Polymers in Drug Delivery

$40.00

Polymers in Drug Delivery

Sinazo Cobongela, Tintswalo Mgwenya

Polymers are crucial in drug delivery systems (DDS), enhancing the efficacy and safety of therapeutics through controlled release, targeted delivery, and improved bioavailability. Natural polymers like alginate and chitosan offer biocompatibility and biodegradability, while synthetic polymers such as polyethylene glycol (PEG) and polylactic-co-glycolic acid (PLGA) provide solubility and controlled release. The incorporation of nanotechnology with polymers has led to advanced nanocarriers, enhancing drug stability and therapeutic effectiveness. Despite challenges like potential toxicity and complex manufacturing, careful selection and modification of polymers enable their application in advanced therapeutic areas like gene therapy and personalized medicine, demonstrating their versatility and importance in modern medicine.

Keywords
Drug Delivery Systems, Polymers, Controlled-Release, Stimuli-Responsive, Biodegradable

Published online 2/15/2025, 19 pages

Citation: Sinazo Cobongela, Tintswalo Mgwenya, Polymers in Drug Delivery, Materials Research Foundations, Vol. 172, pp 263-281, 2025

DOI: https://doi.org/10.21741/9781644903353-11

Part of the book on Applications of Polymers in Surgery II

References
[1] N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-Based Hydrogels Applied in Drug Delivery: An Overview, Gels 9 (2023) 523. https://doi.org/10.3390/gels9070523.
[2] G. Satchanska, S. Davidova, P.D. Petrov, Natural and Synthetic Polymers for Biomedical and Environmental Applications, Polymers 16 (2024) 1159. https://doi.org/10.3390/polym16081159.
[3] M.C. Biswas, B. Bush, E. Ford, Glucaric acid additives for the antiplasticization of fibers wet spun from cellulose acetate/acetic acid/water, Carbohydr Polym 245 (2020) 116510. https://doi.org/10.1016/j.carbpol.2020.116510.
[4] M.A.S. Abourehab, R.R. Rajendran, A. Singh, S. Pramanik, P. Shrivastav, M.J. Ansari, R. Manne, L.S. Amaral, A. Deepak, Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art, Int J Mol Sci 23 (2022) 9035. https://doi.org/10.3390/ijms23169035.
[5] K. Kruk, K. Winnicka, Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms, Mar Drugs 21 (2022) 11. https://doi.org/10.3390/md21010011.
[6] D. Braatz, M. Cherri, M. Tully, M. Dimde, G. Ma, E. Mohammadifar, F. Reisbeck, V. Ahmadi, M. Schirner, R. Haag, Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications, Angew Chem Int Ed Engl 61 (2022) e202203942. https://doi.org/10.1002/anie.202203942.
[7] Y. Li, T. Zhang, Q. Liu, J. He, PEG-Derivatized Dual-Functional Nanomicelles for Improved Cancer Therapy, Front. Pharmacol. 10 (2019). https://doi.org/10.3389/fphar.2019.00808.
[8] M. Ghezzi, S. Pescina, C. Padula, P. Santi, E. Del Favero, L. Cantù, S. Nicoli, Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions, J Control Release 332 (2021) 312–336. https://doi.org/10.1016/j.jconrel.2021.02.031.
[9] C.M. Wells, M. Harris, L. Choi, V.P. Murali, F.D. Guerra, J.A. Jennings, Stimuli-Responsive Drug Release from Smart Polymers, J Funct Biomater 10 (2019) 34. https://doi.org/10.3390/jfb10030034.
[10] A. Purohit, S. Jain, P. Nema, H. Vishwakarma, P.K. Jain, Intelligent or Smart Polymers: Advance in Novel Drug Delivery, Journal of Drug Delivery and Therapeutics 12 (2022) 208–216. https://doi.org/10.22270/jddt.v12i5.5578.
[11] X. Xu, Y. Liu, W. Fu, M. Yao, Z. Ding, J. Xuan, D. Li, S. Wang, Y. Xia, M. Cao, Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications, Polymers 12 (2020) 580. https://doi.org/10.3390/polym12030580.
[12] W. Zhang, H. Liu, X. Qiu, F. Zuo, B. Wang, Mesoporous silica nanoparticles as a drug delivery mechanism, Open Life Sci 19 (2024) 20220867. https://doi.org/10.1515/biol-2022-0867.
