Nanoparticles based Therapeutics Approaches for Cancer

$40.00

Nanoparticles based Therapeutics Approaches for Cancer

Somya Ranjan Dash, Chanakya Nath Kundu

Surgery, chemotherapy, radiotherapy, targeted therapy and immunotherapy are all examples of standard cancer treatments. However, achieving successful cancer treatment is complicated by issues including insufficient selectivity, cytotoxicity, and chemo resistance. Nanotechnology’s introduction has brought about seismic shifts in the ways in which cancer is detected and treated. Biocompatibility, lower toxicity, better stability, increased permeability and retention effect, precision targeting, and other benefits of nanoparticles (NPs) make them a promising option for cancer therapy. This book chapter provides a comprehensive overview of both organic and inorganic NPs and how they might be used in the treatment of cancer. In addition, we have also emphasized various aspects of NPs targeting cancer stem cells (CSCs), reprogramming the tumor microenvironment (TME), cancer angiogenesis and how they can be utilized in overcoming drug resistance. Finally, the future of NPs in non-invasive cancer treatment has been discussed along with its potential risk to the environment.

Keywords
Nanoparticles in Cancer Therapy, Cancer Stem Cells Targeting, Tumor Microenvironment Reprogramming, Drug Resistance in Cancer, Non-Invasive Cancer Treatment

Published online 12/15/2024, 54 pages

Citation: Somya Ranjan Dash, Chanakya Nath Kundu, Nanoparticles based Therapeutics Approaches for Cancer, Materials Research Foundations, Vol. 171, pp 22-75, 2024

DOI: https://doi.org/10.21741/9781644903339-2

Part of the book on Advances in Healthcare and Nanoparticle Toxicology

References
[1] C. Pucci, C. Martinelli, G. Ciofani, Innovative approaches for cancer treatment: current perspectives and new challenges, Ecancermedicalscience 13 (2019) 961. https://doi.org/10.3332/ecancer.2019.961
[2] P. Krzyszczyk, A. Acevedo, E.J. Davidoff, L.M. Timmins, I. Marrero-Berrios, M. Patel, C. White, C. Lowe, J.J. Sherba, C. Hartmanshenn, K.M. O’Neill, M.L. Balter, Z.R. Fritz, I.P. Androulakis, R.S. Schloss, M.L. Yarmush, The growing role of precision and personalized medicine for cancer treatment, Technology (Singap World Sci) 6 (2018) 79–100. https://doi.org/10.1142/S2339547818300020
[3] M. Zhang, S. Gao, D. Yang, Y. Fang, X. Lin, X. Jin, Y. Liu, X. Liu, K. Su, K. Shi, Influencing factors and strategies of enhancing nanoparticles into tumors in vivo, Acta Pharmaceutica Sinica B 11 (2021) 2265–2285. https://doi.org/10.1016/j.apsb.2021.03.033
[4] M. Overchuk, R.A. Weersink, B.C. Wilson, G. Zheng, Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine, ACS Nano 17 (2023) 7979–8003. https://doi.org/10.1021/acsnano.3c00891
[5] B. Aslan, B. Ozpolat, A.K. Sood, G. Lopez-Berestein, NANOTECHNOLOGY IN CANCER THERAPY, J Drug Target 21 (2013) 904–913. https://doi.org/10.3109/1061186X.2013.837469
[6] V.S. Nagtode, C. Cardoza, H.K.A. Yasin, S.N. Mali, S.M. Tambe, P. Roy, K. Singh, A. Goel, P.D. Amin, B.R. Thorat, J.N. Cruz, A.P. Pratap, Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability─Comparison, Applications, Market, and Future Prospects, ACS Omega 8 (2023) 11674–11699. https://doi.org/10.1021/acsomega.3c00591
[7] D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, S. Krishnaswamy, M.M. Essa, F.-H. Lin, M.W. Qoronfleh, Therapeutic efficacy of nanoparticles and routes of administration, Biomater Res 23 (2019) 20. https://doi.org/10.1186/s40824-019-0166-x
