Polymers for Vascular Applications
Satish Polshettiwar, Nilesh Mahajan, Dishank Purandare, Rakesh Mishra, Arpana Patil
Polymers, both natural and synthetic, play a critical role in the development of vascular applications due to their biocompatibility, mechanical properties, and versatility. This chapter explores the use of natural polysaccharides such as collagen, chitosan, and alginate, highlighting their ability to support tissue regeneration and wound healing in vascular contexts. It also examines synthetic polymers like polyethylene glycol (PEG), polylactic acid (PLA), polycaprolactone (PCL), and polyurethane, which offer tunable properties for vascular grafts, stents, and drug delivery systems. The chapter delves into key considerations for biocompatibility, mechanical strength, flexibility, and the development of drug delivery systems with antithrombogenic properties. Additionally, it discusses biodegradable and synthetic vascular grafts, stents, and vascular patches, emphasizing innovations like coatings and modifications to enhance graft performance. The future of vascular applications is closely tied to advances in smart polymers, nanotechnology, and tissue engineering, with emerging fields like 3D bioprinting offering customized, patient-specific solutions. The regulatory, ethical, and economic considerations surrounding the adoption of these polymers are also addressed. By integrating polymers into vascular medicine, this chapter underscores the potential of both natural and synthetic materials to revolutionize the treatment of vascular diseases, driving sustainable and innovative advancements in healthcare.
Keywords
Polymers, Vascular Applications, Biocompatibility, Vascular Grafts, Nanocomposites, Stents Polymer
Published online 2/15/2025, 23 pages
Citation: Satish Polshettiwar, Nilesh Mahajan, Dishank Purandare, Rakesh Mishra, Arpana Patil, Polymers for Vascular Applications, Materials Research Foundations, Vol. 172, pp 358-380, 2025
DOI: https://doi.org/10.21741/9781644903353-15
Part of the book on Applications of Polymers in Surgery II
References
[1] P. Libby, P.M. Ridker, G.K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature. 473 (2011) 317-325. https://doi.org/10.1038/nature10146
[2] P.B. Gorelick, A. Scuteri, S.E. Black, C. Decarli, S.M. Greenberg, C. Iadecola, L.J. Launer, S. Laurent, O.L. Lopez, D. Nyenhuis, R.C. Petersen, J.A. Schneider, C. Tzourio, D.K. Arnett, D.A. Bennett, H.C. Chui, R.T. Higashida, R. Lindquist, P.M. Nilsson, G.C. Roman, F.W. Sellke, S. Seshadri, Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association, Stroke. 42 (2011) 2672-2713. https://doi.org/10.1161/STR.0b013e3182299496
[3] A.J. Lusis, Atherosclerosis, Nature. 407 (2000) 233-241. https://doi.org/10.1038/35025203
[4] G.K. Hansson, Inflammation, atherosclerosis, and coronary artery disease, N Engl J Med. 352 (2005) 1685-1695. https://doi.org/10.1056/NEJMra043430
[5] R. Ross, Atherosclerosis–an inflammatory disease, N Engl J Med. 340 (1999) 115-126. https://doi.org/10.1056/NEJM199901143400207
[6] S. Jebari-Benslaiman, U. Galicia-García, A. Larrea-Sebal, J.R. Olaetxea, I. Alloza, K. Vandenbroeck, A. Benito-Vicente, C. Martín, Pathophysiology of Atherosclerosis, Int J Mol Sci. 23 (2022) 3346-3384. https://doi.org/10.3390/ijms23063346
[7] V. Fuster, L. Badimon, J.J. Badimon, J.H. Chesebro, The pathogenesis of coronary artery disease and the acute coronary syndromes (1), N Engl J Med. 326 (1992) 242-250. https://doi.org/10.1056/NEJM199201233260406
