Interactions of Nanoparticles with Lipid and Cell Membranes
Rohit Awale, Nilesh Kulkarni, Saurabh Khadse
The interactions between nanoparticles and lipid or cell membranes are of paramount importance in the realms of nanomedicine and nanotoxicology. Nanoparticles, with their unique physicochemical properties, exhibit dynamic interactions upon contact with biological membranes. These interactions include adsorption, penetration, and potential disruption of lipid bilayers. Such interactions play a crucial role in drug delivery systems, enabling precise targeting and controlled release of therapeutic agents. However, these interactions also raise concerns about nanoparticle toxicity due to potential membrane damage. A deeper understanding of these intricate processes is essential for harnessing the benefits of nanoparticles while ensuring their safety in biomedical applications.
Keywords
Nanoparticles, Cell Membranes, Nanoparticle Interactions, Lipid Bilayers, Cellular Uptake, Permeability, Protein Interactions, Membrane Structure
Published online 12/15/2024, 26 pages
Citation: Rohit Awale, Nilesh Kulkarni, Saurabh Khadse, Interactions of Nanoparticles with Lipid and Cell Membranes, Materials Research Foundations, Vol. 171, pp 191-216, 2024
DOI: https://doi.org/10.21741/9781644903339-7
Part of the book on Advances in Healthcare and Nanoparticle Toxicology
References
[1] B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nanomedicine, N. Engl. J. Med. 363 (2010) 2434–2443. https://doi.org/10.1056/nejmra0912273.
[2] C. von Roemeling, W. Jiang, C.K. Chan, I.L. Weissman, B.Y.S. Kim, Breaking Down the Barriers to Precision Cancer Nanomedicine, Trends Biotechnol. 35 (2017) 159–171. https://doi.org/10.1016/j.tibtech.2016.07.006.
[3] P.C. Ke, S. Lin, W.J. Parak, T.P. Davis, F. Caruso, A Decade of the Protein Corona, ACS Nano. 11 (2017) 11773–11776. https://doi.org/10.1021/acsnano.7b08008.
[4] J. Hühn, C. Carrillo-Carrion, M.G. Soliman, C. Pfeiffer, D. Valdeperez, A. Masood, I. Chakraborty, L. Zhu, M. Gallego, Z. Yue, M. Carril, N. Feliu, A. Escudero, A.M. Alkilany, B. Pelaz, P. Del Pino, W.J. Parak, Erratum: Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles (Chem. Mater. (2017) 29:1 (399−461) DOI: 10.1021/acs.chemmater.6b04738), Chem. Mater. 33 (2021) 4830. https://doi.org/10.1021/acs.chemmater.1c01764.
[5] M. Mahmoudi, N. Bertrand, H. Zope, O.C. Farokhzad, Emerging understanding of the protein corona at the nano-bio interfaces, Nano Today. 11 (2016) 817–832. https://doi.org/10.1016/j.nantod.2016.10.005.
[6] N.D. Donahue, H. Acar, S. Wilhelm, Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine, Adv. Drug Deliv. Rev. 143 (2019) 68–96. https://doi.org/10.1016/j.addr.2019.04.008.
[7] A. Panariti, G. Miserocchi, I. Rivolta, The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions?, Nanotechnol. Sci. Appl. 5 (2012) 87–100. https://doi.org/10.2147/NSA.S25515.
[8] M.J.D. Clift, C. Brandenberger, B. Rothen-Rutishauser, D.M. Brown, V. Stone, The uptake and intracellular fate of a series of different surface coated quantum dots in vitro, Toxicology. 286 (2011) 58–68. https://doi.org/10.1016/j.tox.2011.05.006.
[9] J. Chen, Z. Yu, H. Chen, J. Gao, W. Liang, Transfection efficiency and intracellular fate of polycation liposomes combined with protamine, Biomaterials. 32 (2011) 1412–1418. https://doi.org/10.1016/j.biomaterials.2010.09.074.
