Molecular Interactions between Nanoparticles and Biomolecules
Rashmi Niranjan, Richa Priyadarshini
Nanoparticles (NPs) and nanomaterials have applications in all sectors of present-day life like industrial, food-technology, medical, cosmetics, pharmaceutical, biomedical, etc. NPs interact with various biomolecules, including nucleic acids, proteins, lipids, and carbohydrates. NPs exhibit beneficial and adverse interactions with biomolecules depending on their physicochemical properties. NPs’ mode of synthesis, duration of exposure, concentration, and charge influence their interactions with various organic molecules. This work discusses NPs’ interaction with biomolecules and their role in various biological applications.
Keywords
Nanoparticles, Proteins, Lipids, Carbohydrates, Nucleic Acids, Biological Applications
Published online 12/15/2024, 37 pages
Citation: Rashmi Niranjan, Richa Priyadarshini, Molecular Interactions between Nanoparticles and Biomolecules, Materials Research Foundations, Vol. 171, pp 154-190, 2024
DOI: https://doi.org/10.21741/9781644903339-6
Part of the book on Advances in Healthcare and Nanoparticle Toxicology
References
[1] R. Saini, S. Saini, R.S. Sugandha, Pharmacogenetics: The future medicine, J. Adv. Pharm. Technol. Res. 1 (2010) 423–424. https://doi.org/10.4103/0110-5558.76443.
[2] A.W. Hübler, O. Osuagwu, Digital quantum batteries: Energy and information storage in nanovacuum tube arrays, Complexity. 15 (2010) 48–55. https://doi.org/10.1002/cplx.20306.
[3] A. Verma, F. Stellacci, Effect of surface properties on nanoparticle-cell interactions, Small. 6 (2010) 12–21. https://doi.org/10.1002/smll.200901158.
[4] A.P. Ingle, N. Duran, M. Rai, Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review, Appl. Microbiol. Biotechnol. 98 (2014) 1001–1009. https://doi.org/10.1007/s00253-013-5422-8.
[5] A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng. 14 (2012) 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124.
[6] A. Rahi, N. Sattarahmady, H. Heli, Toxicity of nanomaterials-physicochemical effects, Austin J Nanomedicine Nanotechnol. 2 (2014).
[7] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
[8] H. Heinz, C. Pramanik, O. Heinz, Y. Ding, R.K. Mishra, D. Marchon, R.J. Flatt, I. Estrela-Lopis, J. Llop, S. Moya, R.F. Ziolo, Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications, Surf. Sci. Rep. 72 (2017) 1–58. https://doi.org/10.1016/j.surfrep.2017.02.001.
[9] Y.K. Lahir, Impacts of Metal and Metal Oxide Nanoparticles on Reproductive Tissues and Spermatogenesis in Mammals., J. Exp. Zool. India. 21 (2018) 593–608.
[10] G. Karp, J. Iwasa, W. Marshall, Karp’s Cell and Molecular Biology, John Wiley \& Sons, 2020.
[11] F. Chellat, Y. Merhi, A. Moreau, L. Yahia, Therapeutic potential of nanoparticulate systems for macrophage targeting, Biomaterials. 26 (2005) 7260–7275. https://doi.org/10.1016/j.biomaterials.2005.05.044.
[12] M. Lundqvist, I. Sethson, B.H. Jonsson, Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles’ curvature and the protein stability, Langmuir. 20 (2004) 10639–10647. https://doi.org/10.1021/la0484725.
[13] I. Lynch, K.A.A. Dawson, Protein-nanoparticle interactions, Nano Today. 3 (2008) 40–47. https://doi.org/10.1016/S1748-0132(08)70014-8.
[14] T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson, K.A. Dawson, S. Linse, Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 2050–2055. https://doi.org/10.1073/pnas.0608582104.
[15] M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 14265–14270. https://doi.org/10.1073/pnas.0805135105.
[16] P.P. Karmali, D. Simberg, Interactions of nanoparticles with plasma proteins: Implication on clearance and toxicity of drug delivery systems, Expert Opin. Drug Deliv. 8 (2011) 343–357. https://doi.org/10.1517/17425247.2011.554818.
[17] R. García-álvarez, M. Vallet-Regí, Hard and soft protein corona of nanomaterials: Analysis and relevance, Nanomaterials. 11 (2021) 888. https://doi.org/10.3390/nano11040888.
[18] L. Vroman, A.L. Adams, G.C. Fischer, P.C. Munoz, Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces, Blood. 55 (1980) 156–159. https://doi.org/10.1182/blood.v55.1.156.bloodjournal551156.
[19] M. Lundqvist, J. Stigler, T. Cedervall, T. Berggård, M.B. Flanagan, I. Lynch, G. Elia, K. Dawson, The evolution of the protein corona around nanoparticles: A test study, ACS Nano. 5 (2011) 7503–7509. https://doi.org/10.1021/nn202458g.
[20] T.M. Göppert, R.H. Müller, Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: Comparison of plasma protein adsorption patterns, J. Drug Target. 13 (2005) 179–187. https://doi.org/10.1080/10611860500071292.
[21] P. Aggarwal, J.B. Hall, C.B. McLeland, M.A. Dobrovolskaia, S.E. McNeil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Deliv. Rev. 61 (2009) 428–437. https://doi.org/10.1016/j.addr.2009.03.009.
[22] V. Hirsch, C. Kinnear, M. Moniatte, B. Rothen-Rutishauser, M.J.D. Clift, A. Fink, Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro, Nanoscale. 5 (2013) 3723–3732. https://doi.org/10.1039/c2nr33134a.
[23] M.P. Monopoli, D. Walczyk, A. Campbell, G. Elia, I. Lynch, F. Baldelli Bombelli, K.A. Dawson, Physical-Chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles, J. Am. Chem. Soc. 133 (2011) 2525–2534. https://doi.org/10.1021/ja107583h.