[8] S. Palazzolo, S. Bayda, M. Hadla, I. Caligiuri, G. Corona, G. Toffoli, F. Rizzolio, The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes, Curr Med Chem 25 (2018) 4224–4268. https://doi.org/10.2174/0929867324666170830113755
[9] M.A. Subhan, S.S.K. Yalamarty, N. Filipczak, F. Parveen, V.P. Torchilin, Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment, J Pers Med 11 (2021) 571. https://doi.org/10.3390/jpm11060571
[10] E. Paszko, M.O. Senge, Immunoliposomes, Curr Med Chem 19 (2012) 5239–5277. https://doi.org/10.2174/092986712803833362
[11] W. Jn, M. Rl, Y. Mb, Z. Ds, Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors, Science (New York, N.Y.) 204 (1979). https://doi.org/10.1126/science.432641
[12] J.N. Cruz, S. Muzammil, A. Ashraf, M.U. Ijaz, M.H. Siddique, R. Abbas, M. Sadia, Saba, S. Hayat, R.R. Lima, A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents, Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e29500
[13] M.B. Yatvin, J.N. Weinstein, W.H. Dennis, R. Blumenthal, Design of liposomes for enhanced local release of drugs by hyperthermia, Science 202 (1978) 1290–1293. https://doi.org/10.1126/science.364652
[14] T.O.B. Olusanya, R.R. Haj Ahmad, D.M. Ibegbu, J.R. Smith, A.A. Elkordy, Liposomal Drug Delivery Systems and Anticancer Drugs, Molecules 23 (2018) 907. https://doi.org/10.3390/molecules23040907
[15] R.A. Schwendener, Liposomes as vaccine delivery systems: a review of the recent advances, Ther Adv Vaccines 2 (2014) 159–182. https://doi.org/10.1177/2051013614541440
[16] I.N. de F. Ramos, M.F. da Silva, J.M.S. Lopes, J.N. Cruz, F.S. Alves, J. de A.R. do Rego, M.L. da Costa, P.P. de Assumpção, D. do S. Barros Brasil, A.S. Khayat, Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer, Molecules 28 (2023) 5587. https://doi.org/10.3390/molecules28145587
[17] G. Ricciuti, E. Finolezzi, S. Luciani, E. Ranucci, M. Federico, M. Di Nicola, I.A.L. Zecca, F. Angrilli, Combination of rituximab and nonpegylated liposomal doxorubicin (R-NPLD) as front-line therapy for aggressive non-Hodgkin lymphoma (NHL) in patients 80 years of age or older: a single-center retrospective study, Hematol Oncol 36 (2018) 44–48. https://doi.org/10.1002/hon.2386
[18] J. Zhou, W.-Y. Zhao, X. Ma, R.-J. Ju, X.-Y. Li, N. Li, M.-G. Sun, J.-F. Shi, C.-X. Zhang, W.-L. Lu, The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer, Biomaterials 34 (2013) 3626–3638. https://doi.org/10.1016/j.biomaterials.2013.01.078
[19] M. Legut, D. Lipka, N. Filipczak, A. Piwoni, A. Kozubek, J. Gubernator, Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies, Int J Nanomedicine 9 (2014) 653–668. https://doi.org/10.2147/IJN.S54911
[20] A. Hardiansyah, L.-Y. Huang, M.-C. Yang, T.-Y. Liu, S.-C. Tsai, C.-Y. Yang, C.-Y. Kuo, T.-Y. Chan, H.-M. Zou, W.-N. Lian, C.-H. Lin, Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment, Nanoscale Res Lett 9 (2014) 497. https://doi.org/10.1186/1556-276X-9-497
[21] J.N. Mock, L.J. Costyn, S.L. Wilding, R.D. Arnold, B.S. Cummings, Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer, Integr Biol (Camb) 5 (2013) 172–182. https://doi.org/10.1039/c2ib20108a
[22] V. Bensa, E. Calarco, E. Giusto, P. Perri, M.V. Corrias, M. Ponzoni, C. Brignole, F. Pastorino, Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors, Pharmaceuticals (Basel) 14 (2021) 854. https://doi.org/10.3390/ph14090854
[23] C. Oerlemans, W. Bult, M. Bos, G. Storm, J.F.W. Nijsen, W.E. Hennink, Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release, Pharm Res 27 (2010) 2569–2589. https://doi.org/10.1007/s11095-010-0233-4
