Interaction of Nanoparticles with Nucleic Acids
Sankara Rao Miditana, Saivenkatesh Korlam
The interaction of nanoparticles with nucleic acids has gained significant attention in recent years due to its potential applications in various fields, including gene therapy, biosensing, immunotherapy and drug delivery. The mechanisms of interaction between nanoparticles and nucleic acids are complex and involve multiple factors, including surface chemistry, size, and shape of nanoparticles. Once nanoparticles bind to nucleic acids, they can form complexes that can alter the physical and chemical properties of nucleic acids, leading to changes in their enzymatic activity and stability. The interaction between nanoparticles and nucleic acids also provides a promising avenue for targeted delivery of nucleic acids to specific cells or tissues.
Keywords
Drug Delivery, DNA, Gene Delivery, mRNA, Nucleic Acid, Nanoparticles
Published online 12/15/2024, 19 pages
Citation: Sankara Rao Miditana, Saivenkatesh Korlam, Interaction of Nanoparticles with Nucleic Acids, Materials Research Foundations, Vol. 171, pp 135-153, 2024
DOI: https://doi.org/10.21741/9781644903339-5
Part of the book on Advances in Healthcare and Nanoparticle Toxicology
References
[1] A.S. Abdelsattar, A. Dawoud, M.A. Helal, Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies, Nanotoxicology. 15 (2021) 66–95. https://doi.org/10.1080/17435390.2020.1842537.
[2] C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature, RSC Adv. 11 (2021) 2804–2837. https://doi.org/10.1039/d0ra09941d.
[3] A. Bera, H. Belhaj, Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery – A comprehensive review, J. Nat. Gas Sci. Eng. 34 (2016) 1284–1309. https://doi.org/10.1016/j.jngse.2016.08.023.
[4] L.J. Frewer, N. Gupta, S. George, A.R.H. Fischer, E.L. Giles, D. Coles, Consumer attitudes towards nanotechnologies applied to food production, Trends Food Sci. Technol. 40 (2014) 211–225. https://doi.org/10.1016/j.tifs.2014.06.005.
[5] B.J. Casey, L.H. Somerville, I.H. Gotlib, O. Ayduk, N.T. Franklin, M.K. Askren, J. Jonides, M.G. Berman, N.L. Wilson, T. Teslovich, G. Glover, V. Zayas, W. Mischel, Y. Shoda, Behavioral and neural correlates of delay of gratification 40 years later, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 14998–15003. https://doi.org/10.1073/pnas.1108561108.
[6] M.N. Mattath, D. Ghosh, S. Pratihar, S. Shi, T. Govindaraju, Nucleic Acid Architectonics for pH-Responsive DNA Systems and Devices, ACS Omega. 7 (2022) 3167–3176. https://doi.org/10.1021/acsomega.1c06464.
[7] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol. 2 (2007) 751–760. https://doi.org/10.1038/nnano.2007.387.
[8] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023). https://doi.org/10.3390/molecules28020710.
[9] N.D. Sonawane, F.C. Szoka, A.S. Verkman, Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes, J. Biol. Chem. 278 (2003) 44826–44831. https://doi.org/10.1074/jbc.M308643200.
[10] L. Jiang, P. Vader, R.M. Schiffelers, Extracellular vesicles for nucleic acid delivery: Progress and prospects for safe RNA-based gene therapy, Gene Ther. 24 (2017) 157–166. https://doi.org/10.1038/gt.2017.8.
[11] A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel, Science (80-. ). 311 (2006) 622–627. https://doi.org/10.1126/science.1114397.
[12] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
[13] G. Tao, Y. Chen, R. Lin, J. Zhou, X. Pei, F. Liu, N. Li, How G-quadruplex topology and loop sequences affect optical properties of DNA-templated silver nanoclusters, Nano Res. 11 (2018) 2237–2247. https://doi.org/10.1007/s12274-017-1844-4.