[13] N.U. Khaliq, J. Lee, J. Kim, Y. Kim, S. Yu, J. Kim, S. Kim, D. Sung, H. Kim, Mesoporous Silica Nanoparticles as a Gene Delivery Platform for Cancer Therapy, Pharmaceutics 15 (2023) 1432. https://doi.org/10.3390/pharmaceutics15051432.
[14] N. Desai, D. Rana, S. Salave, R. Gupta, P. Patel, B. Karunakaran, A. Sharma, J. Giri, D. Benival, N. Kommineni, Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications, Pharmaceutics 15 (2023) 1313. https://doi.org/10.3390/pharmaceutics15041313.
[15] P. Mura, F. Maestrelli, M. Cirri, N. Mennini, Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review, Mar Drugs 20 (2022) 335. https://doi.org/10.3390/md20050335.
[16] V. Mikušová, P. Mikuš, Advances in Chitosan-Based Nanoparticles for Drug Delivery, Int J Mol Sci 22 (2021) 9652. https://doi.org/10.3390/ijms22179652.
[17] R. Abka-khajouei, L. Tounsi, N. Shahabi, A.K. Patel, S. Abdelkafi, P. Michaud, Structures, Properties and Applications of Alginates, Mar Drugs 20 (2022) 364. https://doi.org/10.3390/md20060364.
[18] P. Masson, S. Lushchekina, Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions, Molecules 27 (2022) 6861. https://doi.org/10.3390/molecules27206861.
[19] F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. Akbari, E. Kashani, S.M.B. Fazljou, M. Torbati, A. Akbarzadeh, Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, J Biol Eng 14 (2020) 8. https://doi.org/10.1186/s13036-020-0227-7.
[20] R. Ahmad Raus, W.M.F. Wan Nawawi, R.R. Nasaruddin, Alginate and alginate composites for biomedical applications, Asian J Pharm Sci 16 (2021) 280–306. https://doi.org/10.1016/j.ajps.2020.10.001.
[21] N. Farshidfar, S. Iravani, R.S. Varma, Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine, Mar Drugs 21 (2023) 189. https://doi.org/10.3390/md21030189.
[22] F. Milano, A. Masi, M. Madaghiele, A. Sannino, L. Salvatore, N. Gallo, Current Trends in Gelatin-Based Drug Delivery Systems, Pharmaceutics 15 (2023) 1499. https://doi.org/10.3390/pharmaceutics15051499.
[23] I. Zulkiflee, M.B. Fauzi, Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review, Biomedicines 9 (2021) 979. https://doi.org/10.3390/biomedicines9080979.
[24] O.A. Madkhali, Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges, Polymers 15 (2023) 4327. https://doi.org/10.3390/polym15214327.
[25] S. Afewerki, A. Sheikhi, S. Kannan, S. Ahadian, A. Khademhosseini, Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics, Bioeng Transl Med 4 (2019) 96–115. https://doi.org/10.1002/btm2.10124.
[26] M. Santoro, A.M. Tatara, A.G. Mikos, Gelatin carriers for drug and cell delivery in tissue engineering, J Control Release 190 (2014) 210–218. https://doi.org/10.1016/j.jconrel.2014.04.014.
[27] M.S. Zafar, Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update, Polymers (Basel) 12 (2020) 2299. https://doi.org/10.3390/polym12102299.
[28] H.K. Makadia, S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers (Basel) 3 (2011) 1377–1397. https://doi.org/10.3390/polym3031377.
[29] N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release, Chem Rev 116 (2016) 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346.
[30] X. Guo, X. Zuo, Z. Zhou, Y. Gu, H. Zheng, X. Wang, G. Wang, C. Xu, F. Wang, PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases, Int J Mol Sci 24 (2023) 4333. https://doi.org/10.3390/ijms24054333.
[31] T.T. Hoang Thi, E.H. Pilkington, D.H. Nguyen, J.S. Lee, K.D. Park, N.P. Truong, The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation, Polymers (Basel) 12 (2020) 298. https://doi.org/10.3390/polym12020298.
[32] S. Sun, Y. Cui, B. Yuan, M. Dou, G. Wang, H. Xu, J. Wang, W. Yin, D. Wu, C. Peng, Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration, Front Bioeng Biotechnol 11 (2023) 1117647. https://doi.org/10.3389/fbioe.2023.1117647.