[24] S. Tenzer, D. Docter, S. Rosfa, A. Wlodarski, J. Kuharev, A. Rekik, S.K. Knauer, C. Bantz, T. Nawroth, C. Bier, J. Sirirattanapan, W. Mann, L. Treuel, R. Zellner, M. Maskos, H. Schild, R.H. Stauber, Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis, ACS Nano. 5 (2011) 7155–7167. https://doi.org/10.1021/nn201950e.
[25] M.A. Dobrovolskaia, A.K. Patri, J. Zheng, J.D. Clogston, N. Ayub, P. Aggarwal, B.W. Neun, J.B. Hall, S.E. McNeil, Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles, Nanomedicine Nanotechnology, Biol. Med. 5 (2009) 106–117. https://doi.org/10.1016/j.nano.2008.08.001.
[26] V.H. Nguyen, B.J. Lee, Protein corona: A new approach for nanomedicine design, Int. J. Nanomedicine. 12 (2017) 3137–3151. https://doi.org/10.2147/IJN.S129300.
[27] A. Gessner, A. Lieske, B.R. Paulke, R.H. Müller, Influence of surface charge density on protein adsorption on polymeric nanoparticles: Analysis by two-dimensional electrophoresis, Eur. J. Pharm. Biopharm. 54 (2002) 165–170. https://doi.org/10.1016/S0939-6411(02)00081-4.
[28] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710. https://doi.org/10.3390/molecules28020710.
[29] S. Lindman, I. Lynch, E. Thulin, H. Nilsson, K.A. Dawson, S. Linse, Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity, Nano Lett. 7 (2007) 914–920. https://doi.org/10.1021/nl062743+.
[30] S.M. Moghimi, H.M. Patel, Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes, FEBS Lett. 233 (1988) 143–147. https://doi.org/10.1016/0014-5793(88)81372-3.
[31] Z.J. Deng, G. Mortimer, T. Schiller, A. Musumeci, D. Martin, R.F. Minchin, Differential plasma protein binding to metal oxide nanoparticles, Nanotechnology. 20 (2009) 455101. https://doi.org/10.1088/0957-4484/20/45/455101.
[32] M. Mahmoudi, S.E. Lohse, C.J. Murphy, A. Fathizadeh, A. Montazeri, K.S. Suslick, Variation of protein corona composition of gold nanoparticles following plasmonic heating, Nano Lett. 14 (2014) 6–12. https://doi.org/10.1021/nl403419e.
[33] J. O’Brien, K.J. Shea, Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents, Acc. Chem. Res. 49 (2016) 1200–1210. https://doi.org/10.1021/acs.accounts.6b00125.
[34] M. Kosmulski, pH-dependent surface charging and points of zero charge. IV. Update and new approach, J. Colloid Interface Sci. 337 (2009) 439–448. https://doi.org/10.1016/j.jcis.2009.04.072.
[35] S. Khan, A. Mukherjee, N. Chandrasekaran, Silver nanoparticles tolerant bacteria from sewage environment, J. Environ. Sci. 23 (2011) 346–352. https://doi.org/10.1016/S1001-0742(10)60412-3.
[36] S.M. Moghimi, I.S. Muir, L. Illum, S.S. Davis, V. Kolb-Bachofen, Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum, BBA – Mol. Cell Res. 1179 (1993) 157–165. https://doi.org/10.1016/0167-4889(93)90137-E.
[37] A.B. Engin, M. Neagu, K. Golokhvast, A. Tsatsakis, Nanoparticles and endothelium: An update on the toxicological interactions, Farmacia. 63 (2015) 792–804.
[38] C.C. Fleischer, C.K. Payne, Nanoparticle-cell interactions: Molecular structure of the protein corona and cellular outcomes, Acc. Chem. Res. 47 (2014) 2651–2659. https://doi.org/10.1021/ar500190q.
[39] M.M. Yallapu, N. Chauhan, S.F. Othman, V. Khalilzad-Sharghi, M.C. Ebeling, S. Khan, M. Jaggi, S.C. Chauhan, Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles, Biomaterials. 46 (2015) 1–12. https://doi.org/10.1016/j.biomaterials.2014.12.045.
[40] G. Maiorano, S. Sabella, B. Sorce, V. Brunetti, M.A. Malvindi, R. Cingolani, P.P. Pompa, Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response, ACS Nano. 4 (2010) 7481–7491. https://doi.org/10.1021/nn101557e.
[41] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095.
[42] I.Y. Podolski, Z.A. Podlubnaya, E.A. Kosenko, E.A. Mugantseva, E.G. Makarova, L.G. Marsagishvili, M.D. Shpagina, Y.G. Kaminsky, G. V. Andrievsky, V.K. Klochkov, Effects of hydrated forms of C 60 fullerene on amyloid β-peptide fibrillization in vitro andperformance of the cognitive task, J. Nanosci. Nanotechnol. 7 (2007) 1479–1485. https://doi.org/10.1166/jnn.2007.330.
[43] S. Laurent, M.R. Ejtehadi, M. Rezaei, P.G. Kehoe, M. Mahmoudi, Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer’s disease, RSC Adv. 2 (2012) 5008–5033. https://doi.org/10.1039/c2ra01374f.
[44] S. Mirsadeghi, R. Dinarvand, M.H. Ghahremani, M.R. Hormozi-Nezhad, Z. Mahmoudi, M.J. Hajipour, F. Atyabi, M. Ghavami, M. Mahmoudi, Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process, Nanoscale. 7 (2015) 5004–5013. https://doi.org/10.1039/c4nr06009a.
[45] E. Mahon, A. Salvati, F. Baldelli Bombelli, I. Lynch, K.A. Dawson, Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery,” J. Control. Release. 161 (2012) 164–174. https://doi.org/10.1016/j.jconrel.2012.04.009.
[46] M. Mahmoudi, I. Lynch, M.R. Ejtehadi, M.P. Monopoli, F.B. Bombelli, S. Laurent, Protein- nanoparticle interactions: opportunities and challenges, Chem. Rev. 111 (2011) 5610–5637.
