Polymers in Retinal Prosthesis

$40.00

Polymers in Retinal Prosthesis

Vipul D. Prajapati, P.N. Vaishnavi, Princy Shrivastav

Retinal prostheses or prosthesis, types of medical devices, are commonly designed to restore vision in individuals suffering from the retinitis pigmentosa (RP) and age-relating macular degeneration (AMD) types of retinal degenerative diseases. These devices interface with the remaining retinal cells to stimulate visual perception through electrical signals. Polymers play a major role in the formation of retinal prostheses due to their needful major characteristics such as biocompatibility, flexibility, and conductivity. Conductive polymers, in particular, are used to create electrodes that can effectively transmit electrical impulses to the retinal cells. Moreover, the flexibility of polymeric materials allows for the fabrication of devices that conform to the curved surface of the retina, reducing mechanical stress and improving patient comfort. Recent advancements in polymeric science have led to the formulation of novel materials with enhanced properties, such as improved electrical conductivity and stability, which are essential for the long-term performance of retinal prostheses. This chapter highlights the potential of polymers to improve the functionality and durability of retinal prostheses, paving the way for more effective treatments for blindness.

Keywords
Retinal Prosthesis, Polymers, Biomedical Devices, Conductive Polymers, Biocompatible Materials, Retinal Implants, Optical Hydrogels, Surface Modification, Retinal Stimulation, Biodegradable Polymers

Published online 2/15/2025, 29 pages

Citation: Vipul D. Prajapati, P.N. Vaishnavi, Princy Shrivastav, Polymers in Retinal Prosthesis, Materials Research Foundations, Vol. 172, pp 329-357, 2025

DOI: https://doi.org/10.21741/9781644903353-14

Part of the book on Applications of Polymers in Surgery II

References
[1] J. Barar, A. Aghanejad, M. Fathi, Y. Omidi, Advanced drug delivery and targeting technologies for the ocular diseases, Bioimpacts. 6 (2016) 49–67. https://doi.org/10.15171/bi.2016.07
[2] H. Kolb, D. Marshak, The midget pathways of the primate retina, Doc. Ophthalmol. 106 (2003) 67–81.
[3] R. O’Rahilly, The prenatal development of the human eye, Exp. Eye Res. 21 (1975) 93–112. https://doi.org/10.1016/0014-4835(75)90075-5
[4] M. Hoon, H. Okawa, L. Della Santina, R.O.L. Wong, Functional architecture of the retina: Development and disease, Prog. Retin Eye Res. 42 (2014) 44–84. https://doi.org/10.1016/j.preteyeres.2014.06.003
[5] D.T. Hartong, E.L. Berson, T.P. Dryja, Retinitis pigmentosa, The Lancet. 368 (2006) 1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7
[6] W. Baehr, S. M. Wu, A. C. Bird, K. Palczewski, The retinoid cycle and retina disease, Vision Res. 43 (2003) 2957–2958. https://doi.org/10.1016/j.visres.2003.10.001
[7] I. J. Constable, C. M. Pierce, C.M. Lai, A.L. Magno, M.A. Degli-Esposti, M.A. French, I. L. McAllister, S. Butler, S.B. Barone, S.D. Schwartz, M.S. Blumenkranz, E.P. Rakoczy, Phase 2a Randomized Clinical Trial: Safety and Post Hoc Analysis of Subretinal rAAV.sFLT-1 for Wet Age-related Macular Degeneration, EBioMedicine. 14 (2016) 168–175. https://doi.org/10.1016/j.ebiom.2016.11.016
[8] P.A. Campochiaro, A.K. Lauer, E.H. Sohn, T.A. Mir, S. Naylor, M.C. Anderton, M. Kelleher, R. Harrop, S. Ellis, K.A. Mitrophanous, Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study, Hum. Gene Ther. 28 (2017) 99–111. https://doi.org/10.1089/hum.2016.117
[9] E.L. Berson, Retinitis pigmentosa. The Friedenwald Lecture, Invest. Ophthalmol. Vis. Sci. 34 (1993) 1659–1676.