[10] D.J. Irvine, M.C. Hanson, K. Rakhra, T. Tokatlian, Synthetic Nanoparticles for Vaccines and Immunotherapy, Chem. Rev. 115 (2015) 11109–11146. https://doi.org/10.1021/acs.chemrev.5b00109.
[11] P.A. Gleeson, The role of endosomes in innate and adaptive immunity, Semin. Cell Dev. Biol. 31 (2014) 64–72. https://doi.org/10.1016/j.semcdb.2014.03.002.
[12] J.P. Mattila, A. V. Shnyrova, A.C. Sundborger, E.R. Hortelano, M. Fuhrmans, S. Neumann, M. Müller, J.E. Hinshaw, S.L. Schmid, V.A. Frolov, A hemi-fission intermediate links two mechanistically distinct stages of membrane fission, Nature. 524 (2015) 109–113. https://doi.org/10.1038/nature14509.
[13] P. Decuzzi, M. Ferrari, The receptor-mediated endocytosis of nonspherical particles, Biophys. J. 94 (2008) 3790–3797. https://doi.org/10.1529/biophysj.107.120238.
[14] A.S. Robertson, E. Smythe, K.R. Ayscough, Functions of actin in endocytosis, Cell. Mol. Life Sci. 66 (2009) 2049–2065. https://doi.org/10.1007/s00018-009-0001-y.
[15] M. Kaksonen, A. Roux, Mechanisms of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol. 19 (2018) 313–326. https://doi.org/10.1038/nrm.2017.132.
[16] S.D. Conner, S.L. Schmid, Regulated portals of entry into the cell, Nature. 422 (2003) 37–44. https://doi.org/10.1038/nature01451.
[17] B. Yameen, W. Il Choi, C. Vilos, A. Swami, J. Shi, O.C. Farokhzad, Insight into nanoparticle cellular uptake and intracellular targeting, J. Control. Release. 190 (2014) 485–499. https://doi.org/10.1016/j.jconrel.2014.06.038.
[18] P. Lajoie, I.R. Nabi, Regulation of raft-dependent endocytosis, J. Cell. Mol. Med. 11 (2007) 644–653. https://doi.org/10.1111/j.1582-4934.2007.00083.x.
[19] D.J.F. Chinnapen, H. Chinnapen, D. Saslowsky, W.I. Lencer, Rafting with cholera toxin: Endocytosis and trafficking from plasma membrane to ER, FEMS Microbiol. Lett. 266 (2007) 129–137. https://doi.org/10.1111/j.1574-6968.2006.00545.x.
[20] C. Foerg, U. Ziegler, J. Fernandez-Carneado, E. Giralt, R. Rennert, A.G. Beck-Sickinger, H.P. Merkle, Decoding the entry of two novel cell-penetrating peptides in HeLa cells: Lipid raft-mediated endocytosis and endosomal escape, Biochemistry. 44 (2005) 72–81. https://doi.org/10.1021/bi048330+.
[21] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095.
[22] Y. Jiang, R. Tang, B. Duncan, Z. Jiang, B. Yan, R. Mout, V.M. Rotello, Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules, Angew. Chemie – Int. Ed. 54 (2015) 506–510. https://doi.org/10.1002/anie.201409161.
[23] M.C. Kerr, R.D. Teasdale, Defining macropinocytosis, Traffic. 10 (2009) 364–371. https://doi.org/10.1111/j.1600-0854.2009.00878.x.
[24] J.S. Wadia, R. V. Stan, S.F. Dowdy, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis, Nat. Med. 10 (2004) 310–315. https://doi.org/10.1038/nm996.
[25] K.T. Love, K.P. Mahon, C.G. Levins, K.A. Whitehead, W. Querbes, J.R. Dorkin, J. Qin, W. Cantley, L.L. Qin, T. Racie, M. Frank-Kamenetsky, K.N. Yip, R. Alvarez, D.W.Y. Sah, A. De Fougerolles, K. Fitzgerald, V. Koteliansky, A. Akinc, R. Langer, D.G. Anderson, Lipid-like materials for low-dose, in vivo gene silencing, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 1864–1869. https://doi.org/10.1073/pnas.0910603106.