[47] S. Zanganeh, R. Spitler, M. Erfanzadeh, A.M. Alkilany, M. Mahmoudi, Protein corona: opportunities and challenges, Int. J. Biochem. \& Cell Biol. 75 (2016) 143–147.
[48] A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli, D.R. Hristov, P.M. Kelly, C. Åberg, E. Mahon, K.A. Dawson, Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface, Nat. Nanotechnol. 8 (2013) 137–143. https://doi.org/10.1038/nnano.2012.237.
[49] V. Mirshafiee, M. Mahmoudi, K. Lou, J. Cheng, M.L. Kraft, Protein corona significantly reduces active targeting yield, Chem. Commun. 49 (2013) 2557–2559. https://doi.org/10.1039/c3cc37307j.
[50] K.P. García, K. Zarschler, L. Barbaro, J.A. Barreto, W. O’Malley, L. Spiccia, H. Stephan, B. Graham, Zwitterionic-coated “stealth” nanoparticles for biomedical applications: Recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system, Small. 10 (2014) 2516–2529. https://doi.org/10.1002/smll.201303540.
[51] G. Caracciolo, D. Pozzi, A.L. Capriotti, C. Cavaliere, F. Cardarelli, A. Bifone, G. Bardi, F. Salomone, A. Laganà, Cancer cell targeting of lipid gene vectors by protein corona, in: Tech. Proc. 2012 NSTI Nanotechnol. Conf. Expo, NSTI-Nanotech 2012, 2012: pp. 354–357.
[52] M.A. Foote, Using nanotechnology to improve the characteristics of antineoplastic drugs: Improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel, Biotechnol. Annu. Rev. 13 (2007) 345–357. https://doi.org/10.1016/S1387-2656(07)13012-X.
[53] A. Cifuentes-Rius, H. De Puig, J.C.Y. Kah, S. Borros, K. Hamad-Schifferli, Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release, ACS Nano. 7 (2013) 10066–10074. https://doi.org/10.1021/nn404166q.
[54] S. Behzadi, V. Serpooshan, R. Sakhtianchi, B. Müller, K. Landfester, D. Crespy, M. Mahmoudi, Protein corona change the drug release profile of nanocarriers: The “overlooked” factor at the nanobio interface, Colloids Surfaces B Biointerfaces. 123 (2014) 143–149. https://doi.org/10.1016/j.colsurfb.2014.09.009.
[55] S.A. Alex, N. Chandrasekaran, A. Mukherjee, Impact of gold nanorod functionalization on biocorona formation and their biological implication, J. Mol. Liq. 248 (2017) 703–712. https://doi.org/10.1016/j.molliq.2017.10.119.
[56] W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide, ACS Nano. 5 (2011) 3693–3700. https://doi.org/10.1021/nn200021j.
[57] F.E. Guaouguaou, N.E. Es-Safi, Cotula cinerea as a source of natural products with potential biological activities, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 465–500. https://doi.org/10.1007/978-3-031-35205-8_17.
[58] A. Brown, T. Brown, Curtailing their negativity, Nat. Chem. 11 (2019) 501–503. https://doi.org/10.1038/s41557-019-0274-1.
[59] C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-based nanomaterials: Multifunctional materials for biomedical engineering, ACS Nano. 7 (2013) 2891–2897. https://doi.org/10.1021/nn401196a.
[60] M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, N.G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater. 2 (2003) 338–342. https://doi.org/10.1038/nmat877.
[61] L. Feng, S. Zhang, Z. Liu, Graphene based gene transfection, Nanoscale. 3 (2011) 1252–1257. https://doi.org/10.1039/c0nr00680g.
[62] G. V. Theodosopoulos, P. Bilalis, G. Sakellariou, Polymer Functionalized Graphene Oxide: A Versatile Nanoplatform for Drug/Gene Delivery, Curr. Org. Chem. 19 (2015) 1828–1837. https://doi.org/10.2174/1385272819666150526005714.
[63] M.E. Hughes, E. Brandin, J.A. Golovchenko, Optical absorption of DNA-carbon nanotube structures, Nano Lett. 7 (2007) 1191–1194. https://doi.org/10.1021/nl062906u.
[64] S. Alidori, K. Asqiriba, P. Londero, M. Bergkvist, M. Leona, D.A. Scheinberg, M.R. McDevitt, Deploying RNA and DNA with functionalized carbon nanotubes, J. Phys. Chem. C. 117 (2013) 5982–5992. https://doi.org/10.1021/jp312416d.
[65] X. Li, Y. Peng, X. Qu, Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution, Nucleic Acids Res. 34 (2006) 3670–3676. https://doi.org/10.1093/nar/gkl513.
[66] W. Sun, J. Zhao, Z. Du, Density-functional-theory-based study of interaction of DNA/RNA nucleobases with hydroxyl- and carboxyl-functionalized armchair (6,6)CNT, Comput. Theor. Chem. 1102 (2017) 60–68. https://doi.org/10.1016/j.comptc.2017.01.001.
[67] B. Nandy, M. Santosh, P.K. Maiti, Interaction of nucleic acids with carbon nanotubes and dendrimers, J. Biosci. 37 (2012) 457–474. https://doi.org/10.1007/s12038-012-9220-8.
[68] Y. Wu, J.A. Phillips, H. Liu, R. Yang, W. Tan, Carbon nanotubes protect DNA strands during cellular delivery, ACS Nano. 2 (2008) 2023–2028. https://doi.org/10.1021/nn800325a.
[69] H.H. Gürel, B. Salmankurt, Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: First-principles van der Waals study, Mater. Res. Express. 4 (2017) 65401. https://doi.org/10.1088/2053-1591/aa6e67.
[70] L. Tang, H. Chang, Y. Liu, J. Li, Duplex DNA/graphene oxide biointerface: From fundamental understanding to specific enzymatic effects, Adv. Funct. Mater. 22 (2012) 3083–3088. https://doi.org/10.1002/adfm.201102892.