[10] C. Hamel, Retinitis pigmentosa, Orphanet. J. Rare Dis. 1 (2006) 1–12. https://doi.org/10.1186/1750-1172-1-40
[11] P. Mitchell, G. Liew, B. Gopinath, T.Y. Wong, Age-related macular degeneration, The Lancet. 392 (2018) 1147–1159. https://doi.org/10.1016/S0140-6736(18)31550-2
[12] L. S. Lim, P. Mitchell, J.M. Seddon, F.G. Holz, T.Y. Wong, Age-related macular degeneration, The Lancet. 379 (2012) 1728–1738. https://doi.org/10.1016/S0140-6736(12)60282-7
[13] K. Nowik, E. Langwińska-Wośko, P. Skopiński, K.E. Nowik, J.P. Szaflik, Bionic eye review – An update, J. Clin. Neurosci. 78 (2020) 8–19. https://doi.org/10.1016/j.jocn.2020.05.041
[14] Y.H.L. Luo, L. da Cruz, A review and update on the current status of retinal prostheses (bionic eye), Br. Med. Bull. 109 (2014) 31–44. https://doi.org/10.1093/bmb/ldu002
[15] M.S. Humayun, E. de Juan, G. Dagnelie, The Bionic Eye: A Quarter Century of Retinal Prosthesis Research and Development, Ophthalmol. 123 (2016) S89–S97. https://doi.org/10.1016/j.ophtha.2016.06.044
[16] J.D. Weiland, M.S. Humayun, Retinal Prosthesis, IEEE Trans. Biomed. Eng. 61 (2014) 1412–1424. https://doi.org/10.1109/TBME.2014.2314733
[17] H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J. Harris, A. Sher, D. Palanker, Photovoltaic restoration of sight with high visual acuity, Nat. Med. 21 (2015) 476–482. https://doi.org/10.1038/nm.3851
[18] K. Stingl, K.U. Bartz-Schmidt, D. Besch, C.K. Chee, C.L. Cottriall, F. Gekeler, M. Groppe, T.L. Jackson, R.E. MacLaren, A. Koitschev, A. Kusnyerik, J. Neffendorf, J. Nemeth, M.A.N. Naeem, T. Peters, J.D. Ramsden, H. Sachs, A. Simpson, M.S. Singh, B. Wilhelm, D. Wong, E. Zrenner, Subretinal Visual Implant Alpha IMS – Clinical trial interim report, Vision Res. 111 (2015) 149–160. https://doi.org/10.1016/j.visres.2015.03.001
[19] L. N. Ayton, P. J. Blamey, R. H. Guymer, C. D. Luu, D. A. X. Nayagam, N. C. Sinclair, M. N. Shivdasani, J. Yeoh, M. F. McCombe, R. J. Briggs, N. L. Opie, J. Villalobos, P. N. Dimitrov, M. Varsamidis, M. A. Petoe, C. D. McCarthy, J. G. Walker, N. Barnes, A. N. Burkitt, C. E. Williams, R. K. Shepherd, P. J. Allen, First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis, PLoS One. 9 (2014) 1–27. https://doi.org/10.1371/journal.pone.0115239
[20] D. Palanker, Y. Le Mer, S. Mohand-Said, M. Muqit, J. A. Sahel, Photovoltaic Restoration of Central Vision in Atrophic Age-Related Macular Degeneration, Ophthalmol. 127 (2020) 1097–1104. https://doi.org/10.1016/j.ophtha.2020.02.024
[21] R. A. B. Fernandes, B. Diniz, R. Ribeiro, M. Humayun, Artificial vision through neuronal stimulation, Neurosci. Lett. 519 (2012) 122–128. https://doi.org/10.1016/j.neulet.2012.01.063
[22] K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T.I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher, D. Palanker, Photovoltaic retinal prosthesis with high pixel density, Nat. Photonics. 6 (2012) 391–397. https://doi.org/10.1038/nphoton.2012.104
[23] A. Finn, D. Grewal, L. Vajzovic, Argus II retinal prosthesis system: a review of patient selection criteria, surgical considerations, and post-operative outcomes, Clin. Ophthalmol. 12 (2018) 1089–1097. https://doi.org/10.2147/OPTH.S137525
[24] R. Daschner, A. Rothermel, R. Rudorf, S. Rudorf, A. Stett, Functionality and Performance of the Subretinal Implant Chip Alpha AMS, Sens. Mater. (2018) 179–192. https://doi.org/10.18494/SAM.2018.1726
[25] E. Özmert, U. Arslan, Retinal Prostheses and Artificial Vision, Turk. J. Ophthalmol. 49 (2019) 213–219. https://doi.org/10.4274/tjo.galenos.2019.44270