[26] J. Mercer, A. Helenius, Virus entry by macropinocytosis, Nat. Cell Biol. 11 (2009) 510–520. https://doi.org/10.1038/ncb0509-510.
[27] M. Diken, S. Kreiter, A. Selmi, C.M. Britten, C. Huber, Ö. Türeci, U. Sahin, Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation, Gene Ther. 18 (2011) 702–708. https://doi.org/10.1038/gt.2011.17.
[28] S. Hirosue, I.C. Kourtis, A.J. van der Vlies, J.A. Hubbell, M.A. Swartz, Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation, Vaccine. 28 (2010) 7897–7906. https://doi.org/10.1016/j.vaccine.2010.09.077.
[29] J. Cullis, D. Siolas, A. Avanzi, S. Barui, A. Maitra, D. Bar-Sagi, Macropinocytosis of Nab-paclitaxel drives macrophage activation in pancreatic cancer, Cancer Immunol. Res. 5 (2017) 182–190. https://doi.org/10.1158/2326-6066.CIR-16-0125.
[30] A. Martínez‐Riaño, E.R. Bovolenta, P. Mendoza, C.L. Oeste, M.J. Martín‐Bermejo, P. Bovolenta, M. Turner, N. Martínez‐Martín, B. Alarcón, Antigen phagocytosis by B cells is required for a potent humoral response, EMBO Rep. 19 (2018). https://doi.org/10.15252/embr.201846016.
[31] F. Chen, G. Wang, J.I. Griffin, B. Brenneman, N.K. Banda, V.M. Holers, D.S. Backos, L. Wu, S.M. Moghimi, D. Simberg, Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo, Nat. Nanotechnol. 12 (2017) 387–393. https://doi.org/10.1038/nnano.2016.269.
[32] R. Tavano, L. Gabrielli, E. Lubian, C. Fedeli, S. Visentin, P. Polverino De Laureto, G. Arrigoni, A. Geffner-Smith, F. Chen, D. Simberg, G. Morgese, E.M. Benetti, L. Wu, S.M. Moghimi, F. Mancin, E. Papini, C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes, ACS Nano. 12 (2018) 5834–5847. https://doi.org/10.1021/acsnano.8b01806.
[33] Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination, J. Control. Release. 240 (2016) 332–348. https://doi.org/10.1016/j.jconrel.2016.01.020.
[34] J. Lazarovits, Y.Y. Chen, E.A. Sykes, W.C.W. Chan, Nanoparticle-blood interactions: The implications on solid tumour targeting, Chem. Commun. 51 (2015) 2756–2767. https://doi.org/10.1039/c4cc07644c.
[35] K.M. Tsoi, S.A. Macparland, X.Z. Ma, V.N. Spetzler, J. Echeverri, B. Ouyang, S.M. Fadel, E.A. Sykes, N. Goldaracena, J.M. Kaths, J.B. Conneely, B.A. Alman, M. Selzner, M.A. Ostrowski, O.A. Adeyi, A. Zilman, I.D. McGilvray, W.C.W. Chan, Mechanism of hard-nanomaterial clearance by the liver, Nat. Mater. 15 (2016) 1212–1221. https://doi.org/10.1038/nmat4718.
[36] Q. Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani, Y. Zhang, Y.Y. Chen, P. Macmillan, W.C.W. Chan, Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors, ACS Nano. 12 (2018) 8423–8435. https://doi.org/10.1021/acsnano.8b03900.
[37] C.D. Walkey, J.B. Olsen, H. Guo, A. Emili, W.C.W. Chan, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake, J. Am. Chem. Soc. 134 (2012) 2139–2147. https://doi.org/10.1021/ja2084338.
