Nanoparticles in Focus: Understanding Genotoxicity and Carcinogenicity

$40.00

Nanoparticles in Focus: Understanding Genotoxicity and Carcinogenicity

Harishkumar Madhyastha, Remya Varadarajan, Pallavi Baliga

Genotoxicity is the damage caused by substances to genetic material, leading to gene mutations, chromosomal rearrangements, and aberrations. Nanoparticles can have primary or secondary genotoxic effects depending on their interaction with genetic material. Primary genotoxicity occurs when nanoparticles interact directly with the genetic material and proteins without invoking an inflammatory response. Indirect primary genotoxicity which results from the generation of reactive oxygen species (ROS), can cause structural modifications and inactivation of proteins. NPs can also interfere with the proper functioning of protein kinases involved in cell cycle regulation, leading to aneuploidy and multinucleation. Secondary genotoxicity results from DNA damage induced by free radicals generated by activated inflammatory cells. NPs can induce epigenetic changes in the DNA by altering methylation status, histone modifications, and activation of regulatory miRNAs. They can also impact DNA repair by downregulating repair enzymes and sequestering DNA repair proteins in a “corona” in the nucleoplasm. Metal oxide nanoparticles cause an increase in intracellular reactive oxygen species (ROS) levels, potentially resulting in toxicity or immunological reactions. DNA damage is a crucial stage in carcinogenesis, with ROS regulating cell proliferation through cell-signaling networks.

Keywords
Metal Oxide Nanoparticles, Genotoxicity, Carcinogenecis, ROS, Oxidative Stress, Inflammation, Cell-Signaling

Published online 12/15/2024, 28 pages

Citation: Harishkumar Madhyastha, Remya Varadarajan, Pallavi Baliga, Nanoparticles in Focus: Understanding Genotoxicity and Carcinogenicity, Materials Research Foundations, Vol. 171, pp 251-278, 2024

DOI: https://doi.org/10.21741/9781644903339-9

Part of the book on Advances in Healthcare and Nanoparticle Toxicology

References
[1] R.K. Shukla, A. Badiye, K. Vajpayee, N. Kapoor, Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA, Front. Genet. 12 (2021) 1–16. https://doi.org/10.3389/fgene.2021.728250.
[2] T. Adhikari, Nanotechnology in Environmental Soil Science, in: R.K. et al. Rattan (Ed.), Soil Sci. Fundam. to Recent Adv., 2021: pp. 297–310. https://doi.org/10.1007/978-981-16-0917-6_14.
[3] S.K. Kulkarni, Nanotechnology: Principles and Practices, Third Edition, 2014. https://doi.org/10.1007/978-3-319-09171-6.
[4] N. Zhang, G. Xiong, Z. Liu, Toxicity of metal-based nanoparticles: Challenges in the nano era, Front. Bioeng. Biotechnol. 10 (2022) 1–16. https://doi.org/10.3389/fbioe.2022.1001572.
[5] H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M.A. Mahjoub, M. Koohiyan, A. Ahmadi, A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: Are green nanoparticles safe enough for clinical marketing?, Med. 55 (2019). https://doi.org/10.3390/medicina55080439.
[6] Y.W. Huang, M. Cambre, H.J. Lee, The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms, Int. J. Mol. Sci. 18 (2017). https://doi.org/10.3390/ijms18122702.
[7] C. Egbuna, V.K. Parmar, J. Jeevanandam, S.M. Ezzat, K.C. Patrick-Iwuanyanwu, C.O. Adetunji, J. Khan, E.N. Onyeike, C.Z. Uche, M. Akram, M.S. Ibrahim, N.M. El Mahdy, C.G. Awuchi, K. Saravanan, H. Tijjani, U.E. Odoh, M. Messaoudi, J.C. Ifemeje, M.C. Olisah, N.J. Ezeofor, C.J. Chikwendu, C.G. Ibeabuchi, Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology, J. Toxicol. 2021 (2021). https://doi.org/10.1155/2021/9954443.
[8] S. Sharifi, S. Behzadi, S. Laurent, M.L. Forrest, P. Stroeve, M. Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev. 41 (2012) 2323–2343. https://doi.org/10.1039/c1cs15188f.