[33] M.A. Rahim, N. Jan, S. Khan, H. Shah, A. Madni, A. Khan, A. Jabar, S. Khan, A. Elhissi, Z. Hussain, H.C. Aziz, M. Sohail, M. Khan, H.E. Thu, Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting, Cancers (Basel) 13 (2021) 670. https://doi.org/10.3390/cancers13040670.
[34] S.H. Pham, Y. Choi, J. Choi, Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery, Pharmaceutics 12 (2020) 630. https://doi.org/10.3390/pharmaceutics12070630.
[35] A.I. Fernandes, Polymers Enhancing Bioavailability in Drug Delivery, 2nd Edition, Pharmaceutics 15 (2023) 2604. https://doi.org/10.3390/pharmaceutics15112604.
[36] A. Bhadran, T. Shah, G.K. Babanyinah, H. Polara, S. Taslimy, M.C. Biewer, M.C. Stefan, Recent Advances in Polycaprolactones for Anticancer Drug Delivery, Pharmaceutics 15 (2023) 1977. https://doi.org/10.3390/pharmaceutics15071977.
[37] N. Geoghegan, M. O’Loughlin, C. Delaney, K.D. Rochfort, M. Kennedy, S. Kolagatla, L. Podhorska, B.J. Rodriguez, L. Florea, S.M. Kelleher, Controlled degradation of polycaprolactone-based micropillar arrays, Biomater. Sci. 11 (2023) 3077–3091. https://doi.org/10.1039/D3BM00165B.
[38] T.A. Ahmed, Pharmacokinetics of Drugs Following IV Bolus, IV Infusion, and Oral Administration, in: Basic Pharmacokinetic Concepts and Some Clinical Applications, IntechOpen, 2015. https://doi.org/10.5772/61573.
[39] A.S. Hoffman, The origins and evolution of “controlled” drug delivery systems, Journal of Controlled Release 132 (2008) 153–163. https://doi.org/10.1016/j.jconrel.2008.08.012.
[40] S. Adepu, S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions, Molecules 26 (2021) 5905. https://doi.org/10.3390/molecules26195905.
[41] S. Borandeh, B. van Bochove, A. Teotia, J. Seppälä, Polymeric drug delivery systems by additive manufacturing, Advanced Drug Delivery Reviews 173 (2021) 349–373. https://doi.org/10.1016/j.addr.2021.03.022.
[42] A. Zhang, K. Jung, A. Li, J. Liu, C. Boyer, Recent advances in stimuli-responsive polymer systems for remotely controlled drug release, Progress in Polymer Science 99 (2019) 101164. https://doi.org/10.1016/j.progpolymsci.2019.101164.
[43] G.-H. Son, B.-J. Lee, C.-W. Cho, Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles, Journal of Pharmaceutical Investigation 47 (2017) 287–296. https://doi.org/10.1007/s40005-017-0320-1.
[44] R.A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials 21 (2000) 2475–2490. https://doi.org/10.1016/S0142-9612(00)00115-0.
[45] A.L. Silva, P.C. Soema, B. Slütter, F. Ossendorp, W. Jiskoot, PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity, Hum Vaccin Immunother 12 (2016) 1056–1069. https://doi.org/10.1080/21645515.2015.1117714.
[46] X. Shen, T. Li, X. Xie, Y. Feng, Z. Chen, H. Yang, C. Wu, S. Deng, Y. Liu, PLGA-Based Drug Delivery Systems for Remotely Triggered Cancer Therapeutic and Diagnostic Applications, Front Bioeng Biotechnol 8 (2020) 381. https://doi.org/10.3389/fbioe.2020.00381.
[47] D. Zhang, L. Liu, J. Wang, H. Zhang, Z. Zhang, G. Xing, X. Wang, M. Liu, Drug-loaded PEG-PLGA nanoparticles for cancer treatment, Front Pharmacol 13 (2022) 990505. https://doi.org/10.3389/fphar.2022.990505.
[48] A. Shariati, Z. Chegini, E. Ghaznavi-Rad, E.N. Zare, S.M. Hosseini, PLGA-Based Nanoplatforms in Drug Delivery for Inhibition and Destruction of Microbial Biofilm, Front Cell Infect Microbiol 12 (2022) 926363. https://doi.org/10.3389/fcimb.2022.926363.
