Polymers in Implant Medical Devices
Rohini Kharwade, Purushottam Gangane, Nilesh Mahajan, Sachin More
This chapter provides a comprehensive overview, emphasizing both the potential and challenges of polymers in medical implants. Polymers have become essential materials in the development of implantable medical devices due to their unique properties, including biocompatibility, flexibility, and adaptability. This chapter explores the roles of both biodegradable and non-biodegradable polymers in medical implants, focusing on their applications in devices ranging from orthopedic and cardiovascular implants to drug-delivery systems. Biodegradable polymers, such as polylactic acid (PLA) and polyglycolic acid (PGA), are highlighted for their ability to degrade safely within the body, making them ideal for temporary implants and controlled-release drug systems. Conversely, non-biodegradable polymers, including silicone and polyethylene, offer long-term stability and are suited for permanent implants.
Keywords
Medical Implants, Polymers in Implants, Applications of Implants, Controlled Release Implants, Polymers Selection Criteria
Published online 2/15/2025, 30 pages
Citation: Rohini Kharwade, Purushottam Gangane, Nilesh Mahajan, Sachin More, Polymers in Implant Medical Devices, Materials Research Foundations, Vol. 172, pp 299-328, 2025
DOI: https://doi.org/10.21741/9781644903353-13
Part of the book on Applications of Polymers in Surgery II
References
[1] J. Lou, H. Duan, Q. Qin, Z. Teng, F. Gan, X. Zhou, X. Zhou, Advances in Oral Drug Delivery Systems : Challenges and Opportunities, Pharmaceutics. 484 (2023) 1–22.
[2] A. Sultana, M. Zare, V. Thomas, T.S.S. Kumar, S. Ramakrishna, Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects, Med. Drug Discov. 15 (2022) 100134–100151. https://doi.org/10.1016/j.medidd.2022.100134
[3] S. Amreen, S.M. Shahidulla, A. Sultana, N. Fatima, Journal of Drug Delivery and Therapeutics Implantable Drug Delivery System : An Innovative Approach, 13 (2023) 98–105.
[4] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: Recent developments and future prospects Nanobiotechnology. 16 (2018) 1–33. https://doi.org/10.1186/s12951-018-0392-8
[5] S.A. Stewart, J. Dom, R.F. Donnelly, E. Larrañeta, Implantable Polymeric Drug Delivery Devices : Clinical Applications, Polymers (Basel). 10 (2018) 1–24. https://doi.org/10.3390/polym10121379
[6] A.S. Alsudais, W.M. Alshehri, A.M. Alrehaili, R.K. Albeladi, M. Khoshhal, A. Albelowi, R.S. Alzahrani, A. Alnabihi, B. Bashrahil, O. Alabbasi, The Efficacy and Safety of Dexamethasone Intracanalicular Insert Use in Patients with Chronic Seasonal / Perennial Allergic Conjunctivitis : A Systematic Review and Meta-Analysis, Clin. Ophthalmol. 18 (2024) 2657–2666.
[7] F.B. Coulter, J.A. Faber, P. Zilla, D. Bezuidenhout, R. Studart, F.B. Coulter, M. Schaffner, J.A. Faber, A. Rafsanjani, R. Smith, H. Appa, P. Zilla, D. Bezuidenhout, Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing, Matter. 1 (2019) 266–279. https://doi.org/10.1016/j.matt.2019.05.013
[8] C. Kuscu, C. Kuscu, A. Bajwa, J.D. Eason, D. Maluf, R. Mas, Applications of CRISPR Technologies in Transplantation, Ameriacan J Ournal Transpl. 20 (2021) 3285–3293. https://doi.org/10.1111/ajt.16095.Applications
[9] D. Lambade, P. Lambade, S. Gundawar, Implant Supported Mandibular Overdenture : A Viable Treatment Option for Edentulous Mandible, J. Clin. Diagnostic Res. 8 (2014) 6–8. https://doi.org/10.7860/JCDR/2014/7711.4332
[10] Z. Li, H. Mu, S.W. Larsen, H. Jensen, Ø. Jesper, An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants, Int. J. Pharm. 609 (2021) 121183–121198. https://doi.org/10.1016/j.ijpharm.2021.121183
[11] R. Kharwade, N. Ali, P. Gangane, K. Pawar, S. More, of Tioconazole-Loaded Transferosomal Hydrogel for the Effective Treatment of Atopic Dermatitis : In Vitro and, Gels. 9 (2023) 1–20.