[9] Z. Magdolenova, A. Collins, A. Kumar, A. Dhawan, V. Stone, M. Dusinska, Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles, Nanotoxicology. 8 (2014) 233–278. https://doi.org/10.3109/17435390.2013.773464.
[10] M. Carriere, S. Sauvaigo, T. Douki, J.L. Ravanat, Impact of nanoparticles on DNA repair processes: Current knowledge and working hypotheses, Mutagenesis. 32 (2017) 203–213. https://doi.org/10.1093/mutage/gew052.
[11] R. Wan, Y. Mo, R. Tong, M. Gao, Q. Zhang, Determination of phosphorylated histone H2AX in nanoparticle-induced genotoxic studies, in: Q. Zhang (Ed.), Methods Mol. Biol., Springer New York, New York, NY, 2019: pp. 145–159. https://doi.org/10.1007/978-1-4939-8916-4_9.
[12] J. Bi, C. Mo, S. Li, M. Huang, Y. Lin, P. Yuan, Z. Liu, B. Jia, S. Xu, Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes, Biomater. Sci. 11 (2023) 4151–4183. https://doi.org/10.1039/d3bm00271c.
[13] M.R. Gedda, P.K. Babele, K. Zahra, P. Madhukar, Epigenetic aspects of engineered nanomaterials: Is the collateral damage inevitable?, Front. Bioeng. Biotechnol. 7 (2019). https://doi.org/10.3389/fbioe.2019.00228.
[14] K. Haliloğlu, A. Türkoğlu, Ö. Balpınar, H. Nadaroğlu, A. Alaylı, P. Poczai, Effects of Zinc, Copper and Iron Oxide Nanoparticles on Induced DNA Methylation, Genomic Instability and LTR Retrotransposon Polymorphism in Wheat (Triticum aestivum L.), Plants. 11 (2022). https://doi.org/10.3390/plants11172193.
[15] M. Pogribna, G. Hammons, Epigenetic Effects of Nanomaterials and Nanoparticles, J. Nanobiotechnology. 19 (2021) 2. https://doi.org/10.1186/s12951-020-00740-0.
[16] M. Hu, D. Palić, Role of MicroRNAs in regulation of DNA damage in monocytes exposed to polystyrene and TiO2 nanoparticles, Toxicol. Reports. 7 (2020) 743–751. https://doi.org/10.1016/j.toxrep.2020.05.007.
[17] S. Nallanthighal, C. Chan, T.M. Murray, A.P. Mosier, N.C. Cady, R. Reliene, Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice, Nanotoxicology. 11 (2017) 996–1011. https://doi.org/10.1080/17435390.2017.1388863.
[18] M. Mrakovcic, C. Meindl, G. Leitinger, E. Roblegg, E. Fröhlich, Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity, Toxicol. Sci. 144 (2015) 114–127. https://doi.org/10.1093/toxsci/kfu260.
[19] J. Catalán, K.M. Siivola, P. Nymark, H. Lindberg, S. Suhonen, H. Järventaus, A.J. Koivisto, C. Moreno, E. Vanhala, H. Wolff, K.I. Kling, K.A. Jensen, K. Savolainen, H. Norppa, In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes, Nanotoxicology. 10 (2016) 794–806. https://doi.org/10.3109/17435390.2015.1132345.
[20] Y. Totsuka, T. Kato, S.I. Masuda, K. Ishino, Y. Matsumoto, S. Goto, M. Kawanishi, T. Yagi, K. Wakabayashi, In vitro and in vivo genotoxicity induced by Fullerene (C 60) and Kaolin, Genes Environ. 33 (2011) 14–20. https://doi.org/10.3123/jemsge.33.14.
[21] P. V. AshaRani, G.L.K. Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano. 3 (2009) 279–290. https://doi.org/10.1021/nn800596w.
[22] K.K. Awasthi, R. Verma, A. Awasthi, K. Awasthi, I. Soni, P.J. John, In vivo genotoxic assessment of silver nanoparticles in liver cells of Swiss albino mice using comet assay, Adv. Mater. Lett. 6 (2015) 187–193. https://doi.org/10.5185/amlett.2015.5640.
[23] S. Hackenberg, A. Scherzed, M. Kessler, S. Hummel, A. Technau, K. Froelich, C. Ginzkey, C. Koehler, R. Hagen, N. Kleinsasser, Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells, Toxicol. Lett. 201 (2011) 27–33. https://doi.org/10.1016/j.toxlet.2010.12.001.