[24] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M. del P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.-S. Shin, Nano based drug delivery systems: recent developments and future prospects, Journal of Nanobiotechnology 16 (2018) 71. https://doi.org/10.1186/s12951-018-0392-8
[25] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Frontiers in Microbiology 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743
[26] Y. Bae, T.A. Diezi, A. Zhao, G.S. Kwon, Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents, J Control Release 122 (2007) 324–330. https://doi.org/10.1016/j.jconrel.2007.05.038
[27] J.R. Hasenstein, H.-C. Shin, K. Kasmerchak, D. Buehler, G.S. Kwon, K.R. Kozak, Anti-tumor Activity of Triolimus: A Novel Multi-Drug Loaded Micelle Containing Paclitaxel, Rapamycin and 17-AAG, Mol Cancer Ther 11 (2012) 2233–2242. https://doi.org/10.1158/1535-7163.MCT-11-0987
[28] H.S. Na, Y.K. Lim, Y.-I. Jeong, H.S. Lee, Y.J. Lim, M.S. Kang, C.-S. Cho, H.C. Lee, Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model, Int J Pharm 383 (2010) 192–200. https://doi.org/10.1016/j.ijpharm.2009.08.041
[29] H. Wang, Y. Zhao, Y. Wu, Y. Hu, K. Nan, G. Nie, H. Chen, Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles, Biomaterials 32 (2011) 8281–8290. https://doi.org/10.1016/j.biomaterials.2011.07.032
[30] Y. Han, Z. He, A. Schulz, T.K. Bronich, R. Jordan, R. Luxenhofer, A.V. Kabanov, Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles, Mol Pharm 9 (2012) 2302–2313. https://doi.org/10.1021/mp300159u
[31] U. Katragadda, Q. Teng, B.M. Rayaprolu, T. Chandran, C. Tan, Multi-drug delivery to tumor cells via micellar nanocarriers, Int J Pharm 419 (2011) 281–286. https://doi.org/10.1016/j.ijpharm.2011.07.033
[32] S.S. Desale, S.M. Cohen, Y. Zhao, A.V. Kabanov, T.K. Bronich, Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer, J Control Release 171 (2013) 339–348. https://doi.org/10.1016/j.jconrel.2013.04.026
[33] H. Cho, G.S. Kwon, Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery, J Drug Target 22 (2014) 669–677. https://doi.org/10.3109/1061186X.2014.931406
[34] A. Pugazhendhi, T.N.J.I. Edison, I. Karuppusamy, B. Kathirvel, Inorganic nanoparticles: a potential cancer therapy for human welfare, International Journal of Pharmaceutics 539 (2018) 104–111.
[35] S. Pushkar, A. Philip, K. Pathak, D. Pathak, Dendrimers: Nanotechnology derived novel polymers in drug delivery, Indian Journal of Pharmaceutical Education and Research 40 (2006) 153.
[36] L. Palmerston Mendes, J. Pan, V.P. Torchilin, Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy, Molecules 22 (2017) 1401. https://doi.org/10.3390/molecules22091401
[37] Z. Bober, D. Bartusik-Aebisher, D. Aebisher, Application of Dendrimers in Anticancer Diagnostics and Therapy, Molecules 27 (2022) 3237. https://doi.org/10.3390/molecules27103237
[38] H.L. Crampton, E.E. Simanek, Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers, Polym Int 56 (2007) 489–496. https://doi.org/10.1002/pi.2230
[39] M.A. Fuertes, C. Alonso, J.M. Pérez, Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance, Chemical Reviews 103 (2003) 645–662
[40] D.B. Longley, D.P. Harkin, P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies, Nature Reviews Cancer 3 (2003) 330–338.
[41] P.-S. Lai, P.-J. Lou, C.-L. Peng, C.-L. Pai, W.-N. Yen, M.-Y. Huang, T.-H. Young, M.-J. Shieh, Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy, Journal of Controlled Release 122 (2007) 39–46.
[42] P. Kozub, M. Simaljakova, Systemic therapy of psoriasis: methotrexate, Bratisl Lek Listy 112 (2011) 390–394.