[38] R.C. Van Lehn, P.U. Atukorale, R.P. Carney, Y.S. Yang, F. Stellacci, D.J. Irvine, A. Alexander-Katz, Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers, Nano Lett. 13 (2013) 4060–4067. https://doi.org/10.1021/nl401365n.
[39] K. Yang, Y.Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol. 5 (2010) 579–583. https://doi.org/10.1038/nnano.2010.141.
[40] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095.
[41] B. Song, H. Yuan, S. V. Pham, C.J. Jameson, S. Murad, Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop, Langmuir. 28 (2012) 16989–17000. https://doi.org/10.1021/la302879r.
[42] S. Pogodin, M. Werner, J.U. Sommer, V.A. Baulin, Nanoparticle-induced permeability of lipid membranes, ACS Nano. 6 (2012) 10555–10561. https://doi.org/10.1021/nn3028858.
[43] E. Hinde, K. Thammasiraphop, H.T.T. Duong, J. Yeow, B. Karagoz, C. Boyer, J.J. Gooding, K. Gaus, Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release, Nat. Nanotechnol. 12 (2017) 81–89. https://doi.org/10.1038/nnano.2016.160.
[44] C.M. Jewell, J.M. Jung, P.U. Atukorale, R.P. Carney, F. Stellacci, D.J. Irvine, Oligonucleotide delivery by cell-penetrating “striped” nanoparticles, Angew. Chemie – Int. Ed. 50 (2011) 12312–12315. https://doi.org/10.1002/anie.201104514.
[45] D.M. Copolovici, K. Langel, E. Eriste, Ü. Langel, Cell-penetrating peptides: Design, synthesis, and applications, ACS Nano. 8 (2014) 1972–1994. https://doi.org/10.1021/nn4057269.
[46] A. Rydström, S. Deshayes, K. Konate, L. Crombez, K. Padari, H. Boukhaddaoui, G. Aldrian, M. Pooga, G. Divita, Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles, PLoS One. 6 (2011) e25924. https://doi.org/10.1371/journal.pone.0025924.
[47] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21. https://doi.org/10.3390/separations10010021.
[48] W.B. Kauffman, T. Fuselier, J. He, W.C. Wimley, Mechanism Matters: A Taxonomy of Cell Penetrating Peptides, Trends Biochem. Sci. 40 (2015) 749–764. https://doi.org/10.1016/j.tibs.2015.10.004.
[49] S. Kube, N. Hersch, E. Naumovska, T. Gensch, J. Hendriks, A. Franzen, L. Landvogt, J.P. Siebrasse, U. Kubitscheck, B. Hoffmann, R. Merkel, A. Csiszár, Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins, Langmuir. 33 (2017) 1051–1059. https://doi.org/10.1021/acs.langmuir.6b04304.
[50] S. He, W. Fan, N. Wu, J. Zhu, Y. Miao, X. Miao, F. Li, X. Zhang, Y. Gan, Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation, Nano Lett. 18 (2018) 2411–2419. https://doi.org/10.1021/acs.nanolett.7b05430.
[51] B. Kim, H.B. Pang, J. Kang, J.H. Park, E. Ruoslahti, M.J. Sailor, Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus, Nat. Commun. 9 (2018). https://doi.org/10.1038/s41467-018-04390-7.
[52] P.U. Atukorale, Z.P. Guven, A. Bekdemir, R.P. Carney, R.C. Van Lehn, D.S. Yun, P.H. Jacob Silva, D. Demurtas, Y.S. Yang, A. Alexander-Katz, F. Stellacci, D.J. Irvine, Structure-Property Relationships of Amphiphilic Nanoparticles That Penetrate or Fuse Lipid Membranes, Bioconjug. Chem. 29 (2018) 1131–1140. https://doi.org/10.1021/acs.bioconjchem.7b00777.
[53] G. Saulis, R. Saule, Size of the pores created by an electric pulse: Microsecond vs millisecond pulses, Biochim. Biophys. Acta – Biomembr. 1818 (2012) 3032–3039. https://doi.org/10.1016/j.bbamem.2012.06.018.