[24] M.R. Wani, G.G.H.A. Shadab, Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies, Toxicol. Ind. Health. 36 (2020) 514–530. https://doi.org/10.1177/0748233720936835.
[25] V. Valdiglesias, C. Costa, G. Kiliç, S. Costa, E. Pásaro, B. Laffon, J.P. Teixeira, Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles, Environ. Int. 55 (2013) 92–100. https://doi.org/10.1016/j.envint.2013.02.013.
[26] M. Kumari, S.I. Kumari, P. Grover, Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration, Mutagenesis. 29 (2014) 467–479. https://doi.org/10.1093/mutage/geu038.
[27] S. Nithya, R.R. Krishnan, N.R. Rao, K. Naik, N. Praveen, V.L. Vasantha, Microwave-assisted extraction of phytochemicals, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 209–238. https://doi.org/10.1007/978-3-031-35205-8_8.
[28] Ş.Y. Kaygisiz, I.H. Ciǧerci, Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay, Toxicol. Ind. Health. 33 (2017) 802–809. https://doi.org/10.1177/0748233717722907.
[29] G. Qualhato, T.L. Rocha, E.C. de Oliveira Lima, D.M. e Silva, J.R. Cardoso, C. Koppe Grisolia, S.M.T. de Sabóia-Morais, Genotoxic and mutagenic assessment of iron oxide (maghemite-Γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata, Chemosphere. 183 (2017) 305–314. https://doi.org/10.1016/j.chemosphere.2017.05.061.
[30] J. Jiménez-Villarreal, D.I. Rivas-Armendáriz, R.D. Arellano Pérez-Vertti, E. Olivas Calderón, R. García-Garza, N.D. Betancourt-Martínez, L.B. Serrano-Gallardo, J. Morán-Martínez, Relationship between lymphocyte DNA fragmentation and dose of iron oxide (Fe2O3) and silicon oxide (SiO2) nanoparticles, Genet. Mol. Res. 16 (2017). https://doi.org/10.4238/gmr16019206.
[31] S. Rajiv, J. Jerobin, V. Saranya, M. Nainawat, A. Sharma, P. Makwana, C. Gayathri, L. Bharath, M. Singh, M. Kumar, A. Mukherjee, N. Chandrasekaran, Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro, Hum. Exp. Toxicol. 35 (2016) 170–183. https://doi.org/10.1177/0960327115579208.
[32] R. Wan, Y. Mo, Z. Zhang, M. Jiang, S. Tang, Q. Zhang, Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice, Part. Fibre Toxicol. 14 (2017) 38. https://doi.org/10.1186/s12989-017-0219-z.
[33] S. Alarifi, D. Ali, A. Verma, S. Alakhtani, B.A. Ali, Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells, Int. J. Toxicol. 32 (2013) 296–307. https://doi.org/10.1177/1091581813487563.
[34] Y.H. Chung, M. Gulumian, R.C. Pleus, I.J. Yu, Animal Welfare Considerations When Conducting OECD Test Guideline Inhalation and Toxicokinetic Studies for Nanomaterials, Animals. 12 (2022). https://doi.org/10.3390/ani12233305.
[35] X. Pan, Mutagenicity Evaluation of Nanoparticles by the Ames Assay, in: X. Pan, B. Zhang (Eds.), Methods Mol. Biol., Springer US, New York, NY, 2021: pp. 275–285. https://doi.org/10.1007/978-1-0716-1514-0_20.
[36] A. Ávalos, A.I. Haza, D. Mateo, P. Morales, In vitro and in vivo genotoxicity assessment of gold nanoparticles of different sizes comet and SMART assays, Food Chem. Toxicol. 120 (2018) 81–88. https://doi.org/10.1016/j.fct.2018.06.061.
[37] N. El Yamani, E. Rundén-Pran, A.R. Collins, E.M. Longhin, E. Elje, P. Hoet, I. Vinković Vrček, S.H. Doak, V. Fessard, M. Dusinska, The miniaturized enzyme-modified comet assay for genotoxicity testing of nanomaterials, Front. Toxicol. 4 (2022). https://doi.org/10.3389/ftox.2022.986318.