[26] D.B. Shire, S.K. Kelly, J. Chen, P. Doyle, M.D. Gingerich, S.F. Cogan, W.A. Drohan, O. Mendoza, L. Theogarajan, J.L. Wyatt, J.F. Rizzo, Development and Implantation of a Minimally Invasive Wireless Subretinal Neurostimulator, IEEE Trans. Biomed. Eng. 56 (2009) 2502–2511. https://doi.org/10.1109/TBME.2009.2021401
[27] C. H. Chou, S. Shrestha, C. D. Yang, N. W. Chang, Y. L. Lin, K. W. Liao, W. C. Huang, T. H. Sun, S. J. Tu, W. H. Lee, M. Y. Chiew, C. S. Tai, T. Y. Wei, T. R. Tsai, H. T. Huang, C.Y. Wang, H. Y. Wu, S.Y. Ho, P. R. Chen, C.H. Chuang, P.J. Hsieh, Y.S. Wu, W.L. Chen, M.J. Li, Y.C. Wu, X.Y. Huang, F. L. Ng, W. Buddhakosai, P. C. Huang, K.C. Lan, C.Y. Huang, S.L. Weng, Y.N. Cheng, C. Liang, W.L. Hsu, H.D. Huang, miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions, Nucleic Acids Res. 46 (2018) D296–D302. https://doi.org/10.1093/nar/gkx1067
[28] N.S. Peachey, A.Y. Chow, Subretinal implantation of semiconductor-based photodiodes: Progress and challenges, J. Rehabil. Res. Dev. 36 (1999) 1–10.
[29] G. Roessler, T. Laube, C. Brockmann, T. Kirschkamp, B. Mazinani, M. Goertz, C. Koch, I. Krisch, B. Sellhaus, H. K. Trieu, J. Weis, N. Bornfeld, H. Ro¨thgen, A. Messner, W. Mokwa, P. Walter, Implantation and Explantation of a Wireless Epiretinal Retina Implant Device: Observations during the EPIRET3 Prospective Clinical Trial, Invest. Ophthalmol. Vis. Sci. 50 (2009) 3003–3008. https://doi.org/10.1167/iovs.08-2752
[30] C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A.M. Litke, E.J. Chichilnisky, High-Resolution Electrical Stimulation of Primate Retina for Epiretinal Implant Design, J. Neurosci. 28 (2008) 4446–4456. https://doi.org/10.1523/JNEUROSCI.5138-07.2008
[31] S. Klauke, M. Goertz, S. Rein, D. Hoehl, U. Thomas, R. Eckhorn, F. Bremmer, T. Wachtler, Stimulation with a Wireless Intraocular Epiretinal Implant Elicits Visual Percepts in Blind Humans, Invest. Ophthalmol. Vis. Sci. 52 (2011) 449–455. https://doi.org/10.1167/iovs.09-4410
[32] M. Farvardin, M. Afarid, A. Attarzadeh, M.K. Johari, M. Mehryar, M.H. Nowroozzadeh, F. Rahat, H. Peyvandi, R. Farvardin, M. Nami, The Argus-II Retinal Prosthesis Implantation; From the Global to Local Successful Experience, Front. Neurosci. 12 (2018) 1–8. https://doi.org/10.3389/fnins.2018.00584
[33] I. Vázquez-Domínguez, A. Garanto, R.W.J. Collin, Molecular Therapies for Inherited Retinal Diseases—Current Standing, Opportunities and Challenges, Genes (Basel). 10 (2019) 1–30. https://doi.org/10.3390/genes10090654
[34] A.L. Saunders, C.E. Williams, W. Heriot, R. Briggs, J. Yeoh, D.A. Nayagam, M. McCombe, J. Villalobos, O. Burns, C.D. Luu, L.N. Ayton, M. McPhedran, N.L. Opie, C. McGowan, R.K. Shepherd, R. Guymer, P. J. Allen, Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis, Clin. Exp. Ophthalmol. 42 (2014) 665–674. https://doi.org/10.1111/ceo.12287
[35] M.N. Shivdasani, C.D. Luu, R. Cicione, J.B. Fallon, P.J. Allen, J. Leuenberger, G.J. Suaning, N.H. Lovell, R.K. Shepherd, C.E. Williams, Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis, J. Neural Eng. 7 (2010) 1–20. https://doi.org/10.1088/1741-2560/7/3/036008
[36] L.G. Griffith, Polymeric biomaterials, Acta Mater. 48 (2000) 263–277. https://doi.org/10.1016/S1359-6454(99)00299-2
[37] J.F. Mano, R.A. Sousa, L.F. Boesel, N.M. Neves, R.L. Reis, Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments, Compos. Sci. Technol. 64 (2004) 789–817. https://doi.org/10.1016/j.compscitech.2003.09.001