[43] K. Wróbel, A. Deręgowska, G. Betlej, M. Walczak, M. Wnuk, A. Lewińska, S. Wołowiec, Cytarabine and dexamethasone-PAMAM dendrimer di-conjugate sensitizes human acute myeloid leukemia cells to apoptotic cell death, Journal of Drug Delivery Science and Technology 81 (2023) 104242. https://doi.org/10.1016/j.jddst.2023.104242
[44] F. Hassani, A. Heydarinasab, H. Ahmad Panahi, E. Moniri, Surface modification of tungsten disulfide nanosheets with pH/Thermosensitive polymer and polyethylenimine dendrimer for near-infrared triggered drug delivery of letrozole, Journal of Molecular Liquids 371 (2023) 121058. https://doi.org/10.1016/j.molliq.2022.121058
[45] C. Ni, Z. Ouyang, G. Li, J. Liu, X. Cao, L. Zheng, X. Shi, R. Guo, A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy, Acta Biomaterialia (2023). https://doi.org/10.1016/j.actbio.2023.04.003
[46] S. Michlewska, M. Maly, D. Wójkowska, K. Karolczak, E. Skiba, M. Hołota, M. Kubczak, P. Ortega, C. Watala, F. Javier de la Mata, M. Bryszewska, M. Ionov, Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary study, International Journal of Pharmaceutics 636 (2023) 122784. https://doi.org/10.1016/j.ijpharm.2023.122784
[47] S. Shen, Y. Gao, Z. Ouyang, B. Jia, M. Shen, X. Shi, Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity, Journal of Controlled Release 355 (2023) 171–183. https://doi.org/10.1016/j.jconrel.2023.01.076
[48] S. Huang, X. Huang, H. Yan, Peptide dendrimers as potentiators of conventional chemotherapy in the treatment of pancreatic cancer in a mouse model, European Journal of Pharmaceutics and Biopharmaceutics 170 (2022) 121–132. https://doi.org/10.1016/j.ejpb.2021.11.005
[49] A. Lewińska, K. Wróbel, D. Błoniarz, J. Adamczyk-Grochala, S. Wołowiec, M. Wnuk, Lapatinib- and fulvestrant-PAMAM dendrimer conjugates promote apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor status, Biomaterials Advances 140 (2022) 213047. https://doi.org/10.1016/j.bioadv.2022.213047
[50] D.E. Ybarra, M.N. Calienni, L.F.B. Ramirez, E.T.A. Frias, C. Lillo, S. del V. Alonso, J. Montanari, F.C. Alvira, Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer, OpenNano 7 (2022) 100053. https://doi.org/10.1016/j.onano.2022.100053
[51] M. Gonçalves, V. Kairys, J. Rodrigues, H. Tomás, Polyester Dendrimers Based on Bis-MPA for Doxorubicin Delivery, Biomacromolecules 23 (2021) 20–33.
[52] F. Zhu, L. Xu, X. Li, Z. Li, J. Wang, H. Chen, X. Li, Y. Gao, Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC, European Journal of Pharmaceutical Sciences 167 (2021) 106004. https://doi.org/10.1016/j.ejps.2021.106004
[53] G. Ma, X. Du, J. Zhu, F. Xu, H. Yu, J. Li, Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers, Journal of Drug Delivery Science and Technology 63 (2021) 102493. https://doi.org/10.1016/j.jddst.2021.102493
[54] T. Barrett, G. Ravizzini, P.L. Choyke, H. Kobayashi, Dendrimers in medical nanotechnology, IEEE Eng Med Biol Mag 28 (2009) 12–22. https://doi.org/10.1109/MEMB.2008.931012
[55] S. Bhattacharyya, R.A. Kudgus, R. Bhattacharya, P. Mukherjee, Inorganic nanoparticles in cancer therapy, Pharm Res 28 (2011) 237–259. https://doi.org/10.1007/s11095-010-0318-0
[56] D. Kovács, N. Igaz, M.K. Gopisetty, M. Kiricsi, Cancer Therapy by Silver Nanoparticles: Fiction or Reality?, Int J Mol Sci 23 (2022) 839. https://doi.org/10.3390/ijms23020839
[57] G.M. Vlăsceanu, Ş. Marin, R.E. Ţiplea, I.R. Bucur, M. Lemnaru, M.M. Marin, A.M. Grumezescu, E. Andronescu, Chapter 2 – Silver nanoparticles in cancer therapy, in: A.M. Grumezescu (Ed.), Nanobiomaterials in Cancer Therapy, William Andrew Publishing, 2016: pp. 29–56. https://doi.org/10.1016/B978-0-323-42863-7.00002-5
[58] X.-F. Zhang, W. Shen, S. Gurunathan, Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model, Int J Mol Sci 17 (2016) 1603. https://doi.org/10.3390/ijms17101603