[38] S. Pfuhler, T.R. Downs, A.J. Allemang, Y. Shan, M.E. Crosby, Weak silica nanomaterial-induced genotoxicity can be explained by indirect DNA damage as shown by the OGG1-modified comet assay and genomic analysis, Mutagenesis. 32 (2017) 5–12. https://doi.org/10.1093/MUTAGE/GEW064.
[39] N.V.S. Vallabani, H.L. Karlsson, Primary and Secondary Genotoxicity of Nanoparticles: Establishing a Co-Culture Protocol for Assessing Micronucleus Using Flow Cytometry, Front. Toxicol. 4 (2022) 845987. https://doi.org/10.3389/ftox.2022.845987.
[40] Test No. 476: In Vitro Mammalian Cell Gene Mutation Tests using the Hprt and xprt genes, OECD, 2015. https://doi.org/10.1787/9789264243088-en.
[41] Y. Yang, W. Li, E. Kroner, E. Arzt, B. Bhushan, L. Benameur, L. Wei, A. Botta, Y. Lu, J. Lou, D. Jena, M. Nosonovsky, B. Bhushan, T. Søndergaard, P.K. Sekhar, S. Bhansali, A.A. Trusov, Genotoxicity of Nanoparticles, in: B. Bhushan (Ed.), Encycl. Nanotechnol., Springer Netherlands, Dordrecht, 2012: pp. 952–962. https://doi.org/10.1007/978-90-481-9751-4_335.
[42] Test No. 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene, 2015. https://doi.org/10.1787/9789264242241-en.
[43] OECD, Test No. 489: In Vivo Mammalian Alkaline Comet Assay, 2014. https://doi.org/10.1787/9789264224179-en.
[44] OCDE, Guideline 474: Mammalian Erythrocyte Micronucleus Test, 2016. https://doi.org/https://doi.org/https://doi.org/10.1787/9789264264762-en.
[45] A. Ávalos, A.I. Haza, E. Drosopoulou, P. Mavragani-Tsipidou, P. Morales, In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila, Food Chem. Toxicol. 85 (2015) 114–119. https://doi.org/10.1016/j.fct.2015.06.024.
[46] M.S. Attene-Ramos, C.P. Austin, M. Xia, High Throughput Screening, in: P.B.T.-E. of T. (Third E. Wexler (Ed.), Encycl. Toxicol. Third Ed., Academic Press, Oxford, 2014: pp. 916–917. https://doi.org/10.1016/B978-0-12-386454-3.00209-8.
[47] J. Ge, D.K. Wood, D.M. Weingeist, S.N. Bhatia, B.P. Engelward, CometChip: Single-Cell Microarray for High-Throughput Detection of DNA Damage, Elsevier, 2012. https://doi.org/10.1016/B978-0-12-405914-6.00013-5.
[48] C. Watson, J. Ge, J. Cohen, G. Pyrgiotakis, B.P. Engelward, P. Demokritou, High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using cometchip technology, ACS Nano. 8 (2014) 2118–2133. https://doi.org/10.1021/nn404871p.
[49] A.R. Collins, B. Annangi, L. Rubio, R. Marcos, M. Dorn, C. Merker, I. Estrela-Lopis, M.R. Cimpan, M. Ibrahim, E. Cimpan, M. Ostermann, A. Sauter, N. El Yamani, S. Shaposhnikov, S. Chevillard, V. Paget, R. Grall, J. Delic, F.G. de-Cerio, B. Suarez-Merino, V. Fessard, K.N. Hogeveen, L.M. Fjellsbø, E.R. Pran, T. Brzicova, J. Topinka, M.J. Silva, P.E. Leite, A.R. Ribeiro, J.M. Granjeiro, R. Grafström, A. Prina-Mello, M. Dusinska, High throughput toxicity screening and intracellular detection of nanomaterials, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 9 (2017). https://doi.org/10.1002/wnan.1413.
[50] N.A. Subramanian, A. Palaniappan, NanoTox: Development of a Parsimonious in Silico Model for Toxicity Assessment of Metal-Oxide Nanoparticles Using Physicochemical Features, ACS Omega. 6 (2021) 11729–11739. https://doi.org/10.1021/acsomega.1c01076.
[51] T. Adhikary, P. Basak, Software for drug discovery and protein engineering: A comparison between the alternatives and recent advancements in computational biology, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 241–269. https://doi.org/10.1007/978-3-031-35205-8_9.