[49] Y. Fu, W.J. Kao, Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems, Expert Opin Drug Deliv 7 (2010) 429–444. https://doi.org/10.1517/17425241003602259.
[50] J.H. Lee, Y. Yeo, Controlled Drug Release from Pharmaceutical Nanocarriers, Chem Eng Sci 125 (2015) 75–84. https://doi.org/10.1016/j.ces.2014.08.046.
[51] Y. Zhao, Y. Guo, L. Tang, Engineering cancer vaccines using stimuli-responsive biomaterials, Nano Res. 11 (2018) 5355–5371. https://doi.org/10.1007/s12274-018-2162-1.
[52] E. Cazares-Cortes, M. Nerantzaki, J. Fresnais, C. Wilhelm, N. Griffete, C. Ménager, Magnetic Nanoparticles Create Hot Spots in Polymer Matrix for Controlled Drug Release, Nanomaterials 8 (2018) 850. https://doi.org/10.3390/nano8100850.
[53] A. Pusta, M. Tertis, I. Crăciunescu, R. Turcu, S. Mirel, C. Cristea, Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials, Pharmaceutics 15 (2023) 1872. https://doi.org/10.3390/pharmaceutics15071872.
[54] L. Tang, L. Wang, X. Yang, Y. Feng, Y. Li, W. Feng, Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications, Progress in Materials Science 115 (2021) 100702. https://doi.org/10.1016/j.pmatsci.2020.100702.
[55] B. Kalkan, N. Orakdogen, Negatively charged poly(N-isopropyl acrylamide-co-methacrylic acid)/polyacrylamide semi-IPN hydrogels: Correlation between swelling and compressive elasticity, Reactive and Functional Polymers 174 (2022) 105245. https://doi.org/10.1016/j.reactfunctpolym.2022.105245.
[56] N.A. Shaibie, N.A. Ramli, N.D.F. Mohammad Faizal, T. Srichana, M.C.I. Mohd Amin, Poly(N-isopropylacrylamide)-Based Polymers: Recent Overview for the Development of Temperature-Responsive Drug Delivery and Biomedical Applications, Macromolecular Chemistry and Physics 224 (2023) 2300157. https://doi.org/10.1002/macp.202300157.
[57] M. Yadav, B. Kaushik, G.K. Rao, C.M. Srivastava, D. Vaya, Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review, Carbohydrate Polymer Technologies and Applications 5 (2023) 100323. https://doi.org/10.1016/j.carpta.2023.100323.
[58] M. Ashrafizadeh, K. Hushmandi, S. Mirzaei, S. Bokaie, A. Bigham, P. Makvandi, N. Rabiee, V.K. Thakur, A.P. Kumar, E. Sharifi, R.S. Varma, A.R. Aref, M. Wojnilowicz, A. Zarrabi, H. Karimi‐Maleh, N.H. Voelcker, E. Mostafavi, G. Orive, Chitosan‐based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy, Bioeng Transl Med 8 (2022) e10325. https://doi.org/10.1002/btm2.10325.
[59] K.R. Karnati, Y. Wang, Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations, Phys Chem Chem Phys 20 (2018) 9389–9400. https://doi.org/10.1039/C8CP00124C.
[60] M.U. Akbar, S. Khattak, M.I. Khan, U.A.K. Saddozai, N. Ali, A.F. AlAsmari, M. Zaheer, M. Badar, A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-Fluorouracil, Front Pharmacol 14 (2023) 1265440. https://doi.org/10.3389/fphar.2023.1265440.
[61] S. Sarkar, D. Das, P. Dutta, J. Kalita, S.B. Wann, P. Manna, Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus, Carbohydr Polym 247 (2020) 116594. https://doi.org/10.1016/j.carbpol.2020.116594.
[62] I.P.S. Fernando, W. Lee, E.J. Han, G. Ahn, Alginate-based nanomaterials: Fabrication techniques, properties, and applications, Chemical Engineering Journal 391 (2020) 123823. https://doi.org/10.1016/j.cej.2019.123823.
[63] O.J. Olayemi, Y.E. Apeji, C.Y. Isimi, Formulation and Evaluation of Cyperus esculentus (Tiger Nut) Starch-Alginate Microbeads in the Oral Delivery of Ibuprofen, J Pharm Innov 17 (2022) 366–375. https://doi.org/10.1007/s12247-020-09509-2.