[59] G. Nadar Rajivgandhi, G. Chackaravarthi, G. Ramachandran, C. Kanisha Chelliah, M. Maruthupandy, M.S. Alharbi, N.S. Alharbi, J.M. Khaled, W.-J. Li, Morphological damage and increased ROS production of biosynthesized silver nanoparticle against MCF-7 breast cancer cells through in vitro approaches, Journal of King Saud University – Science 34 (2022) 101795. https://doi.org/10.1016/j.jksus.2021.101795
[60] T.T.H. Le, T.H. Ngo, T.H. Nguyen, V.H. Hoang, V.H. Nguyen, P.H. Nguyen, Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells, Biochemical and Biophysical Research Communications 661 (2023) 99–107. https://doi.org/10.1016/j.bbrc.2023.04.037
[61] Y. Peng, W. Ni, T. Ni, P. Xu, C. Gu, W. Yu, A. Xie, M. Yao, Silver nanoparticles induce cytotoxicity by releasing Ag + from the lysosome and increasing lysosomal membrane permeabilit, (2023). https://doi.org/10.21203/rs.3.rs-2938573/v1
[62] L. Fageria, V. Pareek, R.V. Dilip, A. Bhargava, S.S. Pasha, I.R. Laskar, H. Saini, S. Dash, R. Chowdhury, J. Panwar, Biosynthesized protein-capped silver nanoparticles induce ros-dependent proapoptotic signals and prosurvival autophagy in cancer cells, ACS Omega 2 (2017) 1489–1504
[63] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations 10 (2023) 21. https://doi.org/10.3390/separations10010021
[64] K.C. Hembram, S. Chatterjee, C. Sethy, D. Nayak, R. Pradhan, S. Molla, B.K. Bindhani, C.N. Kundu, Comparative and mechanistic study on the anticancer activity of quinacrine-based silver and gold hybrid nanoparticles in head and neck cancer, Molecular Pharmaceutics 16 (2019) 3011–3023.
[65] E. Locatelli, M. Naddaka, C. Uboldi, G. Loudos, E. Fragogeorgi, V. Molinari, A. Pucci, T. Tsotakos, D. Psimadas, J. Ponti, Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma, Nanomedicine 9 (2014) 839–849.
[66] A. Espinosa, A. Curcio, S. Cabana, G. Radtke, M. Bugnet, J. Kolosnjaj-Tabi, C. Péchoux, C. Alvarez-Lorenzo, G.A. Botton, A.K. Silva, Intracellular biodegradation of Ag nanoparticles, storage in ferritin, and protection by a Au shell for enhanced photothermal therapy, ACS Nano 12 (2018) 6523–6535.
[67] Z. Liu, H. Tan, X. Zhang, F. Chen, Z. Zhou, X. Hu, S. Chang, P. Liu, H. Zhang, Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells, Artificial Cells, Nanomedicine, and Biotechnology 46 (2018) 922–930.
[68] J. Liu, Y. Zhao, Q. Guo, Z. Wang, H. Wang, Y. Yang, Y. Huang, TAT-modified nanosilver for combating multidrug-resistant cancer, Biomaterials 33 (2012) 6155–6161.
[69] E. Liu, M. Zhang, H. Cui, J. Gong, Y. Huang, J. Wang, Y. Cui, W. Dong, L. Sun, H. He, Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery, Acta Pharmaceutica Sinica B 8 (2018) 956–968.
[70] Y. Tang, J. Liang, A. Wu, Y. Chen, P. Zhao, T. Lin, M. Zhang, Q. Xu, J. Wang, Y. Huang, Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis, ACS Applied Materials & Interfaces 9 (2017) 26648–26664.
[71] J. Zhao, P. Liu, J. Ma, D. Li, H. Yang, W. Chen, Y. Jiang, Enhancement of radiosensitization by silver nanoparticles functionalized with polyethylene glycol and aptamer As1411 for glioma irradiation therapy, International Journal of Nanomedicine (2019) 9483–9496.
[72] C. Nie, P. Du, H. Zhao, H. Xie, Y. Li, L. Yao, Y. Shi, L. Hu, S. Si, M. Zhang, Ag@ TiO2 nanoprisms with highly efficient near-infrared photothermal conversion for melanoma therapy, Chemistry–An Asian Journal 15 (2020) 148–155.
[73] K. Habiba, K. Aziz, K. Sanders, C.M. Santiago, L.S.K. Mahadevan, V. Makarov, B.R. Weiner, G. Morell, S. Krishnan, Enhancing colorectal cancer radiation therapy efficacy using silver nanoprisms decorated with graphene as radiosensitizers, Scientific Reports 9 (2019) 1–9.
