan, Simionescu., Hussam, Al, Hussein. (2023). Bioengineered Small-Diameter Vascular Xenografts as an Alternative to Autologous Vascular Grafting for Emergency Revascularization – a Preliminary Study. Journal of Cardiovascular Emergencies. https://doi.org/10.2478/jce-2023-0021
[64] Kerbi, Alejandro, Guevara-Noriega., Albert, Martinez, Toiran., Bruno, Alvarez-Concejo., Jose, Luis, Pomar. (2018). Historical Overview of Vascular Allografts Transplantation.
[65] Kerbi, Alejandro, Guevara-Noriega., Albert, Martinez, Toiran., Bruno, Alvarez-Concejo., Jose, Luis, Pomar. (2019). Historical Overview of Vascular Allograft Transplantation. doi: 10.15420/VER.2018.15.1
[66] Holger, Konrad., Anja, Wahle., Wolfgang, Altermann., Gerald, Schlaf. (2017). Strong Humoral Anti-HLA Immune Response Upon Arbitrarily Chosen Allogeneic Arterial Vessel Grafts. Journal of clinical & cellular immunology. https://doi.org/10.4172/2155-9899.1000525
[67] Paola, Tracanelli., F., Romani. (2016). Vascular Homograft Procurement. doi: 10.1007/978-3-319-28416-3_17
[68] José, Ignacio, Bilbao., A., Martínez., P., Domínguez, Echavarri., Octavio, Cosín., B., Zudaire. (2005). Técnicas terapéuticas endovasculares Endovascular therapeutic techniques.
[69] José, Ignacio, Bilbao., Martínez, de, la, Cuesta, A., Domínguez, Echavarri, P., Cosín, O., L., Desloques., B., Zudaire. (2005). Endovascular therapeutic techniques. Anales Del Sistema Sanitario De Navarra,
[70] Roger, M., Greenhalgh., Jean-Pierre, Becquemin. (2001). Vascular and endovascular surgical techniques.
[71] Jan, Brunkwall., Klaus, Lackner. (2004). The influence of endovascular techniques on our surgical practice: a 10-year view.. Journal of Endovascular Therapy. https://doi.org/10.1583/04-1313.1
[72] Jie-Long, Lin., Chen, Haiming., Feng-Cheng, Lin., Jieying, Li., Cheng-Xin, Xie., Wen-Liang, Guo., Xiu-Fen, Huang., Cheng, Hong. (2020). Application of DynaCT angiographic reconstruction in balloon pulmonary angioplasty. European Radiology. https://doi.org/10.1007/S00330-020-07028-9
[73] Blaine, Andrew, Schneider. (2016). Balloon angioplasty catheter coating to encourage vessel repair and further reduce restenosis.
[74] Pengbin, Tang., Dongjin, Huang., Yin, Wang., Gong, Ruobin., Wen, Tang., Youdong, Ding. (2016). Position based balloon angioplasty. doi: 10.1145/3013971.3013996
[75] Alistair, J., McCleary., Michael, J., Gough. (2001). Vascular surgeon’s experience with intraoperative angioplasty.. Anz Journal of Surgery. https://doi.org/10.1046/J.1445-2197.2001.02212.X
[76] S., Marlene, Grenon. (2012). Angioplasty Balloon, Stents, and Stent Grafts. doi: 10.1007/978-1-4614-0839-0_4
[77] Sarah, Pradhan., Rachel, D., Vanderlaan., Lee, Benson. (2024). Extravascular Central Venous Line Removal and Endovascular Covered Stent Implantation Guided by Three-Dimensional Computed Tomographic Reconstruction. CJC pediatric and congenital heart disease. https://doi.org/10.1016/j.cjcpc.2023.12.005
[78] Georgia, S., Karanasiou., Claire, Conway., Michail, I., Papafaklis., Augusto, C., Lopes., Kostas, A., Stefanou., Lambros, S., Athanasiou., Lampros, K., Michalis., Elazer, R., Edelman., Dimitrios, I., Fotiadis. (2014). Finite element analysis of stent implantation in a three-dimensional reconstructed arterial segment.. doi: 10.1109/EMBC.2014.6944902
[79] Wei, Jichang., Gong, Xiaoyan., Zhou, Weichao., Xiaoming, Zhang., Liu, Hao. (2018). Stent for implantation into blood vessel.
[80] Huanming, Xu., Yuqian, Mei., Xiaofeng, Han., Jianyong, Wei., Paul, N., Watton., Wan, Jia., Anqiang, Li., Duanduan, Chen., Jiang, Xiong. (2019). Optimization schemes for endovascular repair with parallel technique based on hemodynamic analyses.. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/CNM.3197
[81] Liu, Mulong., Xu, Wenchao. (2017). Blood vessel stent and manufacturing method thereof.
[82] Bing, li., Yan, Shu., Hailin, Ma., Kun, Cao., Yuen, Yee, Cheng., Zhilin, Jia., Xiao, Ma., Hongfei, Wang., Kedong, Song. (2024). Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review.. Tissue & Cell. https://doi.org/10.1016/j.tice.2024.102304
[83] Jaewoo, Choi., Eun, Ji, Lee., Woong, Bi, Jang., Sang-Mo, Kwon. (2023). Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. Journal of Functional Biomaterials. https://doi.org/10.3390/jfb14100497
[84] Hector F. Salazar, Gillian M. O’Connell, A.B., George S. Corpuz, Sophia Salingaros, Abby H. Chopoorrian, Kassandra Carrion, Celia Aboaf, Xue Dong, and Jason A. Spector (2023). A Novel 3D Printed Sacrificial Material for the Development of Perfused Intricate Blood Vessel Structures. Plastic and reconstructive surgery. Global open. https://doi.org/10.1097/01.gox.0000938168.04392.a0
[85] Jun, Hua, Zhu., Xinwang, Wang., Lin, Lin., Wen, Zeng. (2023). 3D bioprinting for vascular grafts and microvasculature. International Journal of bioprinting. https://doi.org/10.36922/ijb.0012
[86] Lingtong, Zhou., Yuanchang, Li., Qin, Tu., Jinyi, Wang. (2023). A 3D Printing Mold Method for Rapid Fabrication of Artificial Blood Vessels. Colloids and Surfaces A: Physicochemical and Engineering Aspects. https://doi.org/10.1016/j.colsurfa.2023.130952