[14] B. Purohit, Community Based Health Insurance in India: Prospects and Challenges, Health (Irvine. Calif). 06 (2014) 1237–1245. https://doi.org/10.4236/health.2014.611152.
[15] M. Beld, C. Sol, J. Goudsmit, R. Boom, Fractionation of nucleic acids into single-stranded and double-stranded forms, Nucleic Acids Res. 24 (1996) 2618–2619. https://doi.org/10.1093/nar/24.13.2618.
[16] X. Cai, S. Conley, M. Naash, Nanoparticle applications in ocular gene therapy, Vision Res. 48 (2008) 319–324. https://doi.org/10.1016/j.visres.2007.07.012.
[17] S. Mukherjee, R.N. Ghosh, F.R. Maxfield, Endocytosis, Physiol. Rev. 77 (1997) 759–803. https://doi.org/10.1152/physrev.1997.77.3.759.
[18] G.B. Pinto, A. dos Reis Corrêa, G.N.C. da Silva, J.S. da Costa, P.L.B. Figueiredo, Drug development from essential oils: New discoveries and perspectives, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 79–101. https://doi.org/10.1007/978-3-031-35205-8_4.
[19] D. Bila, Y. Radwan, M.A. Dobrovolskaia, M. Panigaj, K.A. Afonin, The recognition of and reactions to nucleic acid nanoparticles by human immune cells, Molecules. 26 (2021) 4231. https://doi.org/10.3390/molecules26144231.
[20] K.A. Afonin, M. Viard, A.Y. Koyfman, A.N. Martins, W.K. Kasprzak, M. Panigaj, R. Desai, A. Santhanam, W.W. Grabow, L. Jaeger, E. Heldman, J. Reiser, W. Chiu, E.O. Freed, B.A. Shapiro, Multifunctional RNA nanoparticles, Nano Lett. 14 (2014) 5662–5671. https://doi.org/10.1021/nl502385k.
[21] E.F. Khisamutdinov, H. Li, D.L. Jasinski, J. Chen, J. Fu, P. Guo, Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles, Nucleic Acids Res. 42 (2014) 9996–10004. https://doi.org/10.1093/nar/gku516.
[22] L. Rackley, J.M. Stewart, J. Salotti, A. Krokhotin, A. Shah, J.R. Halman, R. Juneja, J. Smollett, L. Lee, K. Roark, M. Viard, M. Tarannum, J. Vivero-Escoto, P.F. Johnson, M.A. Dobrovolskaia, N. V. Dokholyan, E. Franco, K.A. Afonin, RNA Fibers as Optimized Nanoscaffolds for siRNA Coordination and Reduced Immunological Recognition, Adv. Funct. Mater. 28 (2018). https://doi.org/10.1002/adfm.201805959.
[23] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023). https://doi.org/10.3390/separations10010021.
[24] N.B. Leontis, J. Stombaugh, E. Westhof, The non-Watson-Crick base pairs and their associated isostericity matrices, Nucleic Acids Res. 30 (2002) 3497–3531. https://doi.org/10.1093/nar/gkf481.
[25] C.J. Delebecque, A.B. Lindner, P.A. Silver, F.A. Aldaye, Organization of intracellular reactions with rationally designed RNA assemblies, Science (80-. ). 333 (2011) 470–474. https://doi.org/10.1126/science.1206938.
[26] M. Panigaj, M.B. Johnson, W. Ke, J. McMillan, E.A. Goncharova, M. Chandler, K.A. Afonin, Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology, ACS Nano. 13 (2019) 12301–12321. https://doi.org/10.1021/acsnano.9b06522.
[27] L. Gong, Z. Zhao, Y.F. Lv, S.Y. Huan, T. Fu, X.B. Zhang, G.L. Shen, R.Q. Yu, DNAzyme-based biosensors and nanodevices, Chem. Commun. 51 (2015) 979–995. https://doi.org/10.1039/c4cc06855f.