[12] M.F. Bayan, A. Jaradat, M.H. Alyami, Smart Pellets for Controlled Delivery of 5-Fluorouracil, Molecules. 28 (2023) 1–10.
[13] X. Ju, R. Xie, L. Yang, L. Chu, Biodegradable ‘ intelligent ’ materials in response to chemical stimuli for biomedical applications, Expert Opin. 19 (2009) 683–696.
[14] A.K. Dash, G.C.C. Ii, Therapeutic Applications of Implantable Drug Delivery Systems, J. Pharmacol. Toxicol. Methods. 12 (1999) 1–12.
[15] E. Magill, S. Demartis, E. Gavini, A. Dian, R. Raj, S. Thakur, M. Faris, D. Waite, K. Glover, C.J. Picco, A. Korelidou, U. Detamornrat, L.K. Vora, L. Li, Q. Kurnia, R.F. Donnelly, J. Domínguez-robles, E. Larrañeta, Solid implantable devices for sustained drug delivery, Adv. Drug Deliv. Rev. 199 (2023) 114950–114967. https://doi.org/10.1016/j.addr.2023.114950
[16] G. Haoyan, Zhou., Christopher, Hernandez., Monika, Goss., Anna, Biomedical Imaging in Implantable Drug Delivery Systems, Curr. Drug Target. 16 (2016) 672–682.
[17] A. Gopferich, Bioerodible implants with programmable drug release, J. Control. Release. 44 (1997) 271–281.
[18] C. Dharmayanti, T.A. Gillam, D.B. Williams, A. Blencowe, Drug-Eluting Biodegradable Implants for the Sustained Release of Bis phosphonates, Polymers (Basel). 12 (2020) 1–14.
[19] L. Gao, Q. Li, J. Zhang, Y. Huang, L. Deng, C. Li, G. Tai, B. Ruan, Local penetration of doxorubicin via intrahepatic implantation of PLGA based doxorubicin-loaded implants, Drug Deliv. 26 (2019) 1049–1057. https://doi.org/10.1080/10717544.2019.1676842
[20] M. Aqil, A. Ali, Monolithic matrix type transdermal drug delivery systems of pinacidil monohydrate : in vitro characterisation, Eur. J. Pharm. Biopharm. 54 (2002) 161–164.
[21] V.P. Chavda, G. Jogi, A.C. Paiva-santos, A. Kaushik, Biodegradable and removable implants for controlled drug delivery and release application, Expert Opin. Drug Deliv. 19 (2022) 1177–1182. https://doi.org/10.1080/17425247.2022.2110065
[22] V.S. Chudinov, I.N. Shardakov, V. V Litvinov, S.Y. Solodnikov, E.Y. Chudinova, I. V Kondyurina, A. V Kondyurin, Foreign Body Reaction to Ion-Beam-Treated Polyurethane Implant, Materials (Basel). 17 (2024) 1–23.
[23] M.M. Isley, A. Edelman, Contraceptive Implants : An Overview and Update, 34 (2007) 73–90. https://doi.org/10.1016/j.ogc.2007.01.002
[24] A.S. Komlev, R.R. Gimaev, V.I. Zverev, Smart magnetocaloric coatings for implants : Controlled drug release for targeted delivery, Phys. Open. 7 (2021) 100063. https://doi.org/10.1016/j.physo.2021.100063
[25] Y. Almoshari, Osmotic Pump Drug Delivery Systems — A Comprehensive Review, Pharmaceuticals. 15 (2022) 1–16.