[52] A. Gupta, S. Kumar, V. Kumar, Challenges for Assessing Toxicity of Nanomaterials, in: M. Ince, O.K. Ince, G. Ondrasek (Eds.), Biochem. Toxicol. – Heavy Met. Nanomater., IntechOpen, Rijeka, 2020: p. Ch. 4. https://doi.org/10.5772/intechopen.89601.
[53] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023). https://doi.org/10.3390/separations10010021.
[54] V. Forest, Experimental and Computational Nanotoxicology— Complementary Approaches for Nanomaterial Hazard Assessment, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12081346.
[55] S. H, Physiological Society Symposium : Impaired Endothelial and Smooth Muscle Cell Function in Oxidative Stress Oxidative Stress : Oxidants and Antioxidants, Exp. Physiol. 82 (1996) 291–295.
[56] B. D’Autréaux, M.B. Toledano, ROS as signaling molecules: Mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol. 8 (2007) 813–824. https://doi.org/10.1038/nrm2256.
[57] J.N. Cruz, S. Muzammil, A. Ashraf, M.U. Ijaz, M.H. Siddique, R. Abbas, M. Sadia, Saba, S. Hayat, R.R. Lima, A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents, Heliyon. 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e29500.
[58] X. lihui, G. Jinming, G. Yalin, W. Hemeng, W. Hao, C. Ying, Albicanol inhibits the toxicity of profenofos to grass carp hepatocytes cells through the ROS/PTEN/PI3K/AKT axis, Fish Shellfish Immunol. 120 (2022) 325–336. https://doi.org/10.1016/j.fsi.2021.11.014.
[59] J. Suski, M. Lebiedzinska, M. Bonora, P. Pinton, J. Duszynski, M.R. Wieckowski, Relation between mitochondrial membrane potential and ROS formation, Methods Mol. Biol. 1782 (2018) 357–381. https://doi.org/10.1007/978-1-4939-7831-1_22.
[60] M. Horie, Y. Tabei, Role of oxidative stress in nanoparticles toxicity, Free Radic. Res. 55 (2021) 331–342. https://doi.org/10.1080/10715762.2020.1859108.
[61] P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species, J. Food Drug Anal. 22 (2014) 64–75. https://doi.org/10.1016/j.jfda.2014.01.005.
[62] D. Manzanares, V. Ceña, Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell, Pharmaceutics. 12 (2020) 139–148. https://doi.org/10.3390/pharmaceutics12040371.
[63] K. Vidwathpriya, S. Sriranjani, P.K. Niharika, N.V.A. Kumar, Supercritical fluid for extraction and isolation of natural compounds, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 177–208. https://doi.org/10.1007/978-3-031-35205-8_7.
[64] J. Zhu, L. Liao, L. Zhu, P. Zhang, K. Guo, J. Kong, C. Ji, B. Liu, Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells, Talanta. 107 (2013) 408–415. https://doi.org/10.1016/j.talanta.2013.01.037.
[65] I.N. de F. Ramos, M.F. da Silva, J.M.S. Lopes, J.N. Cruz, F.S. Alves, J. de A.R. do Rego, M.L. da Costa, P.P. de Assumpção, D. do S. Barros Brasil, A.S. Khayat, Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer, Molecules. 28 (2023). https://doi.org/10.3390/molecules28145587.
[66] A. Martin, A. Sarkar, Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line, Nanotoxicology. 11 (2017) 713–724. https://doi.org/10.1080/17435390.2017.1366574.
[67] Y.W. Huang, C.H. Wu, R.S. Aronstam, Toxicity of transition metal oxide nanoparticles: Recent insights from in vitro studies, Materials (Basel). 3 (2010) 4842–4859. https://doi.org/10.3390/ma3104842.
[68] M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact. 160 (2006) 1–40. https://doi.org/10.1016/j.cbi.2005.12.009.
[69] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023). https://doi.org/10.3389/fmicb.2023.1188743.
[70] A. Manke, L. Wang, Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity, Biomed Res. Int. 2013 (2013). https://doi.org/10.1155/2013/942916.
[71] M.J. Hosseini, F. Shaki, M. Ghazi-Khansari, J. Pourahmad, Toxicity of Copper on Isolated Liver Mitochondria: Impairment at Complexes I, II, and IV Leads to Increased ROS Production, Cell Biochem. Biophys. 70 (2014) 367–381. https://doi.org/10.1007/s12013-014-9922-7.