[28] P. Guo, The emerging field of RNA nanotechnology, Nat. Nanotechnol. 5 (2010) 833–842. https://doi.org/10.1038/nnano.2010.231.
[29] J. Kim, E. Franco, RNA nanotechnology in synthetic biology, Curr. Opin. Biotechnol. 63 (2020) 135–141. https://doi.org/10.1016/j.copbio.2019.12.016.
[30] M. Panigaj, M.A. Dobrovolskaia, K.A. Afonin, 2021: An immunotherapy odyssey and the rise of nucleic acid nanotechnology, Nanomedicine. 16 (2021) 1635–1640. https://doi.org/10.2217/nnm-2021-0097.
[31] D.C. Luther, R. Huang, T. Jeon, X. Zhang, Y.W. Lee, H. Nagaraj, V.M. Rotello, Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles, Adv. Drug Deliv. Rev. 156 (2020) 188–213. https://doi.org/10.1016/j.addr.2020.06.020.
[32] A.F. De Fazio, D. Misatziou, Y.R. Baker, O.L. Muskens, T. Brown, A.G. Kanaras, Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly, Chem. Soc. Rev. 50 (2021) 13410–13440. https://doi.org/10.1039/d1cs00632k.
[33] F. Hong, F. Zhang, Y. Liu, H. Yan, DNA Origami: Scaffolds for Creating Higher Order Structures, Chem. Rev. 117 (2017) 12584–12640. https://doi.org/10.1021/acs.chemrev.6b00825.
[34] G.B. Pinto, A. dos Reis Corrêa, G.N.C. da Silva, J.S. da Costa, P.L.B. Figueiredo, Drug development from essential oils: New discoveries and perspectives, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 79–101. https://doi.org/10.1007/978-3-031-35205-8_4.
[35] S. Agarwal, M.A. Klocke, P.E. Pungchai, E. Franco, Dynamic self-assembly of compartmentalized DNA nanotubes, Nat. Commun. 12 (2021). https://doi.org/10.1038/s41467-021-23850-1.
[36] M. Scherf, F. Scheffler, C. Maffeo, U. Kemper, J. Ye, A. Aksimentiev, R. Seidel, U. Reibetanz, Trapping of protein cargo molecules inside DNA origami nanocages, Nanoscale. 14 (2022) 18041–18050. https://doi.org/10.1039/d2nr05356j.
[37] J.M. Sasso, B.J.B. Ambrose, R. Tenchov, R.S. Datta, M.T. Basel, R.K. Delong, Q.A. Zhou, The Progress and Promise of RNA Medicine-An Arsenal of Targeted Treatments, J. Med. Chem. 65 (2022) 6975–7015. https://doi.org/10.1021/acs.jmedchem.2c00024.
[38] A. Babu, R. Muralidharan, N. Amreddy, M. Mehta, A. Munshi, R. Ramesh, Nanoparticles for siRNA-based gene silencing in tumor therapy, IEEE Trans. Nanobioscience. 15 (2016) 849–863. https://doi.org/10.1109/TNB.2016.2621730.
[39] X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanoparticles for mRNA delivery, Nat. Rev. Mater. 6 (2021) 1078–1094. https://doi.org/10.1038/s41578-021-00358-0.
[40] C. Liu, Q. Shi, X. Huang, S. Koo, N. Kong, W. Tao, mRNA-based cancer therapeutics, Nat. Rev. Cancer. 23 (2023) 526–543. https://doi.org/10.1038/s41568-023-00586-2.
[41] N. Stephanopoulos, Hybrid Nanostructures from the Self-Assembly of Proteins and DNA, Chem. 6 (2020) 364–405. https://doi.org/10.1016/j.chempr.2020.01.012.
[42] H.B. Gamper, H. Parekh, M.C. Rice, M. Bruner, H. Youkey, E.B. Kmiec, The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts, Nucleic Acids Res. 28 (2000) 4332–4339. https://doi.org/10.1093/nar/28.21.4332.