[71] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, A craphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis, Adv. Funct. Mater. 20 (2010) 453–459. https://doi.org/10.1002/adfm.200901639.
[72] M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, Capture of double-stranded DNA in stacked-graphene: Giving new insight into the graphene/DNA interaction, Chem. Commun. 48 (2012) 564–566. https://doi.org/10.1039/c1cc16429e.
[73] B. Zheng, C. Wang, C. Wu, X. Zhou, M. Lin, X. Wu, X. Xin, X. Chen, L. Xu, H. Liu, J. Zheng, J. Zhang, S. Guo, Nuclease activity and cytotoxicity enhancement of the DNA intercalators via graphene oxide, J. Phys. Chem. C. 116 (2012) 15839–15846. https://doi.org/10.1021/jp3050324.
[74] A.M. Giuliodori, A. Brandi, S. Kotla, F. Perrozzi, R. Gunnella, L. Ottaviano, R. Spurio, A. Fabbretti, Development of a graphene oxide-based assay for the sequence-specific detection of double-stranded DNA molecules, PLoS One. 12 (2017) e0183952. https://doi.org/10.1371/journal.pone.0183952.
[75] X. Zhao, A. Striolo, P.T. Cummings, C60 binds to and deforms nucleotides, Biophys. J. 89 (2005) 3856–3862. https://doi.org/10.1529/biophysj.105.064410.
[76] S.K. Vittala, S.K. Saraswathi, J. Joseph, Self-Assembled Functional Fullerenes and DNA Hybrid Nanomaterials for Various Applications, Templated DNA Nanotechnol. (2019) 271–300. https://doi.org/10.1201/9780429428661-9.
[77] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V.G.V. da Silva, G.V.G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21. https://doi.org/10.3390/separations10010021.
[78] T.H. Wang, Discerning single molecule interactions of DNA and quantum dots, Biotechnol. J. 8 (2013) 15–16. https://doi.org/10.1002/biot.201200309.
[79] I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 4 (2005) 435–446. https://doi.org/10.1038/nmat1390.
[80] Y. Zhang, T.H. Wang, Quantum dot enabled molecular sensing and diagnostics, Theranostics. 2 (2012) 631–654. https://doi.org/10.7150/thno.4308.
[81] K. Li, W. Zhang, Y. Chen, Quantum dot binding to DNA: Single-molecule imaging with atomic force microscopy, Biotechnol. J. 8 (2013) 110–116. https://doi.org/10.1002/biot.201200155.
[82] W. Chen, N.J. Turro, D.A. Tomalia, Using ethidium bromide to probe the interactions between DNA and dendrimers, Langmuir. 16 (2000) 15–19. https://doi.org/10.1021/la981429v.
[83] H.H. Wong, N.R. Lemoine, Y. Wang, Oncolytic viruses for cancer therapy: Overcoming the obstacles, Viruses. 2 (2010) 78–106. https://doi.org/10.3390/v2010078.
[84] C.E. Thomas, A. Ehrhardt, M.A. Kay, Progress and problems with the use of viral vectors for gene therapy, Nat. Rev. Genet. 4 (2003) 346–358. https://doi.org/10.1038/nrg1066.
[85] D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chemie – Int. Ed. 43 (2004) 5242–5246. https://doi.org/10.1002/anie.200460437.
[86] L. Gao, L. Nie, T. Wang, Y. Qin, Z. Guo, D. Yang, X. Yan, Carbon nanotube delivery of the GFP gene into mammalian cells, ChemBioChem. 7 (2006) 239–242. https://doi.org/10.1002/cbic.200500227.
[87] Y. Liu, D.C. Wu, W. De Zhang, X. Jiang, C. Bin He, T.S. Chung, S.H. Goh, K.W. Leong, Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA, Angew. Chemie – Int. Ed. 44 (2005) 4782–4785. https://doi.org/10.1002/anie.200500042.
[88] A. Nunes, N. Amsharov, C. Guo, J. Van Den Bossche, P. Santhosh, T.K. Karachalios, S.F. Nitodas, M. Burghard, K. Kostarelos, K.T. Al-Jamal, Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery, Small. 6 (2010) 2281–2291. https://doi.org/10.1002/smll.201000864.
[89] M.P. Xiong, M. Laird Forrest, G. Ton, A. Zhao, N.M. Davies, G.S. Kwon, Poly(aspartate-g-PEI800), a polyethylenimine analogue of low toxicity and high transfection efficiency for gene delivery, Biomaterials. 28 (2007) 4889–4900. https://doi.org/10.1016/j.biomaterials.2007.07.043.
[90] K.T. Al-Jamal, F.M. Toma, A. Yilmazer, H. Ali-Boucetta, A. Nunes, M.A. Herrero, B. Tian, A. Eddaoui, W. Al-Jamal, A. Bianco, M. Prato, K. Kostarelos, Enhanced cellular internalization and gene silencing with a series of cationic dendron-multiwalled carbon nanotube:siRNA complexes, FASEB J. 24 (2010) 4354–4365. https://doi.org/10.1096/fj.09-141036.
[91] M.A. Herrero, F.M. Toma, K.T. Al-Jamal, K. Kostarelos, A. Bianco, T. Da Ros, F. Bano, L. Casalis, G. Scoles, M. Prato, Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery, J. Am. Chem. Soc. 131 (2009) 9843–9848. https://doi.org/10.1021/ja903316z.
[92] N.W.S. Kam, Z. Liu, H. Dai, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc. 127 (2005) 12492–12493. https://doi.org/10.1021/ja053962k.
[93] L. Wang, J. Shi, H. Zhang, H. Li, Y. Gao, Z. Wang, H. Wang, L. Li, C. Zhang, C. Chen, Z. Zhang, Y. Zhang, Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes, Biomaterials. 34 (2013) 262–274. https://doi.org/10.1016/j.biomaterials.2012.09.037.
[94] R. Imani, W. Shao, S. Taherkhani, S.H. Emami, S. Prakash, S. Faghihi, Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells, Colloids Surfaces B Biointerfaces. 147 (2016) 315–325. https://doi.org/10.1016/j.colsurfb.2016.08.015.