[87] Manabu, Itoh. (2021). Scaffold-Free Autologous Cell-Based Vascular Graft for Clinical Application. doi: 10.1007/978-3-030-58688-1_9
[88] Julia, Fernández-Pérez., Kenny, A., van, Kampen., Carlos, Mota., Matthew, B., Baker., Lorenzo, Moroni. (2023). Flexible, Suturable, and Leak-free Scaffolds for Vascular Tissue Engineering Using Melt Spinning. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c00535
[89] Junichi, Saito., Junichi, Saito., Utako, Yokoyama., Utako, Yokoyama., Takashi, Nakamura., Tomomitsu, Kanaya., Takayoshi, Ueno., Yuji, Naito., Toshio, Takayama., Makoto, Kaneko., Shigeru, Miyagawa., Yoshiki, Sawa., Yoshihiro, Ishikawa. (2021). Scaffold-free tissue-engineered arterial grafts derived from human skeletal myoblasts.. Artificial Organs. https://doi.org/10.1111/AOR.13930
[90] Mehdi, Atari., Abbas, Saroukhani., Maziar, Manshaei., Peiman, Bateni., Anousheh, Zargar, Kharazi., Elham, Vatankhah., Shaghayegh, Haghjooy, Javanmard. (2023). Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model.. Biomaterials Science. https://doi.org/10.1039/d3bm00642e
[91] Salha, Sassi., Tatsuya, Watanabe., Toshiharu, Shinoka. (2023). Scaffold and Cell-Based Tissue Engineering Approaches as Alternative Therapy for Blood Vessel Disease. Cardiology research and cardiovascular medicine. https://doi.org/10.29011/2575-7083.100097
[92] Natalia, M., Yudintceva., Yu., A., Nashchekina., Maxim, Shevtsov., V., B., Karpovich., G., I., Popov., I., A., Samusenko., N., A., Mikhailova. (2021). Small-Diameter Vessels Reconstruction Using Cell Tissue-Engineering Graft Based on the Polycaprolactone. Cell and Tissue Biology. https://doi.org/10.1134/S1990519X21060110
[93] Hidekazu, Sekine., Teruo, Okano. (2020). Capillary Networks for Bio-Artificial Three-Dimensional Tissues Fabricated Using Cell Sheet Based Tissue Engineering.. International Journal of Molecular Sciences. https://doi.org/10.3390/IJMS22010092
[94] A.A., Zholborsov., Talaibek, Baisekeev., Ahmad, Niyazov., A., Mamyshov., A.A., Niyazov., B., Zhynzhyrov., N., Osmonbekova. (2023). History of Reconstructive Vascular Surgery. Бюллетень науки и практики. https://doi.org/10.33619/2414-2948/96/33
[95] Tae, K., Song., E., John, Harris., Shyam, S., Raghavan., Jeffrey, A., Norton. (2009). Major Blood Vessel Reconstruction During Sarcoma Surgery. Archives of Surgery. https://doi.org/10.1001/ARCHSURG.2009.149
[96] Petr, Štádler., Miroslav, Špaček., Matous, P., Vitásek, P., Korisková, Z., Michálek, P. (2004). [Laparoscopic vascular reconstructions–initial experience].. Rozhledy v chirurgii : měsíčník Československé chirurgické společnosti,
[97] Bin, Jiang., Rachel, Suen., Jiao, Jing, Wang., Zheng, Zhang., Jason, A., Wertheim., Guillermo, A., Ameer. (2016). (1) Mechanocompatible Polymer-Extracellular-Matrix Composites for Vascular Tissue Engineering.. Advanced Healthcare Materials. https://doi.org/10.1002/ADHM.201501003
[98] Qianhan, Zeng., Jing, Zhou., Ying, Ji., Hansheng, Wang. (2024). A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction.. Biostatistics. https://doi.org/10.1093/biostatistics/kxae013
[99] Singh, C., Wong, C. S., & Wang, X. (2015). Medical textiles as vascular implants and their success to mimic natural arteries. Journal of functional biomaterials, 6(3), 500-525.
[100] Stowell, C. E., & Wang, Y. (2018). Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials, 173, 71-86.
[101] Oberhauser, J. P., Hossainy, S., & Rapoza, R. J. (2009). Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention, 5(Suppl F), F15-F22.
[102] Pankajakshan, D., & Agrawal, D. K. (2010). Scaffolds in tissue engineering of blood vessels. Canadian journal of physiology and pharmacology, 88(9), 855-873.
[103] Stefan, Baudis., Christian, Heller., Robert, Liska., Juergen, Stampfl., Helga, Bergmeister., Guenter, Weigel. (2009). (4) (Meth)acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. Journal of Polymer Science Part A. https://doi.org/10.1002/POLA.23352
[104] Zhu, T., Gu, H., Zhang, H., Wang, H., Xia, H., Mo, X., & Wu, J. (2021). Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomaterialia, 119, 211-224.
[105] Rosellini, E., Giordano, C., Guidi, L., & Cascone, M. G. (2024). Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics, 9(7), 377.
[106] Song, J., & Gerecht, S. (2023). Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arteriosclerosis, thrombosis, and vascular biology, 43(8), e291-e302.
[107] Soodabeh, Gorgani., Anousheh, Zargar, Kharazi., Shaghayegh, Haghjooy, Javanmard., Mohammad, Rafiinia. (2020). Improvement of Endothelial Cell Performance in an Optimized Electrospun Pre-polyglycerol Sebacate-Poly Lactic Acid Scaffold for Reconstruction of Intima in Coronary Arteries. Journal of Polymers and The Environment. https://doi.org/10.1007/S10924-020-01749-0
[108] Carrabba, M., Fagnano, M., Ghorbel, M. T., Rapetto, F., Su, B., De Maria, C., … & Madeddu, P. (2024). Development of a Novel Hierarchically Biofabricated Blood Vessel Mimic Decorated with Three Vascular Cell Populations for the Reconstruction of Small‐Diameter Arteries. Advanced Functional Materials, 34(7), 2300621.