[43] W. Park, H. Shin, B. Choi, W.K. Rhim, K. Na, D. Keun Han, Advanced hybrid nanomaterials for biomedical applications, Prog. Mater. Sci. 114 (2020) 100686. https://doi.org/10.1016/j.pmatsci.2020.100686.
[44] W. Ho, M. Gao, F. Li, Z. Li, X.Q. Zhang, X. Xu, Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery, Adv. Healthc. Mater. 10 (2021). https://doi.org/10.1002/adhm.202001812.
[45] S.A. Dilliard, D.J. Siegwart, Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs, Nat. Rev. Mater. 8 (2023) 282–300. https://doi.org/10.1038/s41578-022-00529-7.
[46] A. Friedman, S. Claypool, R. Liu, The Smart Targeting of Nanoparticles, Curr. Pharm. Des. 19 (2013) 6315–6329. https://doi.org/10.2174/13816128113199990375.
[47] S.A.A. Rizvi, A.M. Saleh, Applications of nanoparticle systems in drug delivery technology, Saudi Pharm. J. 26 (2018) 64–70. https://doi.org/10.1016/j.jsps.2017.10.012.
[48] I. Pontón, A.M. del Rio, M.G. Gómez, D. Sánchez-García, Preparation and applications of organo-silica hybrid mesoporous silica nanoparticles for the co-delivery of drugs and nucleic acids, Nanomaterials. 10 (2020) 1–37. https://doi.org/10.3390/nano10122466.
[49] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023). https://doi.org/10.3389/fmicb.2023.1188743.
[50] M.A. Alghamdi, A.N. Fallica, N. Virzì, P. Kesharwani, V. Pittalà, K. Greish, The Promise of Nanotechnology in Personalized Medicine, J. Pers. Med. 12 (2022) 673. https://doi.org/10.3390/jpm12050673.
[51] Z. Lu, H.Y. Chang, The RNA base-pairing problem and base-pairing solutions, Cold Spring Harb. Perspect. Biol. 10 (2018) a034926. https://doi.org/10.1101/cshperspect.a034926.
[52] A. Sharma, K. Vaghasiya, R.K. Verma, A.B. Yadav, DNA nanostructures: Chemistry, self-assembly, and applications, Emerg. Appl. Nanoparticles Archit. Nanostructures Curr. Prospect. Futur. Trends. (2018) 71–94. https://doi.org/10.1016/B978-0-323-51254-1.00003-8.
[53] M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov. 20 (2021) 101–124. https://doi.org/10.1038/s41573-020-0090-8.
[54] M. Windelspecht, Changes To The Genetic Material, Genet. 101. (2024) 101–124. https://doi.org/10.5040/9798400656194.ch-005.
[55] M.B. Johnson, M. Chandler, K.A. Afonin, Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects, Adv. Drug Deliv. Rev. 173 (2021) 427–438. https://doi.org/10.1016/j.addr.2021.04.011.
[56] S. Nordmeier, W. Ke, K.A. Afonin, V. Portnoy, Exosome mediated delivery of functional nucleic acid nanoparticles (NANPs), Nanomedicine Nanotechnology, Biol. Med. 30 (2020) 102285. https://doi.org/10.1016/j.nano.2020.102285.
[57] K. Duffy, S. Arangundy-Franklin, P. Holliger, Modified nucleic acids: Replication, evolution, and next-generation therapeutics, BMC Biol. 18 (2020). https://doi.org/10.1186/s12915-020-00803-6.
[58] A. Ata, Bioactive natural products from medicinal plants, in: J.N. Cruz (Ed.), Drug Discov. Des. Using Nat. Prod., Springer Nature Switzerland, Cham, 2023: pp. 417–434. https://doi.org/10.1007/978-3-031-35205-8_14.
[59] B. García-Pinel, C. Porras-Alcalá, A. Ortega-Rodríguez, F. Sarabia, J. Prados, C. Melguizo, J.M. López-Romero, Lipid-based nanoparticles: Application and recent advances in cancer treatment, Nanomaterials. 9 (2019) 638. https://doi.org/10.3390/nano9040638.