[95] N. Dinauer, S. Balthasar, C. Weber, J. Kreuter, K. Langer, H. Von Briesen, Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes, Biomaterials. 26 (2005) 5898–5906. https://doi.org/10.1016/j.biomaterials.2005.02.038.
[96] Y. Guo, H. Xu, Y. Li, F. Wu, Y. Li, Y. Bao, X. Yan, Z. Huang, P. Xu, Hyaluronic acid and Arg-Gly-Asp peptide modified Graphene oxide with dual receptor-targeting function for cancer therapy, J. Biomater. Appl. 32 (2017) 54–65. https://doi.org/10.1177/0885328217712110.
[97] L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide, Small. 7 (2011) 460–464. https://doi.org/10.1002/smll.201001522.
[98] L. Le Li, P. Wu, K. Hwang, Y. Lu, An exceptionally simple strategy for DNA-functionalized Up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging, J. Am. Chem. Soc. 135 (2013) 2411–2414. https://doi.org/10.1021/ja310432u.
[99] Z. Wang, J. Zhang, J.M. Ekman, P.J.A. Kenis, Y. Lu, DNA-mediated control of metal nanoparticle shape: One-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers, Nano Lett. 10 (2010) 1886–1891. https://doi.org/10.1021/nl100675p.
[100] A.L.C. de Souza, A. do Rego Pires, C.A.F. Moraes, C.H.C. de Matos, K.I.P. dos Santos, R.C. e Silva, S.P.C. Acuña, S. dos Santos Araújo, Chromatographic methods for separation and identification of bioactive compounds, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 153–176. https://doi.org/10.1007/978-3-031-35205-8_6.
[101] A. Banerjee, T. Pons, N. Lequeux, B. Dubertret, Quantum dots–DNA bioconjugates: synthesis to applications, Interface Focus. 6 (2016) 20160064.
[102] H.L. Jung, Z. Wang, J. Liu, Y. Lu, Highly sensitive and selective colorimetric sensors for uranyl (UO 22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems, J. Am. Chem. Soc. 130 (2008) 14217–14226. https://doi.org/10.1021/ja803607z.
[103] M.V. Yigit, D. Mazumdar, H.K. Kim, J.H. Lee, B. Odintsov, Y. Lu, Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles, ChemBioChem. 8 (2007) 1675–1678. https://doi.org/10.1002/cbic.200700323.
[104] J. Liu, D. Mazumdar, Y. Lu, A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures, Angew. Chemie – Int. Ed. 45 (2006) 7955–7959. https://doi.org/10.1002/anie.200603106.
[105] M. Rossetti, S. Ranallo, A. Idili, G. Palleschi, A. Porchetta, F. Ricci, Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs, Chem. Sci. 8 (2017) 914–920. https://doi.org/10.1039/c6sc03404g.
[106] L. Le Li, M. Xie, J. Wang, X. Li, C. Wang, Q. Yuan, D.W. Pang, Y. Lu, W. Tan, A vitamin-responsive mesoporous nanocarrier with DNA aptamer-mediated cell targeting, Chem. Commun. 49 (2013) 5823–5825. https://doi.org/10.1039/c3cc41072b.
[107] J. Willem de Vries, S. Schnichels, J. Hurst, L. Strudel, A. Gruszka, M. Kwak, K.U. Bartz-Schmidt, M.S. Spitzer, A. Herrmann, DNA nanoparticles for ophthalmic drug delivery, Biomaterials. 157 (2018) 98–106. https://doi.org/10.1016/j.biomaterials.2017.11.046.
[108] L. Abarca-Cabrera, P. Fraga-García, S. Berensmeier, Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles, Biomater. Res. 25 (2021) 1–18. https://doi.org/10.1186/s40824-021-00212-y.
[109] I. Budin, N.K. Devaraj, Membrane assembly driven by a biomimetic coupling reaction, J. Am. Chem. Soc. 134 (2012) 751–753. https://doi.org/10.1021/ja2076873.
[110] P. Bohley, Molecular Cell Biology, Macmillan, 1987. https://doi.org/10.1016/0307-4412(87)90114-2.
[111] C. Contini, M. Schneemilch, S. Gaisford, N. Quirke, Nanoparticle–membrane interactions, J. Exp. Nanosci. 13 (2018) 62–81.
[112] C. Auría-Soro, T. Nesma, P. Juanes-Velasco, A. Landeira-Viñuela, H. Fidalgo-Gomez, V. Acebes-Fernandez, R. Gongora, M.J.A. Parra, R. Manzano-Roman, M. Fuentes, Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine, Nanomaterials. 9 (2019) 1365. https://doi.org/10.3390/nano9101365.
[113] Y.H. Lahir, P. Avti, Nanomaterials and Their Interactive Behavior with Biomolecules, Cells and Tissues, Bentham Science Publishers, 2020. https://doi.org/10.2174/97898114617811200101.
[114] M.F.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F.H. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743.
[115] M.R. Rasch, E. Rossinyol, J.L. Hueso, B.W. Goodfellow, J. Arbiol, B.A. Korgel, Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: Membrane-loaded and janus vesicles, Nano Lett. 10 (2010) 3733–3739. https://doi.org/10.1021/nl102387n.
[116] G. Von White, Y. Chen, J. Roder-Hanna, G.D. Bothun, C.L. Kitchens, Structural and thermal analysis of lipid vesicles encapsulating hydrophobic gold nanoparticles, ACS Nano. 6 (2012) 4678–4685. https://doi.org/10.1021/nn2042016.
[117] S. Tatur, M. MacCarini, R. Barker, A. Nelson, G. Fragneto, Effect of functionalized gold nanoparticles on floating lipid bilayers, Langmuir. 29 (2013) 6606–6614. https://doi.org/10.1021/la401074y.
[118] J. Park, W. Lu, Interaction of nanoparticles with lipid layers, Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys. 80 (2009) 941–944. https://doi.org/10.1103/PhysRevE.80.021607.