[109] Guoxing, Liao. (2024). Customized Vascular Repair Microenvironment: Poly(lactic acid)-Gelatin Nanofibrous Scaffold Decorated with bFGF and Ag@Fe3O4 Core-Shell Nanowires.. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c09269
[110] Soodabeh, Gorgani., Anousheh, Zargar, Kharazi., Shaghayegh, Haghjooy, Javanmard., Mohammad, Rafiinia. (2020). Improvement of Endothelial Cell Performance in an Optimized Electrospun Pre-polyglycerol Sebacate-Poly Lactic Acid Scaffold for Reconstruction of Intima in Coronary Arteries. Journal of Polymers and The Environment. https://doi.org/10.1007/S10924-020-01749-0
[111] Jun, Zhang., He, Lei., Guo, Wei., Jiang, Xuefeng., Fu, Lei., Zhao, Yue., Luxia, Zhang., Lutao, Yang., Yajuan, Li., Yutong, Wang., Mo, Hong., Jian, Shen. (2019). Zwitterionic Polymer-Grafted Polylactic Acid Vascular Patches Based on a Decellularized Scaffold for Tissue Engineering.. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.9B00684
[112] Iffa, A., Fiqrianti., Prihartini, Widiyanti., Muhammad, A., Manaf., Claudia, Y., Savira., Nadia, Rifqi, Cahyani., Fitria, Renata, Bella. (2018). Poly-L-lactic Acid (PLLA)-Chitosan-Collagen Electrospun Tube for Vascular Graft Application.. Journal of Functional Biomaterials. https://doi.org/10.3390/JFB9020032
[113] Salvatore, Buscemi., Vincenzo, Davide, Palumbo., A., Maffongelli., S., Fazzotta., Fabio, Salvatore, Palumbo., Mariano, Licciardi., Calogero, Fiorica., Roberto, Puleio., Giovanni, Cassata., L., Fiorello., Giuseppe, Buscemi., A.I., Lo, Monte. (2017). Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation.. doi: 10.1016/J.TRANSPROCEED.2017.02.017
[114] Lalit, Ranakoti., Brijesh, Gangil., Prabhakar, Bhandari., Tej, Singh., Shubham, Sharma., Jujhar, Singh., Sunpreet, Singh. (2023). Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules. https://doi.org/10.3390/molecules28020485
[115] Monika, Smiga-Matuszowicz., Jakub, Wlodarczyk., Małgorzata, Skorupa., Dominika, Czerwińska-Główka., Kaja, Fołta., Małgorzata, Pastusiak., Małgorzata, Adamiec-Organiściok., Magdalena, Skonieczna., Roman, Turczyn., Michał, Sobota., Katarzyna, Krukiewicz. (2023). Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms24021190
[116] Gülce, Taşkor, Önel. (2023). Synthesis and Characterization of Poly(lactic-co-glycolic acid) Derived with LGlutamic Acid and L-Aspartic Acid. Erzincan University Journal of Science and Technology. https://doi.org/10.18185/erzifbed.1235522
[117] Shuo, Li., Lei, Yang., Zijian, Zhao., Xiaoniu, Yang., Hongying, Lv. (2024). (1) A Polyurethane-based Hydrophilic Elastomer with Multi-biological Functions for Small-diameter Vascular Grafts.. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2024.01.006
[118] Jun, Fang., Jialing, Zhang., Jun, Du., Yanjun, Pan., Jing, Shi., Yongxuan, Peng., Weiming, Chen., Liu, Yuan., Sang-Ho, Ye., William, R., Wagner., Meng, Yin., Xiumei, Mo. (2016). (5) Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.6B04289
[119] Natalia, M., Yudintceva., Yu., A., Nashchekina., Maxim, Shevtsov., V., B., Karpovich., G., I., Popov., I., A., Samusenko., N., A., Mikhailova. (2021). (1) Small-Diameter Vessels Reconstruction Using Cell Tissue-Engineering Graft Based on the Polycaprolactone. Cell and Tissue Biology. https://doi.org/10.1134/S1990519X21060110
[120] V., V., Sevostianova., A., V., Mironov., E., O., Krivkina., M., V., Khanova., E., A., Velikanova., Vera, G., Matveeva., T., V., Glushkova., L., V., Antonova., Leonid, S., Barbarash. (2019). (3) Biodegradable poly(ε-caprolactone) VEGF-containing vascular patches for angioplasty. doi: 10.1063/1.5132188
[121] Sen, Yang., Xueni, Zheng., Meng, Qian., He, Wang., Fei, Wang., Yongzhen, Wei., Adam, C., Midgley., Ju, He., Hongyan, Tian., Qiang, Zhao. (2021). (4) Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/FBIOE.2021.770121
[122] Arianna, Parnigoni., Manuela, Viola., Evgenia, Karousou., Simona, Rovera., Cristina, Giaroni., Alberto, Passi., Davide, Vigetti. (2022). (1) Role of hyaluronan in pathophysiology of vascular1 endothelial and smooth muscle cells.. American Journal of Physiology-cell Physiology. https://doi.org/10.1152/ajpcell.00061.2022
[123] Amaliris, Ruiz., Kashmila, R., Rathnam., Kristyn, S., Masters. (2014). (3) Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials. Journal of Materials Science: Materials in Medicine. https://doi.org/10.1007/S10856-013-5092-1
[124] Davide, Vigetti., Manuela, Viola., Evgenia, Karousou., Anna, Genasetti., Manuela, Rizzi., Moira, Clerici., Barbara, Bartolini., Paola, Moretto., Giancarlo, De, Luca., Alberto, Passi. (2008). (5) Vascular pathology and the role of hyaluronan.. The Scientific World Journal. https://doi.org/10.1100/TSW.2008.145
[125] Soo, kyeong, Yang., Muhammad, Shafiq., Muhammad, Shafiq., Daeheum, Kim., Chulhwan, Park., Youngmee, Jung., Youngmee, Jung., Soo, Hyun., Soo, Hyun., Soo, Hyun. (2016). (1) Characterization and preparation of bioinspired resorbable conduits for vascular reconstruction. Macromolecular Research. https://doi.org/10.1007/S13233-016-4042-4
[126] Rumiana, Tzoneva., Claudia, Weckwerth., Barbara, Seifert., Marc, Behl., Matthias, Heuchel., Iana, Tsoneva., Andreas, Lendlein. (2011). (3) In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.. Journal of Biomaterials Science-polymer Edition. https://doi.org/10.1163/092050610X537147
[127] Howard, P., Greisler., Charles, W., Tattersall., Scott, C., Henderson., Emma, A., Cabusao., Jacqueline, D., Garfield., Dae, Un, Kim. (1992). (2) Polypropylene small‐diameter vascular grafts. Journal of Biomedical Materials Research. https://doi.org/10.1002/JBM.820261009
[128] Silvia, Scaglione., Rossella, Barenghi., Szabolcs, Beke., Luca, Ceseracciu., Ilaria, Romano., Francesca, Sbrana., Paola, Stagnaro., Fernando, Brandi., Massimo, Vassalli. (2013). (4) Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications. doi: 10.1117/12.2021754
[129] Naohiro, Wakabayashi., Takumi, Yoshida., Kyohei, Oyama., Daisuke, Naruse., Masahiro, Tsutsui., Yuta, Kikuchi., Daisuke, Koga., Hiroyuki, Kamiya. (2022). (1) Polyvinyl alcohol coating prevents platelet adsorption and improves mechanical property of polycaprolactone-based small-caliber vascular graft. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2022.946899