[64] W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu, J. Zhou, Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin, Mater Sci Eng C Mater Biol Appl 80 (2017) 187–196. https://doi.org/10.1016/j.msec.2017.05.143.
[65] F. Sarei, N.M. Dounighi, H. Zolfagharian, P. Khaki, S.M. Bidhendi, Alginate nanoparticles as a promising adjuvant and vaccine delivery system, Indian J Pharm Sci 75 (2013) 442–449. https://doi.org/10.4103/0250-474X.119829.
[66] M. Ramchandani, D. Robinson, In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants, J Control Release 54 (1998) 167–175. https://doi.org/10.1016/s0168-3659(97)00113-2.
[67] H. Gasmi, F. Siepmann, M.C. Hamoudi, F. Danede, J. Verin, J.-F. Willart, J. Siepmann, Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems, Int J Pharm 514 (2016) 189–199. https://doi.org/10.1016/j.ijpharm.2016.08.032.
[68] Y. Zheng, F. Sheng, Z. Wang, G. Yang, C. Li, H. Wang, Z. Song, Shear Speed-Regulated Properties of Long-Acting Docetaxel Control Release Poly (Lactic-Co-Glycolic Acid) Microspheres, Front Pharmacol 11 (2020) 1286. https://doi.org/10.3389/fphar.2020.01286.
[69] J. Shen, S. Choi, W. Qu, Y. Wang, D.J. Burgess, In vitro-in vivo correlation of parenteral risperidone polymeric microspheres, J Control Release 218 (2015) 2–12. https://doi.org/10.1016/j.jconrel.2015.09.051.
[70] S.S. Banerjee, N. Aher, R. Patil, J. Khandare, Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications, Journal of Drug Delivery 2012 (2012). https://doi.org/10.1155/2012/103973.
[71] P.G. Rose, Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer, Oncologist 10 (2005) 205–214. https://doi.org/10.1634/theoncologist.10-3-205.
[72] H. Hashemzadeh, H. Raissi, The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study, J Mol Model 23 (2017) 222. https://doi.org/10.1007/s00894-017-3391-z.
[73] C. Yang, D. Lu, Z. Liu, How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation, Biochemistry 50 (2011) 2585–2593. https://doi.org/10.1021/bi101926u.
[74] G.Ö. Kayan, A. Kayan, Polycaprolactone Composites/Blends and Their Applications Especially in Water Treatment, ChemEngineering 7 (2023) 104. https://doi.org/10.3390/chemengineering7060104.
[75] S. Iqbal, M.H. Rashid, A.S. Arbab, M. Khan, Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy, J Biomed Nanotechnol 13 (2017) 355–366. https://doi.org/10.1166/jbn.2017.2353.
[76] E.R. Essien, V.N. Atasie, S.T. Scott, O.A. Ajayi, A tetracycline hydrochloride-loaded SiO2/polycaprolactone composite from bamboo stem for controlled drug release study, South African Journal of Science 118 (2022) 1–6. https://doi.org/10.17159/sajs.2022/12560.
[77] S.K. Saha, H. Tsuji, Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s, Polymer Degradation and Stability 91 (2006) 1665–1673. https://doi.org/10.1016/j.polymdegradstab.2005.12.009.
[78] J. Xu, Y. Bai, X. Li, Z. Wei, L. Sun, H. Yu, H. Xu, Porous Core/Dense Shell PLA Microspheres Embedded with High Drug Loading of Bupivacaine Crystals for Injectable Prolonged Release, AAPS PharmSciTech 22 (2021) 27. https://doi.org/10.1208/s12249-020-01878-8.
[79] S. Nanaki, P. Barmpalexis, A. Iatrou, E. Christodoulou, M. Kostoglou, D.N. Bikiaris, Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations, Pharmaceutics 10 (2018) 130. https://doi.org/10.3390/pharmaceutics10030130.
[80] R. Hashide, K. Yoshida, Y. Hasebe, M. Seno, S. Takahashi, K. Sato, J.-I. Anzai, Poly(lactic acid) microparticles coated with insulin-containing layer-by-layer films and their pH-dependent insulin release, J Nanosci Nanotechnol 14 (2014) 3100–3105. https://doi.org/10.1166/jnn.2014.8562.