[8] A.K. Malakar, D. Choudhury, B. Halder, P. Paul, A. Uddin, S. Chakraborty, A review on coronary artery disease, its risk factors, and therapeutics, J Cell Physiol. 234 (2019) 16812-16823. https://doi.org/10.1002/jcp.28350
[9] V. Smith, D. Devane, C.M. Begley, M. Clarke, Methodology in conducting a systematic review of systematic reviews of healthcare interventions, BMC Med Res Methodol. 11 (2011) 15-21 https://doi.org/10.1186/1471-2288-11-15
[10] U. Ralapanawa, R. Sivakanesan, Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review, J Epidemiol Glob Health. 11 (2021) 169-177. https://doi.org/10.2991/jegh.k.201217.001
[11] C. Kearon, E.A. Akl, J. Ornelas, A. Blaivas, D. Jimenez, H. Bounameaux, M. Huisman, C.S. King, T.A. Morris, N. Sood, S.M. Stevens, J.R.E. Vintch, P. Wells, S.C. Woller, L. Moores, Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report, Chest. 149 (2016) 315-352. https://doi.org/10.1016/j.chest.2015.11.026
[12] S.G. Rockson, Lymphedema, Am J Med. 110 (2001) 288-295. https://doi.org/10.1016/S0002-9343(00)00727-0
[13] S.J. Greene, G.C. Fonarow, M. Vaduganathan, S.S. Khan, J. Butler, M. Gheorghiade, The vulnerable phase after hospitalization for heart failure, Nat Rev Cardiol. 12 (2015) 220-229. https://doi.org/10.1038/nrcardio.2015.14
[14] O. Kayıran, C. De La Cruz, K. Tane, A. Soran, Lymphedema: From diagnosis to treatment, Turk J Surg. 33 (2017) 51-57. https://doi.org/10.5152/turkjsurg.2017.3870
[15] R. Mortimer, M. Privopoulos, S. Kumar, The effectiveness of hydrotherapy in the treatment of social and behavioral aspects of children with autism spectrum disorders: a systematic review, J Multidiscip Healthc. 7 (2014) 93-104. https://doi.org/10.2147/JMDH.S55345
[16] G. Peppas, V.G. Alexiou, E. Mourtzoukou, M.E. Falagas, Epidemiology of constipation in Europe and Oceania: a systematic review, BMC Gastroenterol. 8 (2008) 5-12. https://doi.org/10.1186/1471-230X-8-5
[17] P.K. Whelton, R.M. Carey, The 2017 Clinical Practice Guideline for High Blood Pressure, JAMA. 318 (2017) 2073-2074. https://doi.org/10.1001/jama.2017.18209
[18] O.A. Carretero, S. Oparil, Essential hypertension. Part I: definition and etiology, Circulation. 101 (2000) 329-35. https://doi.org/10.1161/01.CIR.101.3.329
[19] R.P. Lifton, A.G. Gharavi, D.S. Geller, Molecular mechanisms of human hypertension, Cell. 104 (2001) 545-56. https://doi.org/10.1016/S0092-8674(01)00241-0
[20] L. Claesson-Welsh, Vascular permeability–the essentials, Ups J Med Sci. 120 (2015) 135-143. https://doi.org/10.3109/03009734.2015.1064501
[21] S. Fathi-Karkan, B. Banimohamad-Shotorbani, S. Saghati, R. Rahbarghazi, S. Davaran, A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds, J Biol Eng. 16 (2022) 6-24. https://doi.org/10.1186/s13036-022-00286-9
[22] A. Premkumar, D.A. Kolin, K.X. Farley, J.M. Wilson, A.S. McLawhorn, M.B. Cross, P.K. Sculco, Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States, J Arthroplasty. 36 (2021) 1484-1489. https://doi.org/10.1016/j.arth.2020.12.005
[23] L. Claesson-Welsh, Vascular permeability–the essentials, Ups J Med Sci. 120 (2015) 135-143. https://doi.org/10.3109/03009734.2015.1064501
[24] R. Parenteau-Bareil, R. Gauvin, F. Berthod, Collagen-Based Biomaterials for Tissue Engineering Applications, Materials (Basel). 3 (2010) 1863-1887. https://doi.org/10.3390/ma3031863
[25] F. Copes, N. Pien, S. Van Vlierberghe, F. Boccafoschi, D. Mantovani, Collagen-Based Tissue Engineering Strategies for Vascular Medicine, Front Bioeng Biotechnol. 166 (2019). https://doi.org/10.3389/fbioe.2019.00166