[72] A. Ashrafi Hafez, P. Naserzadeh, A.M. Mortazavian, B. Mehravi, K. Ashtari, E. Seydi, A. Salimi, Comparison of the effects of MnO 2 -NPs and MnO 2 -MPs on mitochondrial complexes in different organs, Toxicol. Mech. Methods. 29 (2019) 86–94. https://doi.org/10.1080/15376516.2018.1512693.
[73] M. Mishra, M. Panda, Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster, Free Radic. Res. 55 (2021) 671–687. https://doi.org/10.1080/10715762.2021.1914335.
[74] D.B. Zorov, M. Juhaszova, S.J. Sollott, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev. 94 (2014) 909–950. https://doi.org/10.1152/physrev.00026.2013.
[75] Y. Shi, F. Wang, J. He, S. Yadav, H. Wang, Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway, Toxicol. Lett. 196 (2010) 21–27. https://doi.org/10.1016/j.toxlet.2010.03.014.
[76] P. Manna, M. Ghosh, J. Ghosh, J. Das, P.C. Sil, Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal, Nanotoxicology. 6 (2012) 1–21. https://doi.org/10.3109/17435390.2011.552124.
[77] X.Q. Zhang, L.H. Yin, M. Tang, Y.P. Pu, ZnO, TiO 2, SiO 2, and Al 2O 3 nanoparticles-induced toxic effects on human fetal lung fibroblasts, Biomed. Environ. Sci. 24 (2011) 661–669. https://doi.org/10.3967/0895-3988.2011.06.011.
[78] P. Nymark, H.L. Karlsson, S. Halappanavar, U. Vogel, Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles, Front. Toxicol. 3 (2021) 1–40. https://doi.org/10.3389/ftox.2021.653386.
[79] B. Li, M. Tang, Research progress of nanoparticle toxicity signaling pathway, Life Sci. 263 (2020). https://doi.org/10.1016/j.lfs.2020.118542.
[80] J.W. Ko, J.W. Park, N.R. Shin, J.H. Kim, Y.K. Cho, D.H. Shin, J.C. Kim, I.C. Lee, S.R. Oh, K.S. Ahn, I.S. Shin, Copper oxide nanoparticle induces inflammatory response and mucus production via MAPK signaling in human bronchial epithelial cells, Environ. Toxicol. Pharmacol. 43 (2016) 21–26. https://doi.org/10.1016/j.etap.2016.02.008.
[81] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023). https://doi.org/10.3390/molecules28020710.
[82] X. Chang, A. Zhu, F. Liu, L. Zou, L. Su, S. Li, Y. Sun, Role of NF-κB activation and Th1/Th2 imbalance in pulmonary toxicity induced by nano NiO, Environ. Toxicol. 32 (2017) 1354–1362. https://doi.org/10.1002/tox.22329.
[83] S. Sonwani, S. Madaan, J. Arora, S. Suryanarayan, D. Rangra, N. Mongia, T. Vats, P. Saxena, Inhalation Exposure to Atmospheric Nanoparticles and Its Associated Impacts on Human Health: A Review, Front. Sustain. Cities. 3 (2021) 1–20. https://doi.org/10.3389/frsc.2021.690444.
[84] K.Z. Guyton, Y. Liu, M. Gorospe, Q. Xu, N.J. Holbrook, Activation of mitogen-activated protein kinase by H2O2: Role in cell survival following oxidant injury, J. Biol. Chem. 271 (1996) 4138–4142. https://doi.org/10.1074/jbc.271.8.4138.
[85] C. Tournier, G. Thomas, J. Pierre, C. Jacquemin, M. Pierre, B. Saunier, Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase), Eur. J. Biochem. 244 (1997) 587–595. https://doi.org/10.1111/j.1432-1033.1997.00587.x.
[86] C. Guo, J. Wang, M. Yang, Y. Li, S. Cui, X. Zhou, Y. Li, Z. Sun, Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling, Nanotoxicology. 11 (2017) 1176–1194. https://doi.org/10.1080/17435390.2017.1403658.