[130] Nuno, Alexandre., Elísio, Costa., Susana, Coimbra., Susana, Coimbra., A., Silva., A., Silva., A, Lopes., Miguel, Rodrigues., Marta, Santos., Ana, Colette, Maurício., José, D., Santos., Ana, Lúcia, Luís. (2015). (4) In vitro and in vivo evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.35275
[131] Julia, M., Ino., Ervi, Sju., Véronique, Ollivier., Evelyn, K.F., Yim., Didier, Letourneur., Catherine, Le, Visage. (2013). (5) Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films.. Journal of Biomedical Materials Research Part B. https://doi.org/10.1002/JBM.B.32977
[132] Valentina, Montagna., Valentina, Montagna., Junko, Takahashi., Meng, Yu, Tsai., Takayuki, Ota., Nicolas, Zivic., Seigou, Kawaguchi., Takashi, Kato., Masaru, Tanaka., Haritz, Sardon., Kazuki, Fukushima., Kazuki, Fukushima. (2021). (1) Methoxy-Functionalized Glycerol-Based Aliphatic Polycarbonate: Organocatalytic Synthesis, Blood Compatibility, and Hydrolytic Property.. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.0C01460
[133] Rong, Zhu., Xinyu, Wang., Jing, Yang., Yiyu, Wang., Zongrui, Zhang., Yuanjing, Hou., Fei, Lin. (2016). (3) Influence of hydroxyl-terminated polydimethylsiloxane on high-strength biocompatible polycarbonate urethane films. Biomedical Materials. https://doi.org/10.1088/1748-605X/12/1/015011
[134] Chenhui, Zhu., Daidi, Fan., Zhiguang, Duan., Wenjiao, Xue., Longan, Shang., Fulin, Chen., Yane, Luo. (2009). (3) Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering.. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.32256
[135] Catherine, F., Whittington., Mervin, C., Yoder., Sherry, L., Voytik-Harbin. (2013). (5) Collagen-polymer guidance of vessel network formation and stabilization by endothelial colony forming cells in vitro.. Macromolecular Bioscience. https://doi.org/10.1002/MABI.201300128
[136] Dimitria, Bonizol, Camasão., Miguel, González-Pérez., Sara, Palladino., Matilde, Alonso., José, Carlos, Rodríguez-Cabello., Diego, Mantovani. (2020). (1) Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties.. Biomaterials Science. https://doi.org/10.1039/D0BM00292E
[137] Vivek, A., Kumar., Jeffrey, M., Caves., Jeffrey, M., Caves., Carolyn, A., Haller., Carolyn, A., Haller., Erbin, Dai., Liying, Liu., Stephanie, J., Grainger., Stephanie, J., Grainger., Elliot, L., Chaikof., Elliot, L., Chaikof., Elliot, L., Chaikof. (2013). (3) Acellular vascular grafts generated from collagen and elastin analogs.. Acta Biomaterialia. https://doi.org/10.1016/J.ACTBIO.2013.05.024
[138] Iffa, A., Fiqrianti., Prihartini, Widiyanti., Muhammad, A., Manaf., Claudia, Y., Savira., Nadia, Rifqi, Cahyani., Fitria, Renata, Bella. (2018). (3) Poly-L-lactic Acid (PLLA)-Chitosan-Collagen Electrospun Tube for Vascular Graft Application.. Journal of Functional Biomaterials. https://doi.org/10.3390/JFB9020032
[139] Anlin, Yin., Xiaorong, Lan., Weihua, Zhuang., Zhonglan, Tang., Yan, Li., Yunbing, Wang. (2020). (5) PEGylated chitosan and PEGylated PLCL for blood vessel repair: An in vitro study.. Journal of Biomaterials Applications. https://doi.org/10.1177/0885328219875937
[140] Antunes, M., Bonani, W., Reis, R. L., Migliaresi, C., Ferreira, H., Motta, A., & Neves, N. M. (2022). Development of alginate-based hydrogels for blood vessel engineering. Biomaterials Advances, 134, 112588.
[141] Florian, Ruther., Thomas, Distler., Aldo, R., Boccaccini., Rainer, Detsch. (2019). (5) Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink. Journal of Materials Science: Materials in Medicine. https://doi.org/10.1007/S10856-018-6205-7
[142] Vera, G., Matveeva., M., U., Khanova., Larisa, V., Antonova., Leonid, S., Barbarash. (2020). (1) Fibrin – a promising material for vascular tissue engineering. Russian Journal of Transplantology and Artificial Organs. https://doi.org/10.15825/1995-1191-2020-1-196-208
[143] Florian, Helms., Axel, Haverich., Ulrike, Böer., Mathias, Wilhelmi. (2021). (3) Transluminal compression increases mechanical stability, stiffness and endothelialization capacity of fibrin-based bioartificial blood vessels.. Journal of The Mechanical Behavior of Biomedical Materials. https://doi.org/10.1016/J.JMBBM.2021.104835
[144] Vera, G., Matveeva., Evgenia, A., Senokosova., V., V., Sevostianova., Mariam, Yu., Khanova., Tatiana, V., Glushkova., Tatiana, N., Akentieva., Larisa, V., Antonova., Leonid, S., Barbarash. (2022). (5) Advantages of Fibrin Polymerization Method without the Use of Exogenous Thrombin for Vascular Tissue Engineering Applications. Advances in Cardiovascular Diseases. https://doi.org/10.3390/biomedicines10040789
[145] Alberto, M., Settembrini., Gianluca, Buongiovanni., Piergiorgio, Settembrini., Antonio, Alessandrino., Giuliano, Freddi., Giulia, Vettor., Eugenio, Martelli. (2023). (4) In-vivo evaluation of silk fibroin small-diameter vascular grafts: state of art of preclinical studies and animal models. Frontiers in Surgery. https://doi.org/10.3389/fsurg.2023.1090565
[146] Piotr, Koczoń., Alicja, Dąbrowska., Ewa, Laskowska., Małgorzata, Łabuz., Katarzyna, Maj., Jakub, Masztakowski., Bartłomiej, J., Bartyzel., Andrzej, Bryś., Joanna, Bryś., Eliza, Gruczyńska-Sękowska. (2023). (1) Applications of Silk Fibroin in Human and Veterinary Medicine. Materials. https://doi.org/10.3390/ma16227128
[147] Hong, Chen., Hong, Chen., Hong, Chen., Yajie, Zhang., Tianyu, Ni., Pi, Ding., Yue, Zan., Yue, Zan., Xue, Cai., Xue, Cai., Yiwei, Zhang., Min, Liu., Renjun, Pei. (2021). (2) Construction of a Silk Fibroin/Polyethylene Glycol Double Network Hydrogel with Co-Culture of HUVECs and UCMSCs for a Functional Vascular Network. doi: 10.1021/ACSABM.0C00353
[148] Xiangqian, Kong., He, Yuxiang., Hua, Zhou., Peixian, Gao., Lei, Xu., Zonglin, Han., Le, Yang., Mo, Wang. (2021). (3) Chondroitin Sulfate/Polycaprolactone/Gelatin Electrospun Nanofibers with Antithrombogenicity and Enhanced Endothelial Cell Affinity as a Potential Scaffold for Blood Vessel Tissue Engineering.. Nanoscale Research Letters. https://doi.org/10.1186/S11671-021-03518-X