[26] S. Ravi, E.L. Chaikof, Biomaterials for vascular tissue engineering, Regen Med. 5 (2010) 107-120. https://doi.org/10.2217/rme.09.77
[27] E. Khor, L.Y. Lim, Implantable applications of chitin and chitosan, Biomaterials. 24 (2003) 2339-2349. https://doi.org/10.1016/S0142-9612(03)00026-7
[28] M. NV. Ravi. Kumar, A Review of Chitin and Chitosan Applications, Reactive and Functional Polymers. 46 (2000) 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
[29] S. Verma, C.D. Mazer, A.T. Yan, T. Mason, V. Garg, H. Teoh, F. Zuo, A. Quan, M.E. Farkouh, D.H. Fitchett, S.G. Goodman, R.M. Goldenberg, M. Al-Omran, R.E. Gilbert, D.L. Bhatt, L.A. Leiter, P. Jüni, B. Zinman, K.A. Connelly, Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial, Circulation. 140 (2019) 1693-1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375
[30] J.A. Burdick, G.D. Prestwich, Hyaluronic acid hydrogels for biomedical applications, Adv Mater. 23 (2011) H41-56. https://doi.org/10.1002/adma.201003963
[31] L. Ouyang, C.B. Highley, C.B. Rodell, W. Sun, J.A. Burdick, 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking, ACS Biomater Sci Eng. 2 (2016) 1743-1751. https://doi.org/10.1021/acsbiomaterials.6b00158
[32] S.F. Grieco, E. Castrén, G.M. Knudsen, A.C. Kwan, D.E. Olson, Y. Zuo, T.C. Holmes, X. Xu, Psychedelics and Neural Plasticity: Therapeutic Implications, J Neurosci. 42 (2022) 8439-8449. https://doi.org/10.1523/JNEUROSCI.1121-22.2022
[33] R.T. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer. 49 (2008) 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
[34] S. Zalipsky, Chemistry of polyethylene glycol conjugates with biologically active molecules, Advanced Drug Delivery Reviews. 16 (1995) 157-182. https://doi.org/10.1016/0169-409X(95)00023-Z
[35] F.M. Veronese, A. Mero, The impact of PEGylation on biological therapies, BioDrugs. 22 (2008) 315-329. https://doi.org/10.2165/00063030-200822050-00004
[36] C.C. Lin, K.S. Anseth, PEG hydrogels for the controlled release of biomolecules in regenerative medicine, Pharm Res. 26 (2009) 631-643. https://doi.org/10.1007/s11095-008-9801-2
[37] I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: Progress and challenges, Glob Cardiol Sci Pract. 2013 (2013) 316-342. https://doi.org/10.5339/gcsp.2013.38
[38] L. Sanders, J. Nagatomi, Clinical applications of surgical adhesives and sealants, Crit Rev Biomed Eng. 42 (2014) 271-292. https://doi.org/10.1615/CritRevBiomedEng.2014011676
[39] D.F. Torchiana DF, Polyethylene glycol based synthetic sealants: potential uses in cardiac surgery, J Card Surg. 18 (2003) 504-506. https://doi.org/10.1046/j.0886-0440.2003.00305.x
[40] S.L. Yeh, P. Deval, W.B. Tsai, Fabrication of Transparent PEGylated Antifouling Coatings via One-Step Pyrogallol Deposition, Polymers (Basel). 15 (2023) 2731-2742. https://doi.org/10.3390/polym15122731
[41] V. Kočka, P. Toušek, P. Widimský, Absorb bioresorbable stents for the treatment of coronary artery disease, Expert Rev Med Devices. 12 (2015) 545-557. https://doi.org/10.1586/17434440.2015.1080119
[42] R.X. Yin, D.Z. Yang, J.Z. Wu, Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis, Theranostics. 4 (2014) 175-200. https://doi.org/10.7150/thno.7210
[43] M. Santoro, S.R. Shah, J.L. Walker, A.G. Mikos, Poly(lactic acid) nanofibrous scaffolds for tissue engineering, Adv Drug Deliv Rev. 107 (2016) 206-212. https://doi.org/10.1016/j.addr.2016.04.019
[44] G. Matsumura, N. Hibino, Y. Ikada, H. Kurosawa, T. Shin’oka, Successful application of tissue engineered vascular autografts:clinical experience, Biomater. 24 (2003) 2303-2308. https://doi.org/10.1016/S0142-9612(03)00043-7