[87] L.M. Falcone, A. Erdely, R. Salmen, M. Keane, L. Battelli, V. Kodali, L. Bowers, A.B. Stefaniak, M.L. Kashon, J.M. Antonini, P.C. Zeidler-Erdely, Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding–stainless steel fume: Iron as a primary mediator versus chromium and nickel, PLoS One. 13 (2018). https://doi.org/10.1371/journal.pone.0209413.
[88] T.A. Stueckle, D.C. Davidson, R. Derk, T.G. Kornberg, D. Schwegler-Berry, S. V. Pirela, G. Deloid, P. Demokritou, S. Luanpitpong, Y. Rojanasakul, L. Wang, Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model, NanoImpact. 6 (2017) 39–54. https://doi.org/10.1016/j.impact.2016.11.001.
[89] S. Luanpitpong, S.J. Talbott, Y. Rojanasakul, U. Nimmannit, V. Pongrakhananon, L. Wang, P. Chanvorachote, Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1, J. Biol. Chem. 285 (2010) 38832–38840. https://doi.org/10.1074/jbc.M110.124958.
[90] L. Xu, X. Li, T. Takemura, N. Hanagata, G. Wu, L.L. Chou, Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel, J. Nanobiotechnology. 10 (2012). https://doi.org/10.1186/1477-3155-10-16.
[91] G.H. Lee, Y.S. Kim, E. Kwon, J.W. Yun, B.C. Kang, Toxicologic evaluation for amorphous silica nanoparticles: Genotoxic and non-genotoxic tumor-promoting potential, Pharmaceutics. 12 (2020) 1–17. https://doi.org/10.3390/pharmaceutics12090826.
[92] W. Dröge, Free radicals in the physiological control of cell function, Physiol. Rev. 82 (2002) 47–95. https://doi.org/10.1152/physrev.00018.2001.
[93] K.M. Holmström, T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signaling, Nat. Rev. Mol. Cell Biol. 15 (2014) 411–421. https://doi.org/10.1038/nrm3801.
[94] M.H. Park, J.T. Hong, Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches, Cells. 5 (2016). https://doi.org/10.3390/cells5020015.
[95] Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions – PubMed, (n.d.).
[96] J.D. Byrne, J.A. Baugh, The significance of nanoparticles in particle-induced pulmonary fibrosis, McGill J. Med. 11 (2008) 43–50. https://doi.org/10.26443/mjm.v11i1.455.
[97] I. Pujalté, I. Passagne, B. Brouillaud, M. Tréguer, E. Durand, C. Ohayon-Courtès, B. L’Azou, Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells, Part. Fibre Toxicol. 8 (2011) 1–16. https://doi.org/10.1186/1743-8977-8-10.
[98] Activation of NF-kappaB-dependent gene expression by silica in lungs of luciferase reporter mice – PubMed, (n.d.).
[99] L. Capasso, M. Camatini, M. Gualtieri, Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells, Toxicol. Lett. 226 (2014) 28–34. https://doi.org/10.1016/j.toxlet.2014.01.040.
[100] M. Ding, X. Shi, Y.J. Lu, C. Huang, S. Leonard, J. Roberts, J. Antonini, V. Castranova, V. Vallyathan, Induction of Activator Protein-1 through Reactive Oxygen Species by Crystalline Silica in JB6 Cells, J. Biol. Chem. 276 (2001) 9108–9114. https://doi.org/10.1074/jbc.M007666200.
[101] M. Ding, X. Shi, Z. Dong, F. Chen, Y. Lu, V. Castranova, V. Vallyathan, Freshly fractured crystalline silica induces activator protein-1 activation through ERKs and p38 MAPK, J. Biol. Chem. 274 (1999) 30611–30616. https://doi.org/10.1074/jbc.274.43.30611.
[102] X.H. Jiang, B.C.Y. Wong, M.C.M. Lin, G.H. Zhu, H.F. Kung, S.H. Jiang, D. Yang, S.K. Lam, Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-κB activation in gastric cancer cells, Oncogene. 20 (2001) 8009–8018. https://doi.org/10.1038/sj.onc.1204981.
[103] Y. Gu, Y. Wang, Q. Zhou, L. Bowman, G. Mao, B. Zou, J. Xu, Y. Liu, K. Liu, J. Zhao, M. Ding, Correction: Inhibition of nickel nanoparticles-induced toxicity by epigallocatechin-3-gallate in JB6 cells may be through down-regulation of the MAPK signaling pathways, PLoS One. 11 (2016). https://doi.org/10.1371/journal.pone.0154978.