[81] Y. Yar, R. Khodadust, Y. Akkoc, M. Utkur, E.U. Saritas, D. Gozuacik, H. Yagci Acar, Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging, J Mater Chem B 6 (2018) 289–300. https://doi.org/10.1039/c7tb00646b.
[82] P. Baipaywad, N. Ryu, S.-S. Im, U. Lee, H.B. Son, W.J. Kim, H. Park, Facile preparation of poly(N-isopropylacrylamide)/graphene oxide nanocomposites for chemo-photothermal therapy, Des Monomers Polym 25 (n.d.) 245–253. https://doi.org/10.1080/15685551.2022.2111854.
[83] J.C. Flores-Arriaga, D. Chavarría-Bolaños, A. de J. Pozos-Guillén, V.A. Escobar-Barrios, B.I. Cerda-Cristerna, Synthesis of a PVA drug delivery system for controlled release of a Tramadol–Dexketoprofen combination, J Mater Sci Mater Med 32 (2021) 56. https://doi.org/10.1007/s10856-021-06529-3.
[84] A. Goyanes, P. Robles Martinez, A. Buanz, A.W. Basit, S. Gaisford, Effect of geometry on drug release from 3D printed tablets, International Journal of Pharmaceutics 494 (2015) 657–663. https://doi.org/10.1016/j.ijpharm.2015.04.069.
[85] S. Das, U. Subuddhi, Controlled delivery of ibuprofen from poly(vinyl alcohol)−poly(ethylene glycol) interpenetrating polymeric network hydrogels, J Pharm Anal 9 (2019) 108–116. https://doi.org/10.1016/j.jpha.2018.11.007.
[86] H. Asci, M. Savran, F. Cengiz Callıoglu, S. Sahin, N. Hasseyid, M. Kaynak, N. Izat, H. Kesici Guler, Supralingual administration of paracetamol embedded in polyvinyl alcohol nanofibers: A pharmacokinetic study, Journal of Drug Delivery Science and Technology 67 (2022) 102948. https://doi.org/10.1016/j.jddst.2021.102948.
[87] R.C. DiLuccio, M.A. Hussain, D. Coffin-Beach, G. Torosian, E. Shefter, A.R. Hurwitz, Sustained-release oral delivery of theophylline by use of polyvinyl alcohol and polyvinyl alcohol-methyl acrylate polymers, J Pharm Sci 83 (1994) 104–106. https://doi.org/10.1002/jps.2600830124.
[88] A. Kowalewska, A.S. Herc, J. Bojda, M. Nowacka, M. Svyntkivska, E. Piorkowska, W. Kaczorowski, W. Szymański, Phase Structure and Properties of Ternary Polylactide/Poly(methyl methacrylate)/Polysilsesquioxane Blends, Polymers (Basel) 13 (2021) 1033. https://doi.org/10.3390/polym13071033.
[89] E. Bertazzoni Minelli, C. Caveiari, A. Benini, Release of antibiotics from polymethylmethacrylate cement, J Chemother 14 (2002) 492–500. https://doi.org/10.1179/joc.2002.14.5.492.
[90] F.A. Khan, S. Akhtar, D. Almohazey, M. Alomari, S.A. Almofty, I. Badr, A. Elaissari, Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation, Artif Cells Nanomed Biotechnol 47 (2019) 1533–1542. https://doi.org/10.1080/21691401.2019.1577886.
[91] S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh, Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications, Polymers (Basel) 12 (2020) 2702. https://doi.org/10.3390/polym12112702.
[92] H. Wu, S. Liu, L. Xiao, X. Dong, Q. Lu, D.L. Kaplan, Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery, ACS Appl Mater Interfaces 8 (2016) 17118–17126. https://doi.org/10.1021/acsami.6b04424.
[93] N.S.V. Capanema, I.C. Carvalho, A.A.P. Mansur, S.M. Carvalho, A.P. Lage, H.S. Mansur, Hybrid Hydrogel Composed of Carboxymethylcellulose–Silver Nanoparticles–Doxorubicin for Anticancer and Antibacterial Therapies against Melanoma Skin Cancer Cells, ACS Appl. Nano Mater. 2 (2019) 7393–7408. https://doi.org/10.1021/acsanm.9b01924.