[45] M.A. Naser, A.M. Sayed, W. Abdelmoez, M.T. El-Wakad, M.S. Abdo, Biodegradable suture development-based albumin composites for tissue engineering applications, Sci Rep. 14 (2014) 7912-7926. https://doi.org/10.1038/s41598-024-58194-5
[46] Z. Alhulaybi, I. Dubdub, M. Al-Yaari, A. Almithn, A.F. Al-Naim, H. Aljanubi, Pyrolysis Kinetic Study of Polylactic Acid, Polymers (Basel). 15 (2022) 12-27. https://doi.org/10.3390/polym15010012
[47] D. Di Francesco, A. Pigliafreddo, S. Casarella, L. Di Nunno, D. Mantovani, F. Boccafoschi, Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements Biomolecules. 13 (2023) 1389-1414. https://doi.org/10.3390/biom13091389
[48] J.P. Cuenca, A. Padalhin, B.T. Lee, Small-Diameter Decellularized Vascular Graft with Electrospun Polycaprolactone, Materials Letters. 284 (2021) 128973. https://doi.org/10.1016/j.matlet.2020.128973
[49] N. Muzzio, S. Moya, G. Romero, Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine, Pharmaceutics. 13 (2021) 792-830 https://doi.org/10.3390/pharmaceutics13060792
[50] R. Dwivedi, S. Kumar, R. Pandey, A. Mahajan, D. Nandana, D.S. Katti, D. Mehrotra, Polycaprolactone as biomaterial for bone scaffolds: Review of literature, J Oral Biol Craniofac Res. 10 (2020) 381-388. https://doi.org/10.1016/j.jobcr.2019.10.003
[51] A.S. Udriște, A.C. Burdușel, A.G. Niculescu, M. Rădulescu, A.M. Grumezescu AM, Coatings for Cardiovascular Stents-An Up-to-Date Review, Int J Mol Sci. 25 (2024) 1078-1102. https://doi.org/10.3390/ijms25021078
[52] M. Cui, Z. Chai, Y. Lu, J. Zhu, L. Chen, Developments of polyurethane in biomedical applications: A review, Resources Chemicals and Materials. 2 (2023) 262-276. https://doi.org/10.1016/j.recm.2023.07.004
[53] S. Wendels, L. Avérous, Biobased polyurethanes for biomedical applications, Bioact. Mater. 6 (2020) 1083-1106. https://doi.org/10.1016/j.bioactmat.2020.10.002
[54] G. Dang, J. Gu, J. Song, Z. Li, J. Hao, Y. Wang, C. Wang, T. Ye, F. Zhao, Y. Zhang, F.R. Tay, L. Niu, L. Xia, Multifunctional polyurethane materials in regenerative medicine and tissue engineering, Cell Reports Physical Science. 5 (2024) 102053. https://doi.org/10.1016/j.xcrp.2024.102053
[55] V.R. Sinha, A. Trehan, Biodegradable microspheres for protein delivery, J Control Release. 90 (2003) 261-280. https://doi.org/10.1016/S0168-3659(03)00194-9
[56] R. Langer, J.P. Vacanti, Tissue engineering, Science. 260 (1993) 920-926. https://doi.org/10.1126/science.8493529
[57] M.S. Shive, J.M. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv Drug Deliv Rev. 28 (1997) 5-24. https://doi.org/10.1016/S0169-409X(97)00048-3
[58] J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials, Semin Immunol. 20 (2008) 86-100. https://doi.org/10.1016/j.smim.2007.11.004
[59] H.K. Makadia, S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers (Basel). 3 (2011) 1377-1397. https://doi.org/10.3390/polym3031377
[60] M. Vert, Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts, J Mater Sci Mater Med. 20 (2009) 437-446. https://doi.org/10.1007/s10856-008-3581-4
[61] J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials. 21 (2000) 2335-2346. https://doi.org/10.1016/S0142-9612(00)00101-0
[62] D. Durán-Rey, V. Crisóstomo, J.A. Sánchez-Margallo, F.M. Sánchez-Margallo, Systematic Review of Tissue-Engineered Vascular Grafts, Front Bioeng Biotechnol. 9 (2021) 771400. https://doi.org/10.3389/fbioe.2021.771400
[63] I.E. Yalcin, T.G. Sadikoglu, Design parameters for electrospun biodegradable vascular grafts, Journal of Industrial Textiles. 47 (8) 2205-2227. https://doi.org/10.1177/1528083716654470