[119] G.D. Bothun, Y. Chen, A. Bose, Controlled release from membrane-decorated magnetoliposomes via electromagnetic heating, 20th Annu. Meet. North Am. Membr. Soc. 11th Int. Conf. Inorg. Membr. 2010, NAMS/ICIM 2010. 4 (2010) 167–168.
[120] B. Collin, E. Oostveen, O. V. Tsyusko, J.M. Unrine, Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans, Environ. Sci. Technol. 48 (2014) 1280–1289. https://doi.org/10.1021/es404503c.
[121] H. Li, H. Sun, W. Qi, M. Xu, L. Wu, Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates, Angew. Chemie – Int. Ed. 46 (2007) 1300–1303. https://doi.org/10.1002/anie.200603934.
[122] M. Assis, M.O. Gonçalves, C.C. de Foggi, M. Burck, S. dos Passos Ramos, L.O. Libero, A.R.C. Braga, E. Longo, C.P. de Sousa, Applications of (nano)encapsulated natural products by physical and chemical methods, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 323–374. https://doi.org/10.1007/978-3-031-35205-8_11.
[123] H. Nabika, Y. Inomata, E. Itoh, K. Unoura, Activity of Keggin and Dawson polyoxometalates toward model cell membrane, RSC Adv. 3 (2013) 21271–21274. https://doi.org/10.1039/c3ra41522h.
[124] B. Jing, M. Hutin, E. Connor, L. Cronin, Y. Zhu, Polyoxometalate macroion induced phase and morphology instability of lipid membrane, Chem. Sci. 4 (2013) 3818–3826. https://doi.org/10.1039/c3sc51404h.
[125] B. Wang, L. Zhang, C.B. Sung, S. Granick, Nanoparticle-induced surface reconstruction of phospholipid membranes, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 18171–18175. https://doi.org/10.1073/pnas.0807296105.
[126] S. Hong, P.R. Leroueil, E.K. Janus, J.L. Peters, M.M. Kober, M.T. Islam, B.G. Orr, J.R. Baker, M.M. Banaszak Holl, Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability, Bioconjug. Chem. 17 (2006) 728–734. https://doi.org/10.1021/bc060077y.
[127] P.R. Leroueil, S.A. Berry, K. Duthie, G. Han, V.M. Rotello, D.Q. McNerny, J.R. Baker, B.G. Orr, M.M.B. Holl, Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers, Nano Lett. 8 (2008) 420–424. https://doi.org/10.1021/nl0722929.
[128] J. Lin, H. Zhang, Z. Chen, Y. Zheng, Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship, ACS Nano. 4 (2010) 5421–5429. https://doi.org/10.1021/nn1010792.
[129] R.R. Arvizo, O.R. Miranda, M.A. Thompson, C.M. Pabelick, R. Bhattacharya, J. David Robertson, V.M. Rotello, Y.S. Prakash, P. Mukherjee, Effect of nanoparticle surface charge at the plasma membrane and beyond, Nano Lett. 10 (2010) 2543–2548. https://doi.org/10.1021/nl101140t.
[130] V. V. Ginzburg, S. Balijepalli, Modeling the thermodynamics of the interaction of nanoparticles with cell membranes, Nano Lett. 7 (2007) 3716–3722. https://doi.org/10.1021/nl072053l.
[131] G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P.Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, H. Vogel, Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells, Angew. Chemie – Int. Ed. 45 (2006) 5478–5483. https://doi.org/10.1002/anie.200600545.
[132] P.J. Sintic, E. Wenbo, Z. Ou, J. Shao, J.A. McDonald, Z.L. Cai, K.M. Kadish, M.J. Crossley, J.R. Reimers, Control of the site and potential of reduction and oxidation processes in π-expanded quinoxalinoporphyrins (Physical Chemistry Chemical Physics (2008) 10, (268-280) DOI: 10.1039/b711320j), Phys. Chem. Chem. Phys. 10 (2008) 7328. https://doi.org/10.1039/b820726g.
[133] G.D. Bothun, Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties, J. Nanobiotechnology. 6 (2008) 1–10. https://doi.org/10.1186/1477-3155-6-13.
[134] M. Breidenich, R.R. Netz, R. Lipowsky, The influence of non-anchored polymers on the curvature of vesicles, Mol. Phys. 103 (2005) 3169–3183. https://doi.org/10.1080/00268970500270484.
[135] M.R.R. De Planque, S. Aghdaei, T. Roose, H. Morgan, Electrophysiological characterization of membrane disruption by nanoparticles, ACS Nano. 5 (2011) 3599–3606. https://doi.org/10.1021/nn103320j.
[136] P.R. Leroueil, S. Hong, A. Mecke, J.R. Baker, B.G. Orr, M.M.B. Holl, Nanoparticle interaction with biological membranes: Does nanotechnology present a janus face?, Acc. Chem. Res. 40 (2007) 335–342. https://doi.org/10.1021/ar600012y.
[137] J. Chen, J.A. Hessler, K. Putchakayala, B.K. Panama, D.P. Khan, S. Hong, D.G. Mullen, S.C. DiMaggio, A. Som, G.N. Tew, A.N. Lopatin, J.R. Baker, M.M.B. Holl, B.G. Orr, Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes, J. Phys. Chem. B. 113 (2009) 11179–11185. https://doi.org/10.1021/jp9033936.
[138] V. A, C. RD, E. JD, S. P, H. GW, A. M, D. AG, K. T, P. NH, P. JH, S. RL, S. PH, Essentials of Glycobiology [Internet], Cold Spring Harb. (2015) 823. https://pubmed.ncbi.nlm.nih.gov/27010055/.
[139] F. Assa, H. Jafarizadeh-Malmiri, H. Ajamein, N. Anarjan, H. Vaghari, Z. Sayyar, A. Berenjian, A biotechnological perspective on the application of iron oxide nanoparticles, Nano Res. 9 (2016) 2203–2225. https://doi.org/10.1007/s12274-016-1131-9.