[26] R.A. Keraliya, C. Patel, P. Patel, V. Keraliya, T.G. Soni, R.C. Patel, M.M. Patel, Osmotic Drug Delivery System as a Part of Modified Release Dosage Form, ISRN Pharm. 2012 (2012) 1–12. https://doi.org/10.5402/2012/528079
[27] F.P. Pons-faudoa, A. Ballerini, J. Sakamoto, H. Sciences, T. De Monterrey, A.E. Garza, H.M. Hospital, H.M. Hospital, Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases, Biomed Micro. 21 (2020) 47–89. https://doi.org/10.1007/s10544-019-0389-6.Advanced
[28] D.R. Paul, Elaborations on the Higuchi model for drug delivery, Int. J. Pharm. 418 (2011) 13–17. https://doi.org/10.1016/j.ijpharm.2010.10.037
[29] R. Kharwade, N. Mahajan, S. More, A. Warokar, A. Dhobley, D. Palve, Effect of PEGylation on drug uptake , biodistribution , and tissue toxicity of efavirenz – ritonavir loaded PAMAM G4 dendrimers, Pharm. Dev. Technol. 24 (2023) 1–19. https://doi.org/10.1080/10837450.2023.2173230
[30] S. Herrlich, S. Spieth, S. Messner, R. Zengerle, Osmotic micropumps for drug delivery, Adv. Drug Deliv. Rev. 64 (2012) 1617–1627. https://doi.org/10.1016/j.addr.2012.02.003
[31] M.U. Ghori, B.R. Conway, Hydrophilic Matrices for Oral Control Drug Delivery, Am. J. Pharmacol. Sci. 3 (2015) 103–109. https://doi.org/10.12691/ajps-3-5-1
[32] Y. Fu, W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expert Opin. Drug Deliv. 7 (2010) 10272-10286. https://doi.org/10.1517/17425241003602259
[33] M. Shevtsov, D. Gavrilov, N. Yudintceva, E. Zemtsova, A. Arbenin, V. Smirnov, I. Voronkina, P. Adamova, M. Blinova, N. Mikhailova, O. Galibin, M. Akkaoui, M. Pitkin, Protecting the skin-implant interface with transcutaneous silver-coated skin-and-bone-integrated pylon in pig and rabbit dorsum models, J. Biomed Matter Res. 109 (2022) 1–21. https://doi.org/10.1002/jbm.b.34725.Protecting
[34] S.E. Herold, A.J. Kyser, M.G. Orr, M.Y. Mahmoud, W.G. Lewis, A.L. Lewis, J.M. Steinbach-rankins, H.B. Frieboes, Biomedical Engineering Advances Release kinetics of metronidazole from 3D printed silicone scaffolds for sustained application to the female reproductive tract, Biomed. Eng. Adv. 5 (2023) 100078. https://doi.org/10.1016/j.bea.2023.100078
[35] J.S. Boateng, K.H. Matthews, H.N.E. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: A review, J. Pharm. Sci. 97 (2008) 2892–2923. https://doi.org/10.1002/jps.21210
[36] R. Rajan, D. Vasudevan, V. Biju Mukund, S. Jose, Transferosomes – A vesicular transdermal delivery system for enhanced drug permeation, J. Adv. Pharm. Technol. Res. 2 (2011) 138. https://doi.org/10.4103/2231-4040.85524
[37] H. Kranz, R. Bodmeier, A novel in situ forming drug delivery system for controlled parenteral drug delivery, 332 (2007) 107–114. https://doi.org/10.1016/j.ijpharm.2006.09.033
[38] T. Jacques, C. Brienne, S. Henry, H. Baffet, G. Giraudet, X. Demondion, A. Cotten, Minimally invasive removal of deep contraceptive implants under continuous ultrasound guidance is effective , quick , and safe, Eur. Radiol. (2022) 1718–1725. https://doi.org/10.1007/s00330-021-08263-4
[39] T. Goldberg, B.M. Maoz, Current state of the art and future directions for implantable sensors in medical technology : Clinical needs and engineering challenges, 031506 (2023) 1–29. https://doi.org/10.1063/5.0152290
[40] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32 (2007) 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