[54] L. Damalakiene, V. Karabanovas, S. Bagdonas, M. Valius, R. Rotomskis, Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection, Int. J. Nanomedicine. 8 (2013) 555–568. https://doi.org/10.2147/IJN.S39658.
[55] P. Candeloro, L. Tirinato, N. Malara, A. Fregola, E. Casals, V. Puntes, G. Perozziello, F. Gentile, M.L. Coluccio, G. Das, C. Liberale, F. De Angelis, E. Di Fabrizio, Nanoparticle microinjection and Raman spectroscopy as tools for nanotoxicology studies, Analyst. 136 (2011) 4402–4408. https://doi.org/10.1039/c1an15313g.
[56] T.F. Martens, K. Remaut, J. Demeester, S.C. De Smedt, K. Braeckmans, Intracellular delivery of nanomaterials: How to catch endosomal escape in the act, Nano Today. 9 (2014) 344–364. https://doi.org/10.1016/j.nantod.2014.04.011.
[57] K. Cho, X. Wang, S. Nie, Z. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res. 14 (2008) 1310–1316. https://doi.org/10.1158/1078-0432.CCR-07-1441.
[58] N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology, Adv. Drug Deliv. Rev. 66 (2014) 2–25. https://doi.org/10.1016/j.addr.2013.11.009.
[59] J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Deliv. Rev. 60 (2008) 1615–1626. https://doi.org/10.1016/j.addr.2008.08.005.
[60] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611. https://doi.org/10.3390/ph16040611
[61] G. Caracciolo, O.C. Farokhzad, M. Mahmoudi, Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona, Trends Biotechnol. 35 (2017) 257–264. https://doi.org/10.1016/j.tibtech.2016.08.011.
[62] E. Polo, M. Collado, B. Pelaz, P. Del Pino, Advances toward More Efficient Targeted Delivery of Nanoparticles in Vivo: Understanding Interactions between Nanoparticles and Cells, ACS Nano. 11 (2017) 2397–2402. https://doi.org/10.1021/acsnano.7b01197.
[63] M. Tonigold, J. Simon, D. Estupiñán, M. Kokkinopoulou, J. Reinholz, U. Kintzel, A. Kaltbeitzel, P. Renz, M.P. Domogalla, K. Steinbrink, I. Lieberwirth, D. Crespy, K. Landfester, V. Mailänder, Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona, Nat. Nanotechnol. 13 (2018) 862–869. https://doi.org/10.1038/s41565-018-0171-6.
[64] R. Agarwal, V. Singh, P. Jurney, L. Shi, S. V. Sreenivasan, K. Roy, Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 17247–17252. https://doi.org/10.1073/pnas.1305000110.
[65] W.L.L. Suen, Y. Chau, Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells, J. Pharm. Pharmacol. 66 (2014) 564–573. https://doi.org/10.1111/jphp.12134.
[66] T. Chang, M.S. Lord, B. Bergmann, A. MacMillan, M.H. Stenzel, Size effects of self-assembled block copolymer spherical micelles and vesicles on cellular uptake in human colon carcinoma cells, J. Mater. Chem. B. 2 (2014) 2883–2891. https://doi.org/10.1039/c3tb21751e.
[67] C.D. Walkey, J.B. Olsen, F. Song, R. Liu, H. Guo, D.W.H. Olsen, Y. Cohen, A. Emili, W.C.W. Chan, Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles, ACS Nano. 8 (2014) 2439–2455. https://doi.org/10.1021/nn406018q.
[68] M.A. Dobrovolskaia, A.K. Patri, J. Zheng, J.D. Clogston, N. Ayub, P. Aggarwal, B.W. Neun, J.B. Hall, S.E. McNeil, Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles, Nanomedicine Nanotechnology, Biol. Med. 5 (2009) 106–117. https://doi.org/10.1016/j.nano.2008.08.001.