[94] T. Iimaa, T. Hirayama, N. Shirakigawa, D. Imai, T. Yamao, Y.-I. Yamashita, H. Baba, H. Ijima, Antibacterial-Agent-Immobilized Gelatin Hydrogel as a 3D Scaffold for Natural and Bioengineered Tissues, Gels 5 (2019) 32. https://doi.org/10.3390/gels5020032.
[95] S. Mansoor, P.P.D. Kondiah, Y.E. Choonara, Advanced Hydrogels for the Controlled Delivery of Insulin, Pharmaceutics 13 (2021) 2113. https://doi.org/10.3390/pharmaceutics13122113.
[96] B.-H. Shan, F.-G. Wu, Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances, Adv Mater 36 (2024) e2210707. https://doi.org/10.1002/adma.202210707.
[97] I. Negut, B. Bita, Polymersomes as Innovative, Stimuli-Responsive Platforms for Cancer Therapy, Pharmaceutics 16 (2024) 463. https://doi.org/10.3390/pharmaceutics16040463.
[98] W.B. Liechty, D.R. Kryscio, B.V. Slaughter, N.A. Peppas, Polymers for drug delivery systems, Annu Rev Chem Biomol Eng 1 (2010) 149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847.
[99] M. Akbarian, S.-H. Chen, Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins, Pharmaceutics 14 (2022) 2533. https://doi.org/10.3390/pharmaceutics14112533.
[100] P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering, Int J Mol Sci 15 (2014) 3640–3659. https://doi.org/10.3390/ijms15033640.
[101] J.J. Yoon, S.H. Song, D.S. Lee, T.G. Park, Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method, Biomaterials 25 (2004) 5613–5620. https://doi.org/10.1016/j.biomaterials.2004.01.014.
[102] X.S. Wu, N. Wang, Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation, J Biomater Sci Polym Ed 12 (2001) 21–34. https://doi.org/10.1163/156856201744425.
[103] L. Lu, S.J. Peter, M.D. Lyman, H.L. Lai, S.M. Leite, J.A. Tamada, J.P. Vacanti, R. Langer, A.G. Mikos, In vitro degradation of porous poly(L-lactic acid) foams, Biomaterials 21 (2000) 1595–1605. https://doi.org/10.1016/s0142-9612(00)00048-x.
[104] T.C. Ezike, U.S. Okpala, U.L. Onoja, C.P. Nwike, E.C. Ezeako, O.J. Okpara, C.C. Okoroafor, S.C. Eze, O.L. Kalu, E.C. Odoh, U.G. Nwadike, J.O. Ogbodo, B.U. Umeh, E.C. Ossai, B.C. Nwanguma, Advances in drug delivery systems, challenges and future directions, Heliyon 9 (2023) e17488. https://doi.org/10.1016/j.heliyon.2023.e17488.
[105] X. Xiao, F. Teng, C. Shi, J. Chen, S. Wu, B. Wang, X. Meng, A. Essiet Imeh, W. Li, Polymeric nanoparticles—Promising carriers for cancer therapy, Front. Bioeng. Biotechnol. 10 (2022). https://doi.org/10.3389/fbioe.2022.1024143.
[106] E.J. Go, E.Y. Kang, S.K. Lee, S. Park, J.H. Kim, W. Park, I.H. Kim, B. Choi, D.K. Han, An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH)2 to improve in vivo bone regeneration, Biomater. Sci. 8 (2020) 937–948. https://doi.org/10.1039/C9BM01864F.
[107] S.L. Reay, E.L. Jackson, D. Salthouse, A.M. Ferreira, C.M.U. Hilkens, K. Novakovic, Effective Endotoxin Removal from Chitosan That Preserves Chemical Structure and Improves Compatibility with Immune Cells, Polymers (Basel) 15 (2023) 1592. https://doi.org/10.3390/polym15071592.
[108] G. Miao, Y. He, K. Lai, Y. Zhao, P. He, G. Tan, X. Wang, Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients, Journal of Controlled Release 363 (2023) 12–26. https://doi.org/10.1016/j.jconrel.2023.09.003.
[109] U. Upadhyay, S. Kolla, S. Maredupaka, S. Priya, K. Srinivasulu, L.K. Chelluri, Development of an alginate–chitosan biopolymer composite with dECM bioink additive for organ-on-a-chip articular cartilage, Sci Rep 14 (2024) 11765. https://doi.org/10.1038/s41598-024-62656-1.