[149] Yixi, Chen., Mao, Ye., Xiaofei, Wang., Wenqiang, Li., Weijian, Chen. (2022). (5) Functionalized gelatin/strontium hydrogel bearing endothelial progenitor cells for accelerating angiogenesis in wound tissue regeneration.. Biomaterials advances. https://doi.org/10.1016/j.bioadv.2022.212803
[150] Stefan, Baudis., Christian, Heller., Robert, Liska., Juergen, Stampfl., Helga, Bergmeister., Guenter, Weigel. (2009). (5) (Meth)acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. Journal of Polymer Science Part A. https://doi.org/10.1002/POLA.23352
[151] Anna, Effenberger., Jade, Greenberg., Vidhya, Dhar., Anusha, Aggarwal., Tyler, Lee., N., Sanjeeva, Murthy., Thomas, Emge. (2018). (3) Fabrication and Characterization of Polymeric Aortic Vessels. doi: 10.1109/URTC45901.2018.9244812
[152] Yumei, Li., Yumei, Li., Rui, Zhao., Xiang, Li., Chuying, Wang., Huiwei, Bao., Shudan, Wang., Jing, Fang., Jinqiu, Huang., Ce, Wang. (2019). (2) Blood-compatible Polyaniline Coated Electrospun Polyurethane Fiber Scaffolds for Enhanced Adhesion and Proliferation of Human Umbilical Vein Endothelial Cells. Fibers and Polymers. https://doi.org/10.1007/S12221-019-8735-0
[153] Alida, Abruzzo., Calogero, Fiorica., Vincenzo, Davide, Palumbo., Roberta, Altomare., Giuseppe, Damiano., Maria, Concetta, Gioviale., Giovanni, Tomasello., Mariano, Licciardi., Fabio, Salvatore, Palumbo., Gaetano, Giammona., Attilio, Ignazio, Lo, Monte. (2014). (1) Using Polymeric Scaffolds for Vascular Tissue Engineering. International Journal of Polymer Science. https://doi.org/10.1155/2014/689390
[154] Marie, Claude, Boivin., Pascale, Chevallier., Stéphane, Turgeon., Jean, Lagueux., Gaétan, Laroche. (2011). (2) Micropatterning Polymer Materials to Improve Endothelialization. Advanced Materials Research. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.409.777
[155] Dhiraj, M., Shah., Robert, P., Leather., John, D., Corson., Allastair, M., Karmody. (1984). (5) Polytetrafluoroethylene grafts in the rapid reconstruction of acute contaminated peripheral vascular injuries.. American Journal of Surgery. https://doi.org/10.1016/0002-9610(84)90227-7
[156] Yuan, Meirong., Xu, Yongjin., Chen, Yuqi. (2019). (1) Thiophene copolymer, preparation method and applications thereof.
[157] Nazely, Diban., Dimitrios, Stamatialis. (2011). (2) Functional Polymer Scaffolds for Blood Vessel Tissue Engineering. Macromolecular Symposia. https://doi.org/10.1002/MASY.201100038
[158] M’hamed, Chahma. (2005). (5) Synthesis and characterization of poly(thiophene sulfides) prepared via chemically initiated oxidative polymerization methods. Synthetic Metals. https://doi.org/10.1016/J.SYNTHMET.2005.06.023
[159] Yamanoue, Hisashi., Noguchi, Gen., Saito, Kei. (2019). (1) Poly(phenylene sulfide) resin composition, production method therefor, and molded article.
[160] Peiyuan, Zuo., Abbas, Tcharkhtchi., Mohammadali, Shirinbayan., Joseph, Fitoussi., Farid, Bakir. (2019). (4) Overall Investigation of Poly (Phenylene Sulfide) from Synthesis and Process to Applications—A Review. Macromolecular Materials and Engineering. https://doi.org/10.1002/MAME.201800686
[161] Birgit, Huber., Sascha, Engelhardt., Wolfdietrich, Meyer., Hartmut, Krüger., Annika, Wenz., Veronika, Schönhaar., Günter, E., M., Tovar., Günter, E., M., Tovar., Petra, J., Kluger., Petra, J., Kluger., Kirsten, Borchers., Kirsten, Borchers. (2016). (3) Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.. Journal of Functional Biomaterials. https://doi.org/10.3390/JFB7020011
[162] A., Zubareva., V., P., Varlamov., Anna, M., Nechaeva., N., N., Drozd. (2023). (1) Chemical modification of chitosan for developing of new hemostatic materials: A review.. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2023.127608
[163] Xiuxue, Lei. (2023). (4) Recent advances of chitosan as a hemostatic material: Hemostatic mechanism, material design and prospective application. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2023.121673
[164] Chunyan, Yu., Yanju, Lu., Jinhui, Pang., lu, Li. (2023). (2) A hemostatic sponge derived from chitosan and hydroxypropylmethylcellulose. Journal of The Mechanical Behavior of Biomedical Materials. https://doi.org/10.1016/j.jmbbm.2023.106240
[165] Peng, Fan., Yanbo, Zeng., Dionisio, Zaldivar-Silva., Lissette, Agüero., Shige, Wang. (2023). (5) Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules. https://doi.org/10.3390/molecules28031473
[166] Roberta, Cassano., Paolo, Perri., Edoardo, Scarcello., Paolo, Piro., Roberta, Del, Sole., Federica, Curcio., Sonia, Trombino. (2024). (3) Chitosan Hemostatic Dressings: Properties and Surgical Applications. Polymers. https://doi.org/10.3390/polym16131770
[167] Chih-Tsung, Chang. (2023). (1) The hemostatic effect and wound healing of Novel collagen-containing polyester dressing.. Journal of Biomaterials Science-polymer Edition. https://doi.org/10.1080/09205063.2023.2230842
[168] Zhuang, Shi., Chengcheng, Shi., Chengkun, Liu., Haiyan, Sun., Si-Yuan, Ai., Xiaodan, Liu., Haoyu, Wang., Yunsong, Gan., Hua-zhen, Dai., Xiaoqiang, Wang., Fang, Huang. (2022). (5) Incorporation of tissue factor-integrated liposome and silica nanoparticle into collagen hydrogel as a promising hemostatic system. Journal of Biomaterials Science-polymer Edition. https://doi.org/10.1080/09205063.2022.2156769
[169] Yu, Wang., Jie, Lin., Hao, Fu., Bingran, Yu., Guochao, Zhang., Yang, Hu., Fu-Jian, Xu. (2023). (1) A Janus Gelatin Sponge with a Procoagulant Nanoparticle-Embedded Surface for Coagulopathic Hemostasis.. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c15517
[170] Haihua, Wang., Mengxi, Wang., Jingheng, Wu., Shilei, Zhu., Yanan, Ye., Yushan, Liu., Ke, Li., Ruyue, Li., Yuhang, Zhang., Meng, Wei., Xin, Yang., Leixin, Meng. (2024). (5) Nature-Inspired Gelatin-Based Adhesive Hydrogel: A Rapid andUser-Friendly Solution for Hemostatic Applications.. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202304444