[140] L. Skálová, Becker, WM, Kleinsmith, LJ, Hardin, J.: The World of the Cell., (2003).
[141] C.H. Veloso, L.O. Filippov, I. V. Filippova, S. Ouvrard, A.C. Araujo, Adsorption of polymers onto iron oxides: Equilibrium isotherms, J. Mater. Res. Technol. 9 (2020) 779–788. https://doi.org/10.1016/j.jmrt.2019.11.018.
[142] M. Zarei, J. Aalaie, Profiling of nanoparticle–protein interactions by electrophoresis techniques, Anal. Bioanal. Chem. 411 (2019) 79–96. https://doi.org/10.1007/s00216-018-1401-3.
[143] P.J. Russell, A Molecular Approach, 2, Cell. 2nd Ed. Sunderland, MA Sinauer Assoc. (2010) 1–5.
[144] B. Uhl, S. Hirn, R. Immler, K. Mildner, L. Möckl, M. Sperandio, C. Bräuchle, C.A. Reichel, D. Zeuschner, F. Krombach, The Endothelial Glycocalyx Controls Interactions of Quantum Dots with the Endothelium and Their Translocation across the Blood-Tissue Border, ACS Nano. 11 (2017) 1498–1508. https://doi.org/10.1021/acsnano.6b06812.
[145] L. Möckl, S. Hirn, A.A. Torrano, B. Uhl, C. Bräuchle, F. Krombach, The glycocalyx regulates the uptake of nanoparticles by human endothelial cells in vitro, Nanomedicine. 12 (2017) 207–217. https://doi.org/10.2217/nnm-2016-0332.
[146] R. Gromnicova, M. Kaya, I.A. Romero, P. Williams, S. Satchell, B. Sharrack, D. Male, Transport of gold nanoparticles by vascular endothelium from different human tissues, PLoS One. 11 (2016) e0161610. https://doi.org/10.1371/journal.pone.0161610.
[147] M.L. Huang, K. Godula, Nanoscale materials for probing the biological functions of the glycocalyx, Glycobiology. 26 (2016) 797–803. https://doi.org/10.1093/glycob/cww022.
[148] H. Bouwmeester, M. van der Zande, M.A. Jepson, Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 10 (2018) e1481. https://doi.org/10.1002/wnan.1481.
[149] J. Šebestík, M. Reiniš, J. Ježek, Biomedical applications of peptide-, glyco- and glycopeptide dendrimers, and analogous dendrimeric structures, Springer Science \& Business Media, 2012. https://doi.org/10.1007/978-3-7091-1206-9.
[150] M. Marradi, F. Chiodo, I. García, S. Penadés, Glyconanoparticles as multifunctional and multimodal carbohydrate systems, Chem. Soc. Rev. 42 (2013) 4728–4745. https://doi.org/10.1039/c2cs35420a.
[151] A.J. Reynolds, A.H. Haines, D.A. Russell, Gold glyconanoparticles for mimics and measurement of metal Ion-mediated carbohydrate – carbohydrate interactions, Langmuir. 22 (2006) 1156–1163. https://doi.org/10.1021/la052261y.
[152] Y.J. Chen, S.H. Chen, Y.Y. Chien, Y.W. Chang, H.K. Liao, C.Y. Chang, M.D. Jan, K.T. Wang, C.C. Lin, Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping, ChemBioChem. 6 (2005) 1169–1173. https://doi.org/10.1002/cbic.200500023.
[153] N. Nagahori, S.I. Nishimura, Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry, Chem. – A Eur. J. 12 (2006) 6478–6485. https://doi.org/10.1002/chem.200501267.
[154] G. Elvira, I. García, M. Benito, J. Gallo, M. Desco, S. Penadés, J.A. Garcia-Sanz, A. Silva, Live Imaging of Mouse Endogenous Neural Progenitors Migrating in Response to an Induced Tumor, PLoS One. 7 (2012). https://doi.org/10.1371/journal.pone.0044466.
[155] A.L. Parry, N.A. Clemson, J. Ellis, S.S.R. Bernhard, B.G. Davis, N.R. Cameron, “Multicopy multivalent” glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines, J. Am. Chem. Soc. 135 (2013) 9362–9365. https://doi.org/10.1021/ja4046857.
[156] A. Aykaç, M.C. Martos-Maldonado, J.M. Casas-Solvas, I. Quesada-Soriano, F. García-Maroto, L. García-Fuentes, A. Vargas-Berenguel, Β-Cyclodextrin-Bearing Gold Glyconanoparticles for the Development of Site Specific Drug Delivery Systems, Langmuir. 30 (2014) 234–242. https://doi.org/10.1021/la403454p.
[157] M.J. Marín, A. Rashid, M. Rejzek, S.A. Fairhurst, S.A. Wharton, S.R. Martin, J.W. McCauley, T. Wileman, R.A. Field, D.A. Russell, Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus, Org. Biomol. Chem. 11 (2013) 7101–7107. https://doi.org/10.1039/c3ob41703d.
[158] S. Liu, X. Guo, NPG Asia Mater. 4, e23 (2012), (2012).
[159] S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, M.S. Strano, Carbon nanotubes as optical biomedical sensors, Adv. Drug Deliv. Rev. 65 (2013) 1933–1950. https://doi.org/10.1016/j.addr.2013.07.015.
[160] D.R. Kauffman, A. Star, Electronically monitoring biological interactions with carbon nanotube field-effect transistors, Chem. Soc. Rev. 37 (2008) 1197–1206. https://doi.org/10.1039/b709567h.
[161] Y. Chen, A. Star, S. Vidal, Sweet carbon nanostructures: Carbohydrate conjugates with carbon nanotubes and graphene and their applications, Chem. Soc. Rev. 42 (2013) 4532–4542. https://doi.org/10.1039/c2cs35396b.