[69] S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, H. Schild, M. Maskos, S.K. Knauer, R.H. Stauber, Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nat. Nanotechnol. 8 (2013) 772–781. https://doi.org/10.1038/nnano.2013.181.
[70] T. Tokatlian, B.J. Read, C.A. Jones, D.W. Kulp, S. Menis, J.Y.H. Chang, J.M. Steichen, S. Kumari, J.D. Allen, E.L. Dane, A. Liguori, M. Sangesland, D. Lingwood, M. Crispin, W.R. Schief, D.J. Irvine, Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers, Science (80-. ). 363 (2019) 649–654. https://doi.org/10.1126/science.aat9120.
[71] K.D. Moynihan, R.L. Holden, N.K. Mehta, C. Wang, M.R. Karver, J. Dinter, S. Liang, W. Abraham, M.B. Melo, A.Q. Zhang, N. Li, S. Le Gall, B.L. Pentelute, D.J. Irvine, Enhancement of peptide vaccine immunogenicity by increasing lymphatic drainage and boosting serum stability, Cancer Immunol. Res. 6 (2018) 1025–1038. https://doi.org/10.1158/2326-6066.CIR-17-0607.
[72] K. Niikura, T. Matsunaga, T. Suzuki, S. Kobayashi, H. Yamaguchi, Y. Orba, A. Kawaguchi, H. Hasegawa, K. Kajino, T. Ninomiya, K. Ijiro, H. Sawa, Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo, ACS Nano. 7 (2013) 3926–3938. https://doi.org/10.1021/nn3057005.
[73] G. Barhate, M. Gautam, S. Gairola, S. Jadhav, V. Pokharkar, Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: Stability and immunoefficiency studies, Int. J. Pharm. 441 (2013) 636–642. https://doi.org/10.1016/j.ijpharm.2012.10.033.
[74] G. Barhate, M. Gautam, S. Gairola, S. Jadhav, V. Pokharkar, Enhanced mucosal immune responses against tetanus toxoid using novel delivery system comprised of chitosan-functionalized gold nanoparticles and botanical adjuvant: Characterization, immunogenicity, and stability assessment, J. Pharm. Sci. 103 (2014) 3448–3456. https://doi.org/10.1002/jps.24161.
[75] A.G. Torres, A.E. Gregory, C.L. Hatcher, H. Vinet-Oliphant, L.A. Morici, R.W. Titball, C.J. Roy, Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine, Vaccine. 33 (2015) 686–692. https://doi.org/10.1016/j.vaccine.2014.11.057.
[76] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743.
[77] D. Wu, W. Fan, A. Kishen, J.L. Gutmann, B. Fan, Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm, J. Endod. 40 (2014) 285–290. https://doi.org/10.1016/j.joen.2013.08.022.
[78] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. C. 58 (2016) 36–43. https://doi.org/10.1016/j.msec.2015.08.018.
[79] D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, P. Mahesh Kumar, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, U. Suresh, Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?, Parasitol. Res. 114 (2015) 1519–1529. https://doi.org/10.1007/s00436-015-4336-z.
[80] S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy, RSC Adv. 4 (2014) 3974–3983. https://doi.org/10.1039/c3ra44507k.
[81] R.A. Ismail, G.M. Sulaiman, S.A. Abdulrahman, T.R. Marzoog, Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid, Mater. Sci. Eng. C. 53 (2015) 286–297. https://doi.org/10.1016/j.msec.2015.04.047.
[82] O.T. Bruns, T.S. Bischof, D.K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F.B. Jaworski, J.A. Carr, C.J. Rowlands, M.W.B. Wilson, O. Chen, H. Wei, G.W. Hwang, D.M. Montana, I. Coropceanu, O.B. Achorn, J. Kloepper, J. Heeren, P.T.C. So, D. Fukumura, K.F. Jensen, R.K. Jain, M.G. Bawendi, Next-generation in vivo optical imaging with short-wave infrared quantum dots, Nat. Biomed. Eng. 1 (2017). https://doi.org/10.1038/s41551-017-0056.