[38] W. Cao, L.L. Hench, Bioactive materials, Ceram Int. 22 (1996) 493–507. https://doi.org/10.1016/0272-8842(95)00126-3
[39] H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering, Biomaterials. 24 (2003) 4353–4364. https://doi.org/10.1016/S0142-9612(03)00339-9
[40] N.A. Licata, A.V. Tkachenko, Self-assembling DNA-caged particles: Nanoblocks for hierarchical self-assembly, Phys. Rev. E. 79 (2009) 1–11. https://doi.org/10.1103/PhysRevE.79.011404
[41] E. A. Kamoun, X. Chen, M. S. Mohy Eldin, E. R. S. Kenawy, Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers, Arab. J. Chem. 8 (2015) 1–14. https://doi.org/10.1016/j.arabjc.2014.07.005
[42] L. L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 5 (1971) 117–141. https://doi.org/10.1002/jbm.820050611
[43] S. M. Kurtz, J. N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials. 28 (2007) 4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013
[44] T. Goda, K. Ishihara, Soft contact lens biomaterials from bioinspired phospholipid polymers, Expert Rev. Med. Devices. 3 (2006) 167–174. https://doi.org/10.1586/17434440.3.2.167
[45] M. Chehade, M.J. Elder, Intraocular lens materials and styles: A review, Aust. N Z J. Ophthalmol. 25 (1997) 255–263. https://doi.org/10.1111/j.1442-9071.1997.tb01512.x
[46] L. Pinchuk, I. Riss, J. F. Batlle, Y. P. Kato, J. B. Martin, E. Arrieta, P. Palmberg, R. K. Parrish, B. A. Weber, Y. Kwon, J. Parel, The development of a micro‐shunt made from poly(styrene‐ block ‐isobutylene‐ block ‐styrene) to treat glaucoma, J. Biomed. Mater. Res. B Appl. Biomater. 105 (2017) 211–221. https://doi.org/10.1002/jbm.b.33525
[47] S. Morimoto, F. B. W. Rebello de Sampaio, M. M. Braga, N. Sesma, M. Özcan, Survival Rate of Resin and Ceramic Inlays, Onlays, and Overlays, J. Dent. Res. 95 (2016) 985–994. https://doi.org/10.1177/0022034516652848
[48] K.E. Swindle, N. Ravi, Recent advances in polymeric vitreous substitutes, Expert Rev. Ophthalmol. 2 (2007) 255–265. https://doi.org/10.1586/17469899.2.2.255
[49] D. Tognetto, P. Cecchini, R. D’Aloisio, R. Lapasin, Mixed polymeric systems: New ophthalmic viscosurgical device created by mixing commercially available devices, J. Cataract Refract. Surg. 43 (2017) 109–114. https://doi.org/10.1016/j.jcrs.2016.11.035
[50] J. Singh, K.K. Agrawal, Polymeric Materials for Contact Lenses, J. Macromol. Sci. Part C Polym. Rev. 32 (1992) 521–534. https://doi.org/10.1080/15321799208021431
[51] C.S.A. Musgrave, F. Fang, Contact Lens Materials: A Materials Science Perspective, Mater. 12 (2019) 1–10. https://doi.org/10.3390/ma12020261
[52] K. Ishihara, X. Shi, K. Fukazawa, T. Yamaoka, G. Yao, J. Y. Wu, Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials, ACS Appl. Bio. Mater. 6 (2023) 3600–3616. https://doi.org/10.1021/acsabm.3c00296
[53] D. Bozukova, C. Pagnoulle, R. Jérôme, C. Jérôme, Polymers in modern ophthalmic implants—Historical background and recent advances, Mater. Sci. Eng. R Rep. 69 (2010) 63–83. https://doi.org/10.1016/j.mser.2010.05.002
[54] M. Karayilan, L. Clamen, M.L. Becker, Polymeric Materials for Eye Surface and Intraocular Applications, Biomacromolecules. 22 (2021) 223–261. https://doi.org/10.1021/acs.biomac.0c01525
[55] J. M. Legeais, L. P. Werner, G. Legeay, B. Briat, G. Renard, In vivo study of a fluorocarbon polymer-coated intraocular lens in a rabbit model, J. Cataract Refract. Surg. 24 (1998) 371–379. https://doi.org/10.1016/S0886-3350(98)80326-X