[41] M. Abdelgawad, M.A. Elkodous, W.M.A. El Rouby, Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration, Handbook of Biodegradable Material,(2023)1015-1043. https://doi.org/10.1007/978-3-031-09710-2_45
[42] F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran, Biodegradable and biocompatible polymers for tissue engineering application: a review, Artif. Cells, Nanomedicine Biotechnol. 45 (2017) 185–192. https://doi.org/10.3109/21691401.2016.1146731
[43] F.F. Castrow, E.A. Krull, Injectable collagen implant—update, J. Am. Acad. Dermatol. 9 (1983) 889–893. https://doi.org/10.1016/S0190-9622(83)70204-5
[44] B. Liu, Z. Xu, R. Yu, J. Wang, Z. Wang, C.R. Harrell, The Use of Type I and Type III Injectable Human Collagen for Dermal Fill: 10 Years of Clinical Experience in China, Semin. Plast. Surg. 19 (2005) 241–250. https://doi.org/10.1055/s-2005-919719
[45] W. Friess, Collagen – Biomaterial for drug delivery, Eur. J. Pharm. Biopharm. 45 (1998) 113–136. https://doi.org/10.1016/S0939-6411(98)00017-4
[46] M. Osorio, E. Martinez, T. Naranjo, C. Castro, Recent advances in polymer nanomaterials for drug delivery of adjuvants in colorectal cancer treatment: A scientific-technological analysis and review, Molecules. 25 (2020) 256-269. https://doi.org/10.3390/molecules25102270
[47] M.M. Islam, R. Ravichandran, D. Olsen, M.K. Ljunggren, P. Fagerholm, C.J. Lee, M. Griffith, J. Phopase, Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation, RSC Adv. 6 (2016) 55745–55749. https://doi.org/10.1039/c6ra08895c
[48] D.S. Rootman, J.Y.F. Ku, S.N. Yeung, Ocular Surface Disease: Surgical Management, Elsevier Inc., 2013. https://doi.org/10.1016/B978-1-4557-2876-3.00036-5
[49] N.A.Z. Abidin, F. Kormin, N.A.Z. Abidin, N.A.F.M. Anuar, M.F.A. Bakar, The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources, Int. J. Mol. Sci. 21 (2020) 1–25. https://doi.org/10.3390/ijms21144978
[50] S. Park, H. Kim, K.S. Choi, M.K. Ji, S. Kim, Y. Gwon, C. Park, J. Kim, H.P. Lim, Graphene-chitosan hybrid dental implants with enhanced antibacterial and cell-proliferation properties, Appl. Sci. 10 (2020) 1–10. https://doi.org/10.3390/app10144888
[51] L. Polo-Corrales, M. Latorre-Esteves, J.E. Ramirez-Vick, Scaffold design for bone regeneration, J. Nanosci. Nanotechnol. 14 (2014) 15–56. https://doi.org/10.1166/jnn.2014.9127
[52] F. Lopez-Moya, M. Suarez-Fernandez, L.V. Lopez-Llorca, Molecular mechanisms of chitosan interactions with fungi and plants, Int. J. Mol. Sci. 20 (2019) 1–23. https://doi.org/10.3390/ijms20020332
[53] R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Current development of biodegradable polymeric materials for biomedical applications, Drug Des. Devel. Ther. 12 (2018) 3117–3145. https://doi.org/10.2147/DDDT.S165440
[54] H. Knopf-Marques, J. Barthes, S. Lachaal, A. Mutschler, C. Muller, F. Dufour, M. Rabineau, E.J. Courtial, J. Bystroňová, C. Marquette, P. Lavalle, N.E. Vrana, Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly(arginine), Mater. Sci. Eng. C. 104 (2019) 109898. https://doi.org/10.1016/j.msec.2019.109898
[55] M.H. Shariare, M. Rahman, S.R. Lubna, R.S. Roy, J. Abedin, A.L. Marzan, M.A. Altamimi, S.R. Ahamad, Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model, Sci. Rep. 9(2020) 1–16. https://doi.org/10.1038/s41598-020-63894-9