[60] Y. Zhao, L. Huang, Lipid nanoparticles for gene delivery, Adv. Genet. 88 (2014) 13–36. https://doi.org/10.1016/B978-0-12-800148-6.00002-X.
[61] A.G. Niculescu, A.M. Grumezescu, Polymer-based nanosystems-a versatile delivery approach, Materials (Basel). 14 (2021) 6812. https://doi.org/10.3390/ma14226812.
[62] A. Kumar, A. Singam, G. Swaminathan, N. Killi, N.K. Tangudu, J. Jose, R. Gundloori Vn, L. Dinesh Kumar, Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models, Nanoscale. 14 (2022) 492–505. https://doi.org/10.1039/d1nr04411g.
[63] R. Thiruppathi, S. Mishra, M. Ganapathy, P. Padmanabhan, B. Gulyás, Nanoparticle functionalization and its potentials for molecular imaging, Adv. Sci. 4 (2017). https://doi.org/10.1002/advs.201600279.
[64] E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Dendrimers: Synthesis, applications, and properties, Nanoscale Res. Lett. 9 (2014) 1–10. https://doi.org/10.1186/1556-276X-9-247.
[65] C.S. Morales, P.M. Valencia, A.B. Thakkar, E. Swanson, R. Langer, Recent developments in multifunctional hybrid nanoparticles: Opportunities and challenges in cancer therapy, Front. Biosci. – Elit. 4 E (2012) 529–545. https://doi.org/10.2741/398.
[66] W. Ma, Y. Zhan, Y. Zhang, C. Mao, X. Xie, Y. Lin, The biological applications of DNA nanomaterials: current challenges and future directions, Signal Transduct. Target. Ther. 6 (2021). https://doi.org/10.1038/s41392-021-00727-9.
[67] L. Duan, K. Ouyang, X. Xu, L. Xu, C. Wen, X. Zhou, Z. Qin, Z. Xu, W. Sun, Y. Liang, Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing, Front. Genet. 12 (2021). https://doi.org/10.3389/fgene.2021.673286.
[68] A.G. Niculescu, A.C. Bîrcă, A.M. Grumezescu, New applications of lipid and polymer-based nanoparticles for nucleic acids delivery, Pharmaceutics. 13 (2021) 2053. https://doi.org/10.3390/pharmaceutics13122053.
[69] I.N. de F. Ramos, M.F. da Silva, J.M.S. Lopes, J.N. Cruz, F.S. Alves, J. de A.R. do Rego, M.L. da Costa, P.P. de Assumpção, D. do S. Barros Brasil, A.S. Khayat, Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer, Molecules. 28 (2023). https://doi.org/10.3390/molecules28145587.
[70] W. Alshaer, H. Zureigat, A. Al Karaki, A. Al-Kadash, L. Gharaibeh, M.M. Hatmal, A.A.A. Aljabali, A. Awidi, Corrigendum to “siRNA: Mechanism of action, challenges, and therapeutic approaches” [Eur. J. Pharmacol. 905 (2021) 174178] (European Journal of Pharmacology (2021) 905, (S0014299921003319), (10.1016/j.ejphar.2021.174178)), Eur. J. Pharmacol. 916 (2022) 174741. https://doi.org/10.1016/j.ejphar.2022.174741.
[71] Y. Wang, Z. Li, Y. Han, L. Hwa Liang, A. Ji, Nanoparticle-Based Delivery System for Application of siRNA In Vivo, Curr. Drug Metab. 11 (2010) 182–196. https://doi.org/10.2174/138920010791110863.
[72] C. Liu, Q. Shi, X. Huang, S. Koo, N. Kong, W. Tao, mRNA-based cancer therapeutics, Nat. Rev. Cancer. 23 (2023) 526–543. https://doi.org/10.1038/s41568-023-00586-2.