[56] Y. E. Choonara, V. Pillay, M. P. Danckwerts, T. R. Carmichael, L. C. du Toit, A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases, J. Pharm. Sci. 99 (2010) 2219–2239. https://doi.org/10.1002/jps.21987
[57] J. B. Christoforidis, S. Chang, A. Jiang, J. Wang, C. M. Cebulla, Intravitreal Devices for the Treatment of Vitreous Inflammation, Mediators Inflamm. 2012 (2012) 1–8. https://doi.org/10.1155/2012/126463
[58] A. Pandhare, P. Bhatt, H.S. Saluja, Y.V. Pathak, Biodegradable Polymeric Implants for Retina and Posterior Segment Disease, Drug Delivery for the Retina and Posterior Segment Disease, in: J.K. Patel, V. Sutariya, J.R. Kanvar, Y.V.Pathak (Eds.), Springer Cham, Springer Nature, Switzerland, 2018, pp. 273–291. https://doi.org/10.1007/978-3-319-95807-1_15
[59] C. A. Arcinue, O. M. Cerón, C. S. Foster, A Comparison Between the Fluocinolone Acetonide (Retisert) and Dexamethasone (Ozurdex) Intravitreal Implants in Uveitis, J. Ocul. Pharmacol. 29 (2013) 501–507. https://doi.org/10.1089/jop.2012.0180
[60] S. Leinonen, I. Immonen, K. Kotaniemi, Fluocinolone acetonide intravitreal implant (Retisert®) in the treatment of sight threatening macular oedema of juvenile idiopathic arthritis‐related uveitis, Acta Ophthalmol. 96 (2018) 648–651. https://doi.org/10.1111/aos.13744
[61] J.M. DeSimone, Co-opting Moore’s law: Therapeutics, vaccines and interfacially active particles manufactured via PRINT®, J. Control. Release. 240 (2016) 541–543. https://doi.org/10.1016/j.jconrel.2016.07.019
[62] J.R. Seal, M.R. Robinson, J. Burke, M. Bejanian, M. Coote, M. Attar, Intracameral Sustained-Release Bimatoprost Implant Delivers Bimatoprost to Target Tissues with Reduced Drug Exposure to Off-Target Tissues, J. Ocul. Pharmacol. Ther. 35(1) (2019) 50-57.
[63] W. Tao, Application of encapsulated cell technology for retinal degenerative diseases, Expert Opin. Biol. Ther. 6 (2006) 717–726. https://doi.org/10.1517/14712598.6.7.717
[64] K. Nayak, M. Misra, A review on recent drug delivery systems for posterior segment of eye, Biomed. Pharmacother. 107 (2018) 1564-1582.
[65] F. Siedenbiedel, J. C. Tiller, Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles, Polymers (Basel). 4 (2012) 46–71. https://doi.org/10.3390/polym4010046
[66] T. Jiang, W. I. Abdel-Fattah, C. T. Laurencin, In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering, Biomater. 27 (2006) 4894–4903. https://doi.org/10.1016/j.biomaterials.2006.05.025
[67] B. Ongpipattanakul, T. Nguyen, T. F. Zioncheck, R. Wong, G. Osaka, L. DeGuzman, W. P. Lee, L. S. Beck, Development of tricalcium phosphate/amylopectin paste combined with recombinant human transforming growth factor beta 1 as a bone defect filler, J. Biomed. Mater. Res. 36 (1997) 295–305. https://doi.org/10.1002/(SICI)1097-4636(19970905)36:3<295::AID-JBM4>3.0.CO;2-9
[68] S. R. Singh, H. E. Grossniklaus, S. J. Kang, H. F. Edelhauser, B. K. Ambati, U. B. Kompella, Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV, Gene Ther. 16 (2009) 645–659. https://doi.org/10.1038/gt.2008.185
[69] E. Vega, M. A. Egea, O. Valls, M. Espina, M. L. García, Flurbiprofen Loaded Biodegradable Nanoparticles for Ophtalmic Administration, J. Pharm. Sci. 95 (2006) 2393–2405. https://doi.org/10.1002/jps.20685
[70] R. A. Bejjani, D. BenEzra, H. Cohen, R. Jutta, A. Charlotte, J. C. Jeanny, G. Golomb, F. F. Behar-Cohen, Nanoparticles for gene delivery to retinal pigment epithelial cells, Mol. Vis. 11 (2005) 124–132.