[56] C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim, M.J. Zwierstra, P. Hanna, A. Lechtig, A. Nazarian, S.J. Lin, D.L. Kaplan, Design of biodegradable, implantable devices towards clinical translation, Nat. Rev. Mater. 5 (2020) 61–81. https://doi.org/10.1038/s41578-019-0150-z
[57] R. Makita, T. Akasaka, S. Tamagawa, Y. Yoshida, S. Miyata, H. Miyaji, T. Sugaya, Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants, Beilstein J. Nanotechnol. 9 (2018) 1735–1754. https://doi.org/10.3762/bjnano.9.165
[58] W.F. de Oliveira, P.B. Sales Albuquerque, N.E. Ribeiro Rodrigues, P.M. dos Santos Silva, J.F. Kennedy, M.T. dos Santos Correia, L.C. Breitenbach Barroso Coelho, Pharmaceutical applications of chitosan on medical implants: A viable alternative for construction of new biomaterials?, Carbohydr. Polym. Technol. Appl. 7 (2024) 100407. https://doi.org/10.1016/j.carpta.2023.100407
[59] E. Wu, L. Huang, Y. Shen, Z. Wei, Y. Li, J. Wang, Z. Chen, Application of gelatin-based composites in bone tissue engineering, Heliyon. 10 (2024) e36258. https://doi.org/10.1016/j.heliyon.2024.e36258
[60] E. Parsa, S. Saroukhani, F. Majlessi, H. Poorhosseini, M. Lofti-Tokaldany, A. Jalali, M. Salarifar, E. Nematipour, M. Alidoosti, H. Aghajani, A. Amirzadegan, S.E. Kassaian, Biodegradable-polymer biolimus-eluting stents versus durable-polymer everolimus-eluting stents at one-year follow-up: A registry-based cohort study, Texas Hear. Inst. J. 43 (2016) 126–130. https://doi.org/10.14503/THIJ-14-4997
[61] S.A. Stewart, J. Dom, V.J. Mcilorum, Z. Gonzalez, E. Utomo, E. Mancuso, D.A. Lamprou, R.F. Donnelly, E. Larran, Poly ( caprolactone ) -Based Coatings on 3D-Printed Biodegradable Implants : A Novel Strategy to Prolong Delivery of Hydrophilic Drugs, Mol. Pharm. 17 (2020) 3487–3500. https://doi.org/10.1021/acs.molpharmaceut.0c00515
[62] D. R. K. KULKARNI; K. C. PANI; C. NEUMAN, BS; AND F. LEONARD, WASHINGTON, LACTIC, Polylactic Acid for Surgical Implants, Arch Surg. 93 (1996) 840–852.
[63] D. Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, Biocompatibility , biodegradation and excretion of polylactic acid ( PLA ) in medical implants and theranostic systems, Chem. Eng. J. 340 (2020) 9–14. https://doi.org/10.1016/j.cej.2018.01.010.Biocompatibility
[64] J.M. Brady, D.E. Cutright, A. Robert, G.I.N.C. Battistone, D. Biophysics, Resorption Rate , Route of Elimination , and Ultrastructure of the Implant Site of Polylactic Acid in the Abdominal Wall of the Rat *, J. Biomed Matter Res. 7 (1973) 155–166.
[65] V.N. Germanova, E. V. Karlova, L.T. Volova, A. V. Zolotarev, V. V. Rossinskaya, I.D. Zakharov, A.R. Korigodskiy, V. V. Boltovskaya, I.F. Nefedova, M. V. Radaykina, PLA-PEG Implant as a Drug Delivery System in Glaucoma Surgery: Experimental Study, Polymers (Basel). 14 (2022) 1–23. https://doi.org/10.3390/polym14163419
[66] C.C. Lin, S.J. Fu, Y.C. Lin, I.K. Yang, Y. Gu, Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate, Int. J. Biol. Macromol. 68 (2014) 39–47. https://doi.org/10.1016/j.ijbiomac.2014.04.039
[67] E. Göktürk, H. Erdal, Poliglikolik Asit’ in (PGA) Biyomedikal Uygulamaları, Sak. Univ. J. Sci. 169 (2017) 1–1. https://doi.org/10.16984/saufenbilder.283156
[68] N. Ashammakhi, P. Rokkanen, Absorbable polyglycolide devices in trauma and bone surgery, Biomaterials. 18 (1997) 3–9. https://doi.org/10.1016/S0142-9612(96)00107-X
[69] K.A. Athanasiou, D. Ph, J.P. Schmitz, D. Ph, Polylactic Acid-Polyglycolic Acid Implants Used in Repair of Articular Cartilage, Tissue Eng. 4 (1998) 53–63.