[83] X. Sun, X. Huang, J. Guo, W. Zhu, Y. Ding, G. Niu, A. Wang, D.O. Kiesewetter, Z.L. Wang, S. Sun, X. Chen, Self-illuminating 64Cu-Doped CdSe/ZnS nanocrystals for in vivo tumor imaging, J. Am. Chem. Soc. 136 (2014) 1706–1709. https://doi.org/10.1021/ja410438n.
[84] R.M. Clauson, M. Chen, L.M. Scheetz, B. Berg, B. Chertok, Size-Controlled Iron Oxide Nanoplatforms with Lipidoid-Stabilized Shells for Efficient Magnetic Resonance Imaging-Trackable Lymph Node Targeting and High-Capacity Biomolecule Display, ACS Appl. Mater. Interfaces. 10 (2018) 20281–20295. https://doi.org/10.1021/acsami.8b02830.
[85] S.W. Chou, Y.H. Shau, P.C. Wu, Y.S. Yang, D. Bin Shieh, C.C. Chen, In vitro and in vivo studies of fept nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 132 (2010) 13270–13278. https://doi.org/10.1021/ja1035013.
[86] Y. Lu, Y.J. Xu, G.B. Zhang, D. Ling, M.Q. Wang, Y. Zhou, Y.D. Wu, T. Wu, M.J. Hackett, B.H. Kim, H. Chang, J. Kim, X.T. Hu, L. Dong, N. Lee, F. Li, J.C. He, L. Zhang, H.Q. Wen, B. Yang, S.H. Choi, T. Hyeon, D.H. Zou, Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates article, Nat. Biomed. Eng. 1 (2017) 637–643. https://doi.org/10.1038/s41551-017-0116-7.
[87] K.D. Wegner, Z. Jin, S. Lindén, T.L. Jennings, N. Hildebrandt, Quantum-dot-based förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples, ACS Nano. 7 (2013) 7411–7419. https://doi.org/10.1021/nn403253y.
[88] K.L. Viola, J. Sbarboro, R. Sureka, M. De, M.A. Bicca, J. Wang, S. Vasavada, S. Satpathy, S. Wu, H. Joshi, P.T. Velasco, K. Macrenaris, E.A. Waters, C. Lu, J. Phan, P. Lacor, P. Prasad, V.P. Dravid, W.L. Klein, Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease, Nat. Nanotechnol. 10 (2015) 91–98. https://doi.org/10.1038/nnano.2014.254.
[89] J. Kim, M.J. Biondi, J.J. Feld, W.C.W. Chan, Clinical Validation of Quantum Dot Barcode Diagnostic Technology, ACS Nano. 10 (2016) 4742–4753. https://doi.org/10.1021/acsnano.6b01254.
[90] L. Fan, H. Qi, J. Teng, B. Su, H. Chen, C. Wang, Q. Xia, Identification of serum miRNAs by nano-quantum dots microarray as diagnostic biomarkers for early detection of non-small cell lung cancer, Tumor Biol. 37 (2016) 7777–7784. https://doi.org/10.1007/s13277-015-4608-3.
[91] S.K. Libutti, G.F. Paciotti, A.A. Byrnes, H.R. Alexander, W.E. Gannon, M. Walker, G.D. Seidel, N. Yuldasheva, L. Tamarkin, Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine, Clin. Cancer Res. 16 (2010) 6139–6149. https://doi.org/10.1158/1078-0432.CCR-10-0978.
[92] K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J. Neurooncol. 103 (2011) 317–324. https://doi.org/10.1007/s11060-010-0389-0.
[93] S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, J.S. Pajarinen, H. Nejadnik, S. Goodman, M. Moseley, L.M. Coussens, H.E. Daldrup-Link, Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues, Nat. Nanotechnol. 11 (2016) 986–994. https://doi.org/10.1038/nnano.2016.168.