[104] L. Kong, T. Barber, J. Aldinger, L. Bowman, S. Leonard, J. Zhao, M. Ding, ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells, Environ. Toxicol. 37 (2022) 237–244. https://doi.org/10.1002/tox.23393.
[105] H. Shi, L.G. Hudson, K.J. Liu, Oxidative stress and apoptosis in metal ion-induced carcinogenesis, Free Radic. Biol. Med. 37 (2004) 582–593. https://doi.org/10.1016/j.freeradbiomed.2004.03.012.
[106] F. Zheng, H. Li, Evaluation of Nrf2 with exposure to nanoparticles, Methods Mol. Biol. 1894 (2019) 229–246. https://doi.org/10.1007/978-1-4939-8916-4_13.
[107] C. Guo, Y. Xia, P. Niu, L. Jiang, J. Duan, Y. Yu, X. Zhou, Y. Li, Z. Sun, Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling, Int. J. Nanomedicine. 10 (2015) 1463–1477. https://doi.org/10.2147/IJN.S76114.
[108] A.G. Oomen, K.G. Steinhäuser, E.A.J. Bleeker, F. van Broekhuizen, A. Sips, S. Dekkers, S.W.P. Wijnhoven, P.G. Sayre, Risk assessment frameworks for nanomaterials: Scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency, NanoImpact. 9 (2018) 1–13. https://doi.org/10.1016/j.impact.2017.09.001.
[109] A. Hartwig, M. Arand, B. Epe, S. Guth, G. Jahnke, A. Lampen, H.J. Martus, B. Monien, I.M.C.M. Rietjens, S. Schmitz-Spanke, G. Schriever-Schwemmer, P. Steinberg, G. Eisenbrand, Mode of action-based risk assessment of genotoxic carcinogens, Arch. Toxicol. 94 (2020) 1787–1877. https://doi.org/10.1007/s00204-020-02733-2.
[110] V. Forest, Combined effects of nanoparticles and other environmental contaminants on human health – an issue often overlooked, NanoImpact. 23 (2021) 100344. https://doi.org/10.1016/j.impact.2021.100344.
[111] T.I. Ramos, C.A. Villacis-Aguirre, K. V. López-Aguilar, L.S. Padilla, C. Altamirano, J.R. Toledo, N.S. Vispo, The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development, Pharmaceutics. 14 (2022). https://doi.org/10.3390/pharmaceutics14020247.
[112] C.H. Plan, S. Manual, O. Safety, Guidelines for Safety during Nanomaterials Research, (2018) 1–8.
[113] Z. Zahra, Z. Habib, S. Hyun, M. Sajid, Nanowaste: Another Future Waste, Its Sources, Release Mechanism, and Removal Strategies in the Environment, Sustain. 14 (2022). https://doi.org/10.3390/su14042041.
[114] G.B. Pinto, A. dos Reis Corrêa, G.N.C. da Silva, J.S. da Costa, P.L.B. Figueiredo, Drug development from essential oils: New discoveries and perspectives, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 79–101. https://doi.org/10.1007/978-3-031-35205-8_4.
[115] R. Gupta, H. Xie, Nanoparticles in daily life: Applications, toxicity and regulations, J. Environ. Pathol. Toxicol. Oncol. 37 (2018) 209–230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009.
[116] A.E. Kokotovich, J. Kuzma, C.L. Cummings, K. Grieger, Responsible Innovation Definitions, Practices, and Motivations from Nanotechnology Researchers in Food and Agriculture, Nanoethics. 15 (2021) 229–243. https://doi.org/10.1007/s11569-021-00404-9.
[117] P.A. Schulte, F. Salamanca-Buentello, Ethical and scientific issues of nanotechnology in the workplace, Environ. Health Perspect. 115 (2007) 5–12. https://doi.org/10.1289/ehp.9456.
[118] S. Bakand, A. Hayes, Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles, Int. J. Mol. Sci. 17 (2016). https://doi.org/10.3390/ijms17060929.
[119] A. Ramanathan, Toxicity of nanoparticles_ challenges and opportunities, Appl. Microsc. 49 (2019) 2. https://doi.org/10.1007/s42649-019-0004-6.