[70] S. Santavirta, E.S.A. Yrj, T.P. Saito, R.M. Gr, Immune Response to Polyglycolic acid implants, J Bone Jt. Surg. 72 (1990) 597–600.
[71] M.A. Naser, A.M. Sayed, W. Abdelmoez, M. Tarek, E. Wakad, M.S. Abdo, Biodegradable suture development based albumin composites for tissue engineering applications, Sci. Rep. 14 (2024) 7912–7916. https://doi.org/10.1038/s41598-024-58194-5
[72] K. Avgoustakis, Polylactic-Co-Glycolic Acid (PLGA), Encycl. Biomater. Biomed. Eng. 4 (2008) 2259–2269. https://doi.org/10.1201/b18990-216
[73] P. Gentile, V. Chiono, I. Carmagnola, P. V. Hatton, An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci. 15 (2014) 3640–3659. https://doi.org/10.3390/ijms15033640
[74] H.K. Makadia, S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers (Basel). 3 (2011) 1377–1397. https://doi.org/10.3390/polym3031377
[75] C.J. Destache, T. Belgum, M. Goede, A. Shibata, M.A. Belshan, Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in mice, J. Antimicrob. Chemother. 65 (2010) 2183–2187. https://doi.org/10.1093/jac/dkq318
[76] R.E. Eliaz, J. Kost, Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins, J. Biomed. Mater. Res. 12 (1999) 1–12.
[77] M.H. S. Wachowiak, F. Danede, J.F. Willart, F. Siepmann, J. Siepmann, PLGA implants for controlled dexamethasone delivery: Impact of the polymer chemistry S., J. Drug Deliv. Sci. Technol. 86 (2023) 1–31.
[78] H.O. Alsaab, F.D. Alharbi, A.S. Alhibs, N.B. Alanazi, B.Y. Alshehri, PLGA-Based Nanomedicine : History of Advancement and Development in Clinical Applications of Multiple Diseases, Pharmaceutics. 14 (2022) 1–30.
[79] J.S. C.Bassand, J. Freitag, L. Benabed, J. Verin, F. Siepmann, PLGA implants for controlled drug release: Impact of the diameter, Eur. J. Pharm. Bio. 177 (2022) 1–39.
[80] S.R. Benhabbour, M. Kovarova, C. Jones, D.J. Copeland, R. Shrivastava, M.D. Swanson, C. Sykes, P.T. Ho, M.L. Cottrell, A. Sridharan, S.M. Fix, O. Thayer, J.M. Long, D.J. Hazuda, P.A. Dayton, R.J. Mumper, A.D.M. Kashuba, J. Victor Garcia, Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery, Nat. Commun. 10 (2019) 1–12. https://doi.org/10.1038/s41467-019-12141-5
[81] O.O. Dosunmu, G.G. Chase, W. Kataphinan, D.H. Reneker, Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface, Nanotechnology. 17 (2006) 1–14. https://doi.org/10.1088/0957-4484/17/4/046
[82] M. Doostmohammadi, H. Forootanfar, S. Ramakrishna, Regenerative medicine and drug delivery: Progress via electrospun biomaterials, Mater. Sci. Eng. C. 109 (2020) 1–22. https://doi.org/10.1016/j.msec.2019.110521
[83] J.-W. Yoo, E. Chambers, S. Mitragotri, Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects, Curr. Pharm. Des. 16 (2010) 2298–2307. https://doi.org/10.2174/138161210791920496
[84] Y. Yang, H. Wu, Q. Fu, X. Xie, Y. Song, M. Xu, J. Li, Materials & Design 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration, Mater. Des. 214 (2022) 110394. https://doi.org/10.1016/j.matdes.2022.110394
[85] G. Hatti, Polymers used as implant Biomaterials : A review, ACS Biomater. Sci. Eng. 4 (2019) 454–472.