[171] Sergey, Barannikov., Evgeniy, Cherednikov., Galina, Polubkova., A., K., Vorontsov., Yu., V., Maleev., Alexey, Evgenievich, Bolkhovitinov., G., V., Prokhorov. (2024). (1) First experience of using alginate polymer polysaccharide hemostatic hydrogel in complex endoscopic treatment of unstable gastroduodenal ulcer bleeding: Clinical cases. Kubanskij naučnyj medicinskij vestnik. https://doi.org/10.25207/1608-6228-2024-31-3-73-92
[172] Xiaoqiang, Wang., Chang, Liu., Chengkun, Liu., Zhuang, Shi., Fang, Huang. (2024). (3) Development of alginate macroporous hydrogels using sacrificial CaCO3 particles for enhanced hemostasis.. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2023.129141
[173] Jayavardhini, Bhoopathy., Weslen, Vedakumari, Sathyaraj., Beryl, Vedha, Yesudhason., Selvarajan, Rajendran., Sankari, Dharmalingam., Jayashri, Seetharaman., Ranjitha, Muthu., Ramachandran, Murugesan., Subramanian, Raghunandhakumar., Suresh, Kumar, Anandasadagopan. (2023). (5) Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds – preparation, characterisation, and evaluation.. Artificial Cells Nanomedicine and Biotechnology. https://doi.org/10.1080/21691401.2023.2293784
[174] Raúl, Sanz-Horta., Ana, I., Matesanz., Alberto, Gallardo., Helmut, Reinecke., José, L., Jorcano., Pablo, Martínez, Acedo., Diego, Velasco., Carlos, Elvira. (2023). (1) Technological advances in fibrin for tissue engineering. Journal of Tissue Engineering. https://doi.org/10.1177/20417314231190288
[175] Tímea, Feller., Simon, D., Connell., Robert, A.S., Ariёns. (2021). (3) Why fibrin biomechanical properties matter for hemostasis and thrombosis.. Journal of Thrombosis and Haemostasis. https://doi.org/10.1111/JTH.15531
[176] Chengkun, Liu., Zi, Li., Zhuang, Shi., Zhidong, Ma., Shihai, Liu., Xiaoqiang, Wang., Fang, Huang. (2024). (1) Thermo-assisted fabrication of a novel shape-memory hyaluronic acid sponge for non-compressible hemorrhage control. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2024.133657
[177] Yue, Xie., Pan, Gao., Fang-Fang, He., Chun-Yun, Zhang. (2022). (3) Application of Alginate-Based Hydrogels in Hemostasis. Gels. https://doi.org/10.3390/gels8020109
[178] Han, Yu., Qiaohong, Xiao., Guilin, Qi., Feixiang, Chen., Biyue, Tu., Suo, Zhang., Yinping, Li., Yun-Ru, Chen., Peng, Duan. (2022). (4) A Hydrogen Bonds-Crosslinked Hydrogels With Self-Healing and Adhesive Properties for Hemostatic. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2022.855013
[179] Kanaparedu, P., C., Sekhar., Xunhui, Zhang., Huimin, Geng., Qun, Yu., Peiyu, Zhang., Jiwei, Cui. (2023). (1) Biomimetic Hemostatic Powder Derived from Coacervate-Immobilized Thermogelling Copolymers.. Biomacromolecules. https://doi.org/10.1021/acs.biomac.3c00840
[180] Jia, Bing, Wang., Cheng-xin, Li., Wei, Zhang., Weimin, Huang., Zhiqing, Liu., Rui, Shi., Shiyuan, Wang., Shan, Liu., Weiguo, Shi., Yunpeng, Li., Liang-Fa, Xu. (2023). (2) A contact-polymerizable hemostatic powder for rapid hemostasis.. Biomaterials Science. https://doi.org/10.1039/d3bm00075c
[181] Yoo, Eun, Lee., Yeonjeong, Kim., Kyung, Min, Park. (2023). (3) Actively cross-linking hemostatic sealant enables rapid hemostasis and wound closure.. Biotechnology Journal. https://doi.org/10.1002/biot.202200517
[182] Huijun, Ye., Yiwen, Xian., Shurong, Li., Chong, Zhang., Decheng, Wu. (2022). (5) In situ forming injectable γ-poly(glutamic acid)/PEG adhesive hydrogels for hemorrhage control.. Biomaterials Science. https://doi.org/10.1039/d2bm00525e
[183] Yan, Fang., Yanyan, Zheng., Chongyi, Chi., Sai, Jiang., Wanbang, Qin., Yicheng, Zhang., Haiqing, Liu., Qinhui, Chen. (2024). (1) PAA-PU Janus Hydrogels Stabilized by JANUS Particles and its Interfacial Performance During Hemostatic Processing.. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202303802
[184] Wanxin, Guo., Bin, Zhao., Muhammad, Shafiq., Xiao, Yu., Yihong, Shen., Jie, Cui., Yujie, Chen., Pengfei, Cai., Zhengchao, Yuan., Mohamed, H., El-Newehy., Hany, El-Hamshary., Yosry, Morsi., Binbin, Sun., Jian-feng, Pan., Xiumei, Mo. (2023). (2) On the development of modular polyurethane-based bioelastomers for rapid hemostasis and wound healing. Regenerative Biomaterials. https://doi.org/10.1093/rb/rbad019
[185] Yang, Bo., Wang, Yiliang., He, Jianxiong. (2018). (4) Polyurethane expansive film material for hemostasis and preparation method thereof.
[186] Aaron, C, Wilson., Shih-Feng, Chou., Roberto, Lozano., Jonathan, Y., Chen., Pierre, F., Neuenschwander. (2019). (6) Thermal and Physico-Mechanical Characterizations of Thromboresistant Polyurethane Films. Bioengineering. https://doi.org/10.3390/BIOENGINEERING6030069
[187] Xiaotian, Ge., Li, Zhang., Xianshun, Wei., Xi, Long., Yingchao, Han. (2024). (1) Plasma Surface Treatment and Application of Polyvinyl Alcohol/Polylactic Acid Electrospun Fibrous Hemostatic Membrane. Polymers. https://doi.org/10.3390/polym16121635
[188] Erfan, Dorkhani., Ali, Faryabi., Yasmin, Noorafkan., Asieh, Heirani., Behnam, Behboudi., Mohammad, Sadegh, Fazeli., Alireza, Kazemeini., Mohammad, Reza, Keramati., Amir, Keshvari., Seyed, Mohsen, Ahmadi, Tafti. (2023). (3) Biomedical properties and hemostatic efficacy of polyvinyl alcohol (PVA) based hydrogel in experimental rat liver injury model.. Journal of Applied Biomaterials & Biomechanics. https://doi.org/10.1177/22808000231198803
[189] Mohammad, Ashfaq., Tepparit, Wongpakham., Neetu, Talreja., Divya, Chauhan., Theerawat, Tharasanit., Werayut, Srituravanich. (2022). (2) Synthesis of polymeric composite grafted with mineral particles/graphene oxide-based biomaterial: A promising robust hemostatic bandage. Materials today communications. https://doi.org/10.1016/j.mtcomm.2022.104786
[190] Tomoko, Ito., Shingo, Yamaguchi., Daisuke, Soga., Keisuke, Ueda., Takayuki, Yoshimoto., Toshiyuki, Koyama. (2022). (4) Water-Absorbing Bioadhesive Poly(Acrylic Acid)/Polyvinylpyrrolidone Complex Sponge for Hemostatic Agents. Bioengineering. https://doi.org/10.3390/bioengineering9120755
[191] Li, Q., YangMasood, U., Zhang, Z., Feng, G., Yang, H., & Song, Y. (2023). The efficacy and safety of thrombin-based flowable hemostatic agents in spine surgery: a protocol for systematic review and meta-analysis.