[64] A.S. Udriște, A.G. Niculescu, A.M. Grumezescu, E.Bădilă, Cardiovascular Stents: A Review of Past, Current, and Emerging Devices, Materials. 14 (2021) 2498-2520. https://doi.org/10.3390/ma14102498
[65] S. Wendels, L. Avérous, Biobased polyurethanes for biomedical applications, Bioactive Materials. 6 (2021) 1083-1106. https://doi.org/10.1016/j.bioactmat.2020.10.002
[66] S.H. Im, Y. Jung, S.H. Kim, Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents, Acta Biomater. 60 (2017) 3-22. https://doi.org/10.1016/j.actbio.2017.07.019
[67] B. Hilmi, Z.A. Abdul Hamid, H. Md Akil, B.H. Yahaya, The Characteristics of the Smart Polymeras Temperature or pH-responsive Hydrogel, Procedia Chemistry. 19 (2016) 406-409. https://doi.org/10.1016/j.proche.2016.03.031
[68] A. Fattah-alhosseini, R. Chaharmahali, S. Alizad, M. Kaseem, B. Dikici, A review of smart polymeric materials: Recent developments and prospects for medicine applications, Hybrid Advances. 5 (2024) 100178. https://doi.org/10.1016/j.hybadv.2024.100178
[69] J. Tan, Q. Yang, G. Hu, H. Zhang, L. Pei, J. Wang, Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics, Polymer Testing. 110 (2022) 107563. https://doi.org/10.1016/j.polymertesting.2022.107563
[70] M. Santhamoorthy, T.T. Vy Phan, V. Ramkumar, C.J. Raorane, K. Thirupathi, S.C. Kim, Thermo-Sensitive Poly (N-isopropylacrylamide-co-polyacrylamide) Hydrogel for pH-Responsive Therapeutic Delivery, Polymers (Basel). 14 (2022) 4128-4142. https://doi.org/10.3390/polym14194128
[71] J. Singh, P. Nayak, pH-responsive polymers for drug delivery: Trends and opportunities, Journal of Polymer Science. 61 (2023) 2828-2851. https://doi.org/10.1002/pol.20230403
[72] A.A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, O. Kutlu, Therapeutic Nanoparticles and Their Targeted Delivery Applications, Molecules. 25 (2020) 2193-2224. https://doi.org/10.3390/molecules25092193
[73] M. Zhang, W. Song, Y. Tang, X. Xu, Y. Huang, D. Yu, Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications, Polymers. 14 (2022) 351-378. https://doi.org/10.3390/polym14020351
[74] Z. Yuan, D. Sheng, L. Jiang, M. hafiq, A.R. Khan, R. Hashim, Y. Chen, B. Li, X. Xie, J. Chen, Y. Morsi, X. Mo, S. Chen, Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration, Acta Biomaterialia. 140 (2022) 233-246. https://doi.org/10.1016/j.actbio.2021.11.040
[75] M. Hosseinkhani, D. Mehrabani, M.H. Karimfar, S. Bakhtiyari, A. Manafi, R. Shirazi, Tissue engineered scaffolds in regenerative medicine, World J Plast Surg. 3 (2014) 3-7.
[76] M.X. Li, Q.Q. Wei, H.L. Mo, Y. Ren, H.J. Lu, Y.K. Joung, Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts, Biomater Res. 27 (2023) 91. https://doi.org/10.1186/s40824-023-00424-4
[77] S. Ravi, E.L. Chaikof, Biomaterials for vascular tissue engineering, Regen Med. 5 (2010) 107-120. https://doi.org/10.2217/rme.09.77
[78] S.B. Choi, CYPHER coronary stents and risk of thrombosis, CMAJ. 169 (2003) 218.
[79] M. Nakamura, N. Suzuki, K. Fujii, J. Furuya, T. Kawasaki, T. Kimura, T. Sakamoto, K. Tanabe, H. Kusano, K.A. Stockelman, K. Kozuma, The Absorb GT1 Bioresorbable Vascular Scaffold System- 5-Year Post-Market Surveillance Study in Japan, Circ J. 88 (2024) 863-872. https://doi.org/10.1253/circj.CJ-23-0877
[80] R. Gaspar, R. Duncan, Polymeric carriers: Preclinical safety and the regulatory implications for design and development of polymer therapeutics, Advanced Drug Delivery Reviews. 61 (2009) 1220-1231. https://doi.org/10.1016/j.addr.2009.06.003