[71] H. Yang, P. Tyagi, R. S. Kadam, C. A. Holden, U. B. Kompella, Hybrid Dendrimer Hydrogel/PLGA Nanoparticle Platform Sustains Drug Delivery for One Week and Antiglaucoma Effects for Four Days Following One-Time Topical Administration, ACS Nano. 6 (2012) 7595–7606. https://doi.org/10.1021/nn301873v
[72] C. Giannavola, Influence of Preparation Conditions on Acyclovir-Loaded Poly-d,l-Lactic Acid Nanospheres and Effect of PEG Coating on Ocular Drug Bioavailability, Pharm. Res. 20 (2003) 584–590. https://doi.org/10.1023/A:1023290514575
[73] V. M. Sluch, C. ha O. Davis, V. Ranganathan, J. M. Kerr, K. Krick, R. Martin, C. A. Berlinicke, N. Marsh-Armstrong, J. S. Diamond, H. Q. Mao, D. J. Zack, Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line, Sci. Rep. 5 (2015) 1–17. https://doi.org/10.1038/srep16595
[74] A. Sorkio, S. Haimi, V. Verdoold, K. Juuti-Uusitalo, D. Grijpma, H. Skottman, Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells, J. Tissue Eng. Regen Med. 11 (2017) 3134–3144. https://doi.org/10.1002/term.2221
[75] Gagandeep, T. Garg, B. Malik, G. Rath, A. K. Goyal, Development and characterization of nano-fiber patch for the treatment of glaucoma, Eur. J. Pharm. Sci. 53 (2014) 10–16. https://doi.org/10.1016/j.ejps.2013.11.016
[76] U. B. Kompella, N. Bandi, S. P. Ayalasomayajula, Subconjunctival Nano- and Microparticles Sustain Retinal Delivery of Budesonide, a Corticosteroid Capable of Inhibiting VEGF Expression, Invest. Ophthalmol. Vis. Sci. 44 (2003) 1192–1201. https://doi.org/10.1167/iovs.02-0791
[77] M. G. Lancina, S. Singh, U. B. Kompella, S. Husain, H. Yang, Fast Dissolving Dendrimer Nanofiber Mats as Alternative to Eye Drops for More Efficient Antiglaucoma Drug Delivery, ACS Biomater. Sci. Eng. 3 (2017) 1861–1868. https://doi.org/10.1021/acsbiomaterials.7b00319
[78] T. Sakai, N. Kuno, F. Takamatsu, E. Kimura, H. Kohno, K. Okano, K. Kitahara, Prolonged Protective Effect of Basic Fibroblast Growth Factor–Impregnated Nanoparticles in Royal College of Surgeons Rats, Invest. Ophthalmol. Vis. Sci. 48 (2007) 3381–3387. https://doi.org/10.1167/iovs.06-1242
[79] A. K. Zimmer, P. Chetoni, M. F. Saettone, H. Zerbe, J. Kreuter, Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers, J. Contr. Release. 33 (1995) 31–46. https://doi.org/10.1016/0168-3659(94)00059-4
[80] Y. Mo, M. E. Barnett, D. Takemoto, H. Davidson, U. B. Kompella, Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene, Mol. Vis. 13 (2007) 746–757.