[86] A.J.T. Teo, A. Mishra, I. Park, Y.J. Kim, W.T. Park, Y.J. Yoon, Polymeric Biomaterials for Medical Implants and Devices, ACS Biomater. Sci. Eng. 2 (2016) 454–472. https://doi.org/10.1021/acsbiomaterials.5b00429
[87] N.C. Paxton, M.C. Allenby, P.M. Lewis, M.A. Woodruff, Biomedical applications of polyethylene, Eur. Polym. J. 118 (2019) 412–428. https://doi.org/10.1016/j.eurpolymj.2019.05.037
[88] J.L. Frodel M, S. Lee, The use of high-density polyethylene implants in facial deformities, Arch. Otolaryngol. – Head Neck Surg. 124 (1998) 1219–1223. https://doi.org/10.1001/archotol.124.11.1219
[89] R. Bhattacharya, K. Mukherjee, B. Pal, Polyethylene in Orthopedic Implants: Recent Trends and Limitations, Encycl. Mater. Plast. Polym. 1–4 (2022) 777–794. https://doi.org/10.1016/B978-0-12-820352-1.00121-8
[90] B. Ramachandran, S. Chakraborty, M. Dixit, V. Muthuvijayan, A comparative study of polyethylene terephthalate surface carboxylation techniques : Characterization , in vitro haemocompatibility and endothelialization, React. Funct. Polym. 122 (2018) 22–32. https://doi.org/10.1016/j.reactfunctpolym.2017.11.001
[91] H. Cho, Root causes of post consumer High-Density Polyethylene failing in new bottles, Resour. Conserv. Re. 209 (2015) 107776.
[92] A. Gopanna, K.P. Rajan, S.P. Thomas, M. Chavali, Polyethylene and polypropylene matrix composites for biomedical applications, Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-816874-5.00006-2
[93] G. Sternschuss, D.R. Ostergard, H. Patel, Post-implantation alterations of polypropylene in the human, J. Urol. 188 (2012) 27–32. https://doi.org/10.1016/j.juro.2012.02.2559
[94] A.A. Minea, A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids, Nanomaterials. 9 (2019) 1592–1604.
[95] L.R.R.C.J.S. Tugçe Çaykara, Maria G. Sande Nuno Azoia, Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces Tugçe, Med. Microbiol. Immunol. 209 (2020) 363–372.
[96] H.A. Anis, Gene therapy in the era of nanotechnology/a review of current data, J. Cancer Prev. Curr. Res. 10 (2019) 1–2. https://doi.org/10.15406/jcpcr.2019.10.00380
[97] J. Wang, J. Li, L. Shen, R. Ling, Z. Xu, A. Zhao, Y. Leng, N. Huang, The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 257 (2007) 141–145. https://doi.org/10.1016/j.nimb.2006.12.137
[98] P.R. Selvaganapathy, Exploring the surface potential of Recycled Polyethylene Terepthalate Composite Supports on the Collagen Contamination Level, Polymers (Basel). 15 (2023) 75–105. http://www.sciencedirect.com/science/article/pii/B9780444521903000045
[99] A. Victor, J. Ribeiro, F. F. Araújo, Study of PDMS characterization and its applications in biomedicine: A review, J. Mech. Eng. Biomech. 4 (2019) 1–9. https://doi.org/10.24243/jmeb/4.1.163
[100] I. Miranda, A. Souza, P. Sousa, J. Ribeiro, E.M.S. Castanheira, R. Lima, G. Minas, Properties and applications of PDMS for biomedical engineering: A review, J. Funct. Biomater. 13 (2022) 1–17. https://doi.org/10.3390/jfb13010002
[101] S. Tayyaba, M.W. Ashraf, Z. Ahmad, N. Wang, M.J. Afzal, N. Afzulpurkar, Microchannels for Biomedical Application, Processes. 9 (2021) 57–69.
[102] J.J. Jia Z, Yang C, Rhein and PDMS functionalized C/C composites as prosthetic implants for bone repair application This, Mater. Res. Express. 12 (2017) 0–24.
[103] P. Xue, Q. Li, Y. Li, L. Sun, L. Zhang, Z. Xu, Y. Kang, Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices, ACS Appl. Mater. Interfaces. 9 (2017) 33632–33644. https://doi.org/10.1021/acsami.7b10260