[192] Desiree, D., Rosselli., Benjamin, M., Brainard., Chad, W., Schmiedt. (2015). (2) Efficacy of a topical bovine-derived thrombin solution as a hemostatic agent in a rodent model of hepatic injury.. Canadian Journal of Veterinary Research-revue Canadienne De Recherche Veterinaire,
[193] Christine, M., Cheng., Carla, Meyer-Massetti., Steven, R., Kayser. (2009). (4) A review of three stand-alone topical thrombins for surgical hemostasis. Clinical Therapeutics. https://doi.org/10.1016/J.CLINTHERA.2009.01.005
[194] Yuanxing, Zhou., Xiaochi, Ma., Zhonghai, Li., Bo, Wang. (2021). (1) Efficacy, safety, and physicochemical properties of a flowable hemostatic agent made from absorbable gelatin sponge via vacuum pressure steam sterilization.. Journal of Biomaterials Applications. https://doi.org/10.1177/0885328220950899
[195] Roberto, Gazzeri., Marcelo, Galarza., Marika, Morabito., Alex, Alfieri. (2018). (5) Clinical Use and Hemostatic Application of Gelatin. doi: 10.1007/978-981-10-6083-0_3
[196] Roland, Z, White., Roland, Z, White., Lachlan, Kerr., Lachlan, Kerr., Tyler, J, White., Matthew, J, Sampson. (2021). (4) Review of topical gelatin-based haemostatic agents; an insidious culprit of intraoperative anaphylaxis?. Anz Journal of Surgery. https://doi.org/10.1111/ANS.16716
[197] Andrey, Karpenko., A., V., Cheban., A, A, Rabtsun., German, Y, Sokurenko., K.A., Andreychuk., Igor, I, Prostov., Natalia, Germanovna, Sapronova., N.D., Mzhavanadze., A, A, Kamaev., I, A, Suchkov. (2023). 1. Fibrin Sealant TISSEEL Lyo as a haemostatic agent in vascular surgery: Results of randomized, controlled, patient-blinded, multicentre clinical study in the Russian population.. Science Progress. https://doi.org/10.1177/00368504231182834
[198] W., Danker., Ashley, Deanglis., Nicole, Ferko., David, Garcia., A., Hogan. (2021). 2. Comparison of fibrin sealants in peripheral vascular surgery: A systematic review and network meta-analysis. Annals of medicine and surgery. https://doi.org/10.1016/J.AMSU.2020.12.003
[199] Ehsan, Natour., Michael, Suedkamp., Otto, Dapunt. (2012). (3) Assessment of the effect on blood loss and transfusion requirements when adding a polyethylene glycol sealant to the anastomotic closure of aortic procedures: a case–control analysis of 102 patients undergoing Bentall procedures. Journal of Cardiothoracic Surgery. https://doi.org/10.1186/1749-8090-7-105
[200] William, M., Stone., David, L., Cull., Samuel, R., Money. (2012). (4) A randomized prospective multicenter trial of a novel vascular sealant. Annals of Vascular Surgery. https://doi.org/10.1016/J.AVSG.2012.02.013
[201] Quentin, Pellenc., Joseph, Touma., Raphaël, Coscas., Grégoire, Edorh., Maria, J., N., Pereira., Jeffrey, M., Karp., Yves, Castier., Pascal, Desgranges., Jean-Marc, Alsac., Jean-Marc, Alsac., Jean-Marc, Alsac. (2019). (1) Preclinical and clinical evaluation of a novel synthetic bioresorbable, on-demand, light-activated sealant in vascular reconstruction.. Journal of Cardiovascular Surgery. https://doi.org/10.23736/S0021-9509.19.10783-5
[202] Tetsushi, Taguchi., Mizuta, Ryo., Temmei, Ito., Keiko, Yoshizawa., Mikio, Kajiyama. (2016). (2) Robust Sealing of Blood Vessels with Cholesteryl Group-Modified, Alaska Pollock-Derived Gelatin-Based Biodegradable Sealant Under Wet Conditions.. Journal of Biomedical Nanotechnology. https://doi.org/10.1166/JBN.2016.2210
[203] Alan, B., Lumsden., Eugene, R., Heyman. (2006). (3) Prospective randomized study evaluating an absorbable cyanoacrylate for use in vascular reconstructions.. Journal of Vascular Surgery. https://doi.org/10.1016/J.JVS.2006.06.039
[204] Jan, Brunkwall., Ruemenapf, G., Florek, Hj., Werner, Lang., Schmitz-Rixen, T. (2007). (2) A single arm, prospective study of an absorbable cyanoacrylate surgical sealant for use in vascular reconstructions as an adjunct to conventional techniques to achieve haemostasis.. Journal of Cardiovascular Surgery,
[205] Bastiaan, P., Vierhout., Alewijn, Ott., Michel, M.P.J., Reijnen., Jacques, Oskam., Jan, J.A.M., van, den, Dungen., Clark, J., Zeebregts. (2014). (1) Cyanoacrylate Skin Microsealant for Preventing Surgical Site Infection after Vascular Surgery: A Discontinued Randomized Clinical Trial. Surgical Infections. https://doi.org/10.1089/SUR.2013.191
[206] Hamit, Serdar, Başbuğ. (2016). (4) Ultrasound-guided perforator vein sealing with cyanoacrylate glue. Turkish Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.5606/TGKDC.DERGISI.2016.12883
[207] Junichiro, Sageshima., Junichiro, Sageshima., Gaetano, Ciancio., Gaetano, Ciancio., K., Uchida., K., Uchida., Antonio, Romano., Antonio, Romano., Z., Acun., Z., Acun., L., Chen., L., Chen., George, W., Burke., George, W., Burke. (2011). (5) Absorbable Cyanoacrylate Surgical Sealant in Kidney Transplantation. doi: 10.1016/J.TRANSPROCEED.2011.03.094
[208] Regina, Moura., Francisco, Humberto, de, Abreu, Maffei., L., Mattar., Viciany, Erique, Fabris., P., R., Cury., S., Lastoria., E., A., Gregorio. (2009). (1) Glutaraldehyde-treated homologous vein graft as a vein substitute: experimental study in rabbits.. International Angiology. https://doi.org/10.4172/2157-7552-S1.002
[209] Herbert, Dardik. (1986). (5) Lower Extremity Revascularization with the Glutaraldehyde Stabilized Human Umbilical Cord Vein Graft. ASTM special technical publications. https://doi.org/10.1520/STP33281S
[210] Herbert, Dardik., Ibrahim, M., Ibrahim., Barry, Sussman., Mamoon, Jarrah., Irving, Dardik. (1979). (3) Glutaraldehyde-stabilized umbilical vein prosthesis for revascularization of the legs. Three year results by life table analysis.. American Journal of Surgery. https://doi.org/10.1016/0002-9610(79)90376-3
[211] Herbert, Dardik., Ibrahim, M., Ibrahim., Mamoon, Jarrah., Barry, C., Sussman., Irving, Dardik. (2005). (4) Three-year experience with glutaraldehyde-stabilized umbilical vein for limb salvage.. British Journal of Surgery. https://doi.org/10.1002/BJS.1800670402
[212] Zeng, Q., Zhou, J., Ji, Y., & Wang, H. (2024). A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Biostatistics, kxae013.