[74] K. Sztandera, M. Gorzkiewicz, B. Klajnert-Maculewicz, Gold Nanoparticles in Cancer Treatment, Mol. Pharmaceutics 16 (2019) 1–23. https://doi.org/10.1021/acs.molpharmaceut.8b00810
[75] G.F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R.E. McLaughlin, L. Tamarkin, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv 11 (2004) 169–183. https://doi.org/10.1080/10717540490433895
[76] Y. Yang, X. Zheng, L. Chen, X. Gong, H. Yang, X. Duan, Y. Zhu, Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment, Int J Nanomedicine 17 (2022) 2041–2067. https://doi.org/10.2147/IJN.S355142
[77] T.A. Salamone, L. Rutigliano, B. Pennacchi, S. Cerra, R. Matassa, S. Nottola, F. Sciubba, C. Battocchio, M. Marsotto, A. Del Giudice, A. Chumakov, A. Davydok, S. Grigorian, G. Canettieri, E. Agostinelli, I. Fratoddi, Thiol functionalised gold nanoparticles loaded with methotrexate for cancer treatment: from synthesis to in vitro studies on neuroblastoma cell lines, Journal of Colloid and Interface Science (2023). https://doi.org/10.1016/j.jcis.2023.06.078
[78] G. Niu, L. Zhao, Y. Wang, Y. Jiang, PDA/gold nanorod-based nanoparticles for synergistic genetic and photothermal combination therapy for cancer treatment, ChemPhysMater 2 (2023) 83–89. https://doi.org/10.1016/j.chphma.2022.07.001
[79] Z. Khademi, P. Lavaee, M. Ramezani, M. Alibolandi, K. Abnous, S.M. Taghdisi, Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells, Carbohydrate Polymers 248 (2020) 116735. https://doi.org/10.1016/j.carbpol.2020.116735
[80] S. Yu, J. Zhang, S. Liu, Z. Ma, H. Sun, Z. Liu, L. Wang, Self-assembly synthesis of flower-like gold nanoparticles for photothermal treatment of cancer, Colloids and Surfaces A: Physicochemical and Engineering Aspects 647 (2022) 129163. https://doi.org/10.1016/j.colsurfa.2022.129163
[81] J. Wan, X. Ma, D. Xu, B. Yang, S. Yang, S. Han, Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer, Journal of Photochemistry and Photobiology B: Biology 185 (2018) 73–79. https://doi.org/10.1016/j.jphotobiol.2018.05.021
[82] C.S. Kumar, M.D. Raja, D.S. Sundar, M. Gover Antoniraj, K. Ruckmani, Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells), Carbohydrate Polymers 128 (2015) 63–74. https://doi.org/10.1016/j.carbpol.2015.04.010
[83] D.-S. Hsieh, H. Wang, S.-W. Tan, Y.-H. Huang, C.-Y. Tsai, M.-K. Yeh, C.-J. Wu, The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles, Biomaterials 32 (2011) 7633–7640. https://doi.org/10.1016/j.biomaterials.2011.06.073
[84] C.U. Tunç, D.Y. Öztaş, D. Uzunoğlu, Ö.F. Bayrak, M. Çulha, Silencing breast cancer genes using morpholino embedded DNA-tile-AuNPs nanostructures, Human Gene Therapy 30 (2019) 1547–1558.
[85] Y. Liu, M. Xu, Y. Zhao, X. Chen, X. Zhu, C. Wei, S. Zhao, J. Liu, X. Qin, Flower-like gold nanoparticles for enhanced photothermal anticancer therapy by the delivery of pooled siRNA to inhibit heat shock stress response, Journal of Materials Chemistry B 7 (2019) 586–597.
[86] S. Huang, Y. Liu, X. Xu, M. Ji, Y. Li, C. Song, S. Duan, Y. Hu, Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages, Journal of Materials Chemistry B 6 (2018) 2217–2229.
[87] P. Thevenot, J. Cho, D. Wavhal, R.B. Timmons, L. Tang, Surface chemistry influences cancer killing effect of TiO2 nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine 4 (2008) 226–236. https://doi.org/10.1016/j.nano.2008.04.001
[88] R.K. Kawassaki, M. Romano, N. Dietrich