[81] A. M. De Campos, A. Sánchez, M. J. Alonso, Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A, Int. J. Pharm. 224 (2001) 159–168. https://doi.org/10.1016/S0378-5173(01)00760-8
[82] B. Noorani, F. Tabandeh, F. Yazdian, Z. S. Soheili, M. Shakibaie, S. Rahmani, Thin natural gelatin/chitosan nanofibrous scaffolds for retinal pigment epithelium cells, Int. J. Polym. Mater. 67 (2018) 754–763. https://doi.org/10.1080/00914037.2017.1362639
[83] A. Sorkio, P. J. Porter, K. Juuti-Uusitalo, B. J. Meenan, H. Skottman, G. A. Burke, Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells, Tissue Eng. Part A. 21 (2015) 2301–2314. https://doi.org/10.1089/ten.tea.2014.0640
[84] C. R. Wittmer, T. Claudepierre, M. Reber, P. Wiedemann, J. A. Garlick, D. Kaplan, C. Egles, Multifunctionalized Electrospun Silk Fibers Promote Axon Regeneration in the Central Nervous System, Adv. Funct. Mater. 21(22) (2011) 4232–4242. https://doi.org/10.1002/adfm.201100755
[85] N. S. Bhatt, D. A. Newsome, T. Fenech, T. P. Hessburg, J. G. Diamond, M. V. Miceli, K. E. Kratz, P. D. Oliver, Experimental Transplantation of Human Retinal Pigment Epithelial Cells on Collagen Substrates, Am. J. Ophthalmol. 117 (1994) 214–221. https://doi.org/10.1016/S0002-9394(14)73079-X
[86] J. T. Lu, C. J. Lee, S. F. Bent, H. A. Fishman, E. E. Sabelman, Thin collagen film scaffolds for retinal epithelial cell culture, Biomater. 28 (2007) 1486–1494. https://doi.org/10.1016/j.biomaterials.2006.11.023
[87] J. Y. Lai, Y. T. Li, Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets, Mater. Sci. Eng. C. 30(5) (2010) 677–685. https://doi.org/10.1016/j.msec.2010.02.024
[88] A. M. A. Shadforth, K. A. George, A. S. Kwan, T. V. Chirila, D. G. Harkin, The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin, Biomater. 33 (2012) 4110–4117. https://doi.org/10.1016/j.biomaterials.2012.02.040
[89] J. Kundu, A. Michaelson, K. Talbot, P. Baranov, M. J. Young, R. L. Carrier, Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture, Acta Biomater. 31 (2016) 61–70. https://doi.org/10.1016/j.actbio.2015.11.028
[90] D. A. Bernards, R. B. Bhisitkul, P. Wynn, M. R. Steedman, O. T. Lee, F. Wong, S. Thoongsuwan, T. A. Desai, Ocular Biocompatibility and Structural Integrity of Micro- and Nanostructured Poly(caprolactone) Films, J. Ocul. Pharmacol. 29 (2013) 249–257. https://doi.org/10.1089/jop.2012.0152
[91] L. Lu, M. J. Yaszemski, A. G. Mikos, Retinal pigment epithelium engineering using synthetic biodegradable polymers, Biomater. 22(24) (2001) 3345–3355. https://doi.org/10.1016/S0142-9612(01)00172-7
[92] Lichun Lu, C. A. Garcia, A. G. Mikos, Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films, J. Biomater. Sci. Polym. Ed. 9(11) (1998) 1187–1205. https://doi.org/10.1163/156856298X00721
[93] T. Hadlock, S. Singh, J. P. Vacanti, B. J. McLaughlin, Ocular Cell Monolayers Cultured on Biodegradable Substrates, Tissue Eng. 5(3) (1999) 187–196. https://doi.org/10.1089/ten.1999.5.187
[94] S. Rahmani, F. Tabandeh, S. Faghihi, G. Amoabediny, M. Shakibaie, B. Noorani, F. Yazdian, Fabrication and characterization of poly(ε-caprolactone)/gelatin nanofibrous scaffolds for retinal tissue engineering, International Journal of Polymeric Materials and Polymeric Biomaterials. 67 (2018) 27–35. https://doi.org/10.1080/00914037.2017.1297939
[95] P. H. Warnke, M. Alamein, S. Skabo, S. Stephens, R. Bourke, P. Heiner, Q. Liu, Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers, Acta Biomater. 9 (2013) 9414–9422. https://doi.org/10.1016/j.actbio.2013.07.029
[96] P. Peng, J. Namkung, M. Barnes, C. Sun, A Meta-Analysis of Mathematics and Working Memory: Moderating Effects of Working Memory Domain, Type of Mathematics Skill, and Sample Characteristics, J Educ Psychol. 108(4) (2016) 455-473. https://doi.org/10.1037/edu0000079.supp