[73] J.K. Durbin, D.K. Miller, J. Niekamp, E.F. Khisamutdinov, Modulating immune response with nucleic acid nanoparticles, Molecules. 24 (2019) 3740. https://doi.org/10.3390/molecules24203740.
[74] M.J. Lin, J. Svensson-Arvelund, G.S. Lubitz, A. Marabelle, I. Melero, B.D. Brown, J.D. Brody, Cancer vaccines: the next immunotherapy frontier, Nat. Cancer. 3 (2022) 911–926. https://doi.org/10.1038/s43018-022-00418-6.
[75] A. Gupta, J.L. Andresen, R.S. Manan, R. Langer, Nucleic acid delivery for therapeutic applications, Adv. Drug Deliv. Rev. 178 (2021) 113834. https://doi.org/10.1016/j.addr.2021.113834.
[76] J.A. Kulkarni, D. Witzigmann, S.B. Thomson, S. Chen, B.R. Leavitt, P.R. Cullis, R. van der Meel, The current landscape of nucleic acid therapeutics, Nat. Nanotechnol. 16 (2021) 630–643. https://doi.org/10.1038/s41565-021-00898-0.
[77] J.O. Jin, G. Kim, J. Hwang, K.H. Han, M. Kwak, P.C.W. Lee, Nucleic acid nanotechnology for cancer treatment, Biochim. Biophys. Acta – Rev. Cancer. 1874 (2020) 188377. https://doi.org/10.1016/j.bbcan.2020.188377.
[78] M. Cordeiro, F.F. Carlos, P. Pedrosa, A. Lopez, P.V. Baptista, Gold nanoparticles for diagnostics: Advances towards points of care, Diagnostics. 6 (2016) 43. https://doi.org/10.3390/diagnostics6040043.
[79] J. Jin, X. Ouyang, J. Li, J. Jiang, H. Wang, Y. Wang, R. Yang, Nucleic acid-modulated silver nanoparticles: A new electrochemical platform for sensing chloride ion, Analyst. 136 (2011) 3629–3634. https://doi.org/10.1039/c1an15283a.
[80] J.N. Cruz, S. Muzammil, A. Ashraf, M.U. Ijaz, M.H. Siddique, R. Abbas, M. Sadia, Saba, S. Hayat, R.R. Lima, A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents, Heliyon. 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e29500.
[81] J. Conde, J. Rosa, J.M. de la Fuente, P. V. Baptista, Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events, Biomaterials. 34 (2013) 2516–2523. https://doi.org/10.1016/j.biomaterials.2012.12.015.
[82] W.X. Lei, Z.S. An, B.H. Zhang, Q. Wu, W.J. Gong, J.M. Li, W.L. Chen, Construction of gold-siRNANPR1nanoparticles for effective and quick silencing ofNPR1inArabidopsis thaliana, RSC Adv. 10 (2020) 19300–19308. https://doi.org/10.1039/d0ra02156c.
[83] A. Latorre, Á. Somoza, DNA-Mediated Silver Nanoclusters: Synthesis, Properties and Applications, ChemBioChem. 13 (2012) 951–958. https://doi.org/10.1002/cbic.201200053.
[84] A. Erxleben, Interactions of copper complexes with nucleic acids, Coord. Chem. Rev. 360 (2018) 92–121. https://doi.org/10.1016/j.ccr.2018.01.008.
[85] N. Chaudhary, D. Weissman, K.A. Whitehead, mRNA vaccines for infectious diseases: principles, delivery and clinical translation, Nat. Rev. Drug Discov. 20 (2021) 817–838. https://doi.org/10.1038/s41573-021-00283-5.
[86] J. Bush, S. Singh, M. Vargas, E. Oktay, C.H. Hu, R. Veneziano, Synthesis of DNA origami scaffolds: Current and emerging strategies, Molecules. 25 (2020) 3386. https://doi.org/10.3390/molecules25153386.