[94] Y.S. Yang, R.P. Carney, F. Stellacci, D.J. Irvine, Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes, ACS Nano. 8 (2014) 8992–9002. https://doi.org/10.1021/nn502146r.
[95] L.C. Cheng, J.H. Huang, H.M. Chen, T.C. Lai, K.Y. Yang, R.S. Liu, M. Hsiao, C.H. Chen, L.J. Her, D.P. Tsai, Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent, J. Mater. Chem. 22 (2012) 2244–2253. https://doi.org/10.1039/c1jm13937a.
[96] L.M. Kranz, M. Diken, H. Haas, S. Kreiter, C. Loquai, K.C. Reuter, M. Meng, D. Fritz, F. Vascotto, H. Hefesha, C. Grunwitz, M. Vormehr, Y. Hüsemann, A. Selmi, A.N. Kuhn, J. Buck, E. Derhovanessian, R. Rae, S. Attig, J. Diekmann, R.A. Jabulowsky, S. Heesch, J. Hassel, P. Langguth, S. Grabbe, C. Huber, Ö. Türeci, U. Sahin, Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy, Nature. 534 (2016) 396–401. https://doi.org/10.1038/nature18300.
[97] M.H. Schwenk, Ferumoxytol: A new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease, Pharmacotherapy. 30 (2010) 70–79. https://doi.org/10.1592/phco.30.1.70.
[98] M. Lu, M.H. Cohen, D. Rieves, R. Pazdur, FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease, Am. J. Hematol. 85 (2010) 315–319. https://doi.org/10.1002/ajh.21656.
[99] Y. Zhang, Y. Lu, F. Wang, S. An, Y. Zhang, T. Sun, J. Zhu, C. Jiang, ATP/pH Dual Responsive Nanoparticle with d-[des-Arg10]Kallidin Mediated Efficient In Vivo Targeting Drug Delivery, Small. 13 (2017). https://doi.org/10.1002/smll.201602494.
[100] H.S. El-Sawy, A.M. Al-Abd, T.A. Ahmed, K.M. El-Say, V.P. Torchilin, Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives, ACS Nano. 12 (2018) 10636–10664. https://doi.org/10.1021/acsnano.8b06104.
[101] S. Kashyap, N. Singh, B. Surnar, M. Jayakannan, Enzyme and thermal dual responsive amphiphilic polymer core-shell nanoparticle for doxorubicin delivery to cancer cells, Biomacromolecules. 17 (2016) 384–398. https://doi.org/10.1021/acs.biomac.5b01545.
[102] M. Grzelczak, L.M. Liz-Marzán, R. Klajn, Stimuli-responsive self-assembly of nanoparticles, Chem. Soc. Rev. 48 (2019) 1342–1361. https://doi.org/10.1039/c8cs00787j.
[103] G. Zhu, F. Zhang, Q. Ni, G. Niu, X. Chen, Efficient Nanovaccine Delivery in Cancer Immunotherapy, ACS Nano. 11 (2017) 2387–2392. https://doi.org/10.1021/acsnano.7b00978.
[104] W. Jiang, C.A. Von Roemeling, Y. Chen, Y. Qie, X. Liu, J. Chen, B.Y.S. Kim, Designing nanomedicine for immuno-oncology, Nat. Biomed. Eng. 1 (2017). https://doi.org/10.1038/s41551-017-0029.
[105] R.S. Riley, C.H. June, R. Langer, M.J. Mitchell, Delivery technologies for cancer immunotherapy, Nat. Rev. Drug Discov. 18 (2019) 175–196. https://doi.org/10.1038/s41573-018-0006-z.
[106] R. Zhang, M.M. Billingsley, M.J. Mitchell, Biomaterials for vaccine-based cancer immunotherapy, J. Control. Release. 292 (2018) 256–276. https://doi.org/10.1016/j.jconrel.2018.10.008.