[213] Song, Xiaokun., Zhou, Long., Xie, Weiguo., Wang, Lei., Xu, Ning. (2018). (3) Blood vessel image reconstruction method and reconstruction apparatus.
[214] Yih, Yang, Chen., Benjamin, R., Kingston., Warren, C., W., Chan. (2020). (4) Transcribing In Vivo Blood Vessel Networks into In Vitro Perfusable Microfluidic Devices. Advanced materials and technologies. https://doi.org/10.1002/ADMT.202000103
[215] Salazar, H. F., O’Connell, G. M., Corpuz, G. S., Salingaros, S., Chopoorrian, A. H., Carrion, K., … & Spector, J. A. (2023). 146. A novel 3D printed sacrificial material for the development of perfused intricate blood vessel structures. Plastic and Reconstructive Surgery–Global Open, 11(5S), 91-92.
[216] Nazanin, Amiryaghoubi., Marziyeh, Fathi., Jaleh, Barar., Hossein, Omidian., Yadollah, Omidi. (2023). (1) Hybrid polymer-grafted graphene scaffolds for microvascular tissue engineering and regeneration. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2023.112095
[217] Rumiana, Tzoneva., Claudia, Weckwerth., Barbara, Seifert., Marc, Behl., Matthias, Heuchel., Iana, Tsoneva., Andreas, Lendlein. (2011). (3) In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.. Journal of Biomaterials Science-polymer Edition. https://doi.org/10.1163/092050610X537147
[218] Halima, Kerdjoudj., Halima, Kerdjoudj., Fouzia, Boulmedais., Nicolas, Berthelemy., H., Mjahed., H., Louis., Pierre, Schaaf., Jean-Claude, Voegel., Jean-Claude, Voegel., Patrick, Menu. (2011). (5) Cellularized alginate sheets for blood vessel reconstruction. Soft Matter. https://doi.org/10.1039/C0SM00998A
[219] Alida, Abruzzo., Calogero, Fiorica., Vincenzo, Davide, Palumbo., Roberta, Altomare., Giuseppe, Damiano., Maria, Concetta, Gioviale., Giovanni, Tomasello., Mariano, Licciardi., Fabio, Salvatore, Palumbo., Gaetano, Giammona., Attilio, Ignazio, Lo, Monte. (2014). (4) Using Polymeric Scaffolds for Vascular Tissue Engineering. International Journal of Polymer Science. https://doi.org/10.1155/2014/689390
[220] Mina, Shahriari-Khalaji., Muhammad, Shafiq., Haitao, Cui., Ran, Cao., Meifang, Zhu. (2023). (1) Advancements in the fabrication technologies and biomaterials for small diameter vascular grafts: A fine-tuning of physicochemical and biological properties. Applied Materials Today. https://doi.org/10.1016/j.apmt.2023.101778
[221] Panitporn, Laowpanitchakorn., Marie, Piantino., Kentaro, Uchida., Misa, Katsuyama., Michiya, Matsusaki. (2024). (4) Biofabrication of engineered blood vessels for biomedical applications. Science and Technology of Advanced Materials. https://doi.org/10.1080/14686996.2024.2330339
[222] Georgia, Papavasiliou., Ming-Huei, Cheng., Eric, M., Brey. (2010). (2) Strategies for Vascularization of Polymer Scaffolds. Journal of Investigative Medicine. https://doi.org/10.2310/JIM.0B013E3181F18E38
[223] Alida, Abruzzo., Calogero, Fiorica., Vincenzo, Davide, Palumbo., Roberta, Altomare., Giuseppe, Damiano., Maria, Concetta, Gioviale., Giovanni, Tomasello., Mariano, Licciardi., Fabio, Salvatore, Palumbo., Gaetano, Giammona., Attilio, Ignazio, Lo, Monte. (2014). (5) Using Polymeric Scaffolds for Vascular Tissue Engineering. International Journal of Polymer Science. https://doi.org/10.1155/2014/689390
[224] Elena, López-Ruiz., Seshasailam, Venkateswaran., Macarena, Perán., Macarena, Perán., Gema, Jiménez., Salvatore, Pernagallo., Juan, J., Díaz-Mochón., Olga, Tura-Ceide., Francisco, Arrebola., Juan, Melchor., J., I., Soto., Guillermo, Rus., Pedro, J., Real., María, Diaz-Ricart., Antonio, Conde-González., Mark, Bradley., Juan, A., Marchal. (2017). (1) Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement. Scientific Reports. https://doi.org/10.1038/S41598-017-00294-6
[225] E., A., Velikanova., Vera, G., Matveeva., E., O., Krivkina., V., V., Sevostianova., M., Yu., Khanova., T., V., Glushkova., Yu., A., Kudryavtseva., Larisa, V., Antonova. (2019). (3) Development of a polymeric scaffold for vascular tissue engineering. doi: 10.1063/1.5132248
[226] Soodabeh, Gorgani., Anousheh, Zargar, Kharazi., Shaghayegh, Haghjooy, Javanmard., Mohammad, Rafiinia. (2020). (4) Improvement of Endothelial Cell Performance in an Optimized Electrospun Pre-polyglycerol Sebacate-Poly Lactic Acid Scaffold for Reconstruction of Intima in Coronary Arteries. Journal of Polymers and The Environment. https://doi.org/10.1007/S10924-020-01749-0