[162] A.M. Münzer, Z.P. Michael, A. Star, Carbon nanotubes for the label-free detection of biomarkers, ACS Nano. 7 (2013) 7448–7453. https://doi.org/10.1021/nn404544e.
[163] H. Vedala, Y. Chen, S. Cecioni, A. Imberty, S. Vidal, A. Star, Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes, Nano Lett. 11 (2011) 170–175. https://doi.org/10.1021/nl103286k.
[164] N.F. Reuel, J.H. Ahn, J.H. Kim, J. Zhang, A.A. Boghossian, L.K. Mahal, M.S. Strano, Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling, J. Am. Chem. Soc. 133 (2011) 17923–17933. https://doi.org/10.1021/ja2074938.
[165] N.F. Reuel, B. Grassbaugh, S. Kruss, J.Z. Mundy, C. Opel, A.O. Ogunniyi, K. Egodage, R. Wahl, B. Helk, J. Zhang, Z.I. Kalcioglu, K. Tvrdy, D.O. Bellisario, B. Mu, S.S. Blake, K.J. Van Vliet, J.C. Love, K.D. Wittrup, M.S. Strano, Emergent properties of nanosensor arrays: Applications for monitoring IgG affinity distributions, weakly affined hypermannosylation, and colony selection for biomanufacturing, ACS Nano. 7 (2013) 7472–7482. https://doi.org/10.1021/nn403215e.
[166] M.T. Meredith, S.D. Minteer, Biofuel cells: Enhanced enzymatic bioelectrocatalysis, Annu. Rev. Anal. Chem. 5 (2012) 157–179. https://doi.org/10.1146/annurev-anchem-062011-143049.
[167] C. Liu, S. Alwarappan, Z. Chen, X. Kong, C.Z. Li, Membraneless enzymatic biofuel cells based on graphene nanosheets, Biosens. Bioelectron. 25 (2010) 1829–1833. https://doi.org/10.1016/j.bios.2009.12.012.
[168] K.P. Prasad, Y. Chen, P. Chen, Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells, ACS Appl. Mater. Interfaces. 6 (2014) 3387–3393. https://doi.org/10.1021/am405432b.
[169] H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles, T.E. Barnhart, W. Cai, In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene, Biomaterials. 33 (2012) 4147–4156. https://doi.org/10.1016/j.biomaterials.2012.02.031.
[170] A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Starched carbon nanotubes, Angew. Chemie – Int. Ed. 41 (2002) 2508–2512. https://doi.org/10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A.
[171] N.M. Iverson, P.W. Barone, M. Shandell, L.J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T.P. McNicholas, N. Reuel, N.M.A. Parry, G.N. Wogan, M.S. Strano, In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes, Nat. Nanotechnol. 8 (2013) 873–880. https://doi.org/10.1038/nnano.2013.222.
[172] J. Luczkowiak, A. Muñoz, M. Sánchez-Navarro, R. Ribeiro-Viana, A. Ginieis, B.M. Illescas, N. Martín, R. Delgado, J. Rojo, Glycofullerenes inhibit viral infection, Biomacromolecules. 14 (2013) 431–437. https://doi.org/10.1021/bm3016658.
[173] J. Venkatesan, Z.J. Qian, B. Ryu, N. Ashok Kumar, S.K. Kim, Preparation and characterization of carbon nanotube-grafted-chitosan – Natural hydroxyapatite composite for bone tissue engineering, Carbohydr. Polym. 83 (2011) 569–577. https://doi.org/10.1016/j.carbpol.2010.08.019.
[174] S. Mizrahy, D. Peer, Polysaccharides as building blocks for nanotherapeutics, Chem. Soc. Rev. 41 (2012) 2623–2640. https://doi.org/10.1039/c1cs15239d.
[175] J.H. Park, G. Saravanakumar, K. Kim, I.C. Kwon, Targeted delivery of low molecular drugs using chitosan and its derivatives, Adv. Drug Deliv. Rev. 62 (2010) 28–41. https://doi.org/10.1016/j.addr.2009.10.003.
[176] F.Q. Hu, P. Meng, Y.Q. Dai, Y.Z. Du, J. You, X.H. Wei, H. Yuan, PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy, Eur. J. Pharm. Biopharm. 70 (2008) 749–757. https://doi.org/10.1016/j.ejpb.2008.06.015.
[177] S. Mao, W. Sun, T. Kissel, Chitosan-based formulations for delivery of DNA and siRNA, Adv. Drug Deliv. Rev. 62 (2010) 12–27. https://doi.org/10.1016/j.addr.2009.08.004.
[178] X. Liu, K.A. Howard, M. Dong, M. Andersen, U.L. Rahbek, M.G. Johnsen, O.C. Hansen, F. Besenbacher, J. Kjems, The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing, Biomaterials. 28 (2007) 1280–1288. https://doi.org/10.1016/j.biomaterials.2006.11.004.
[179] W.F. Lai, M.C.M. Lin, Nucleic acid delivery with chitosan and its derivatives, J. Control. Release. 134 (2009) 158–168. https://doi.org/10.1016/j.jconrel.2008.11.021.
[180] J. Nguyen, F.C. Szoka, Nucleic acid delivery: The missing pieces of the puzzle?, Acc. Chem. Res. 45 (2012) 1153–1162. https://doi.org/10.1021/ar3000162.
[181] S. Trivedi, A. Paunikar, N. Raut, V. Belgamwar, Photodynamic therapy for cancer treatment, Photophysics Nanophysics Ther. 3 (2022) 89–114. https://doi.org/10.1016/B978-0-323-89839-3.00010-5.
[182] V. Simon, C. Devaux, A. Darmon, T. Donnet, E. Thiénot, M. Germain, J. Honnorat, A. Duval, A. Pottier, E. Borghi, L. Levy, J. Marill, Pp IX silica nanoparticles demonstrate differential interactions with in vitro tumor cell lines and in vivo mouse models of human cancers, Photochem. Photobiol. 86 (2010) 213–222. https://doi.org/10.1111/j.1751-1097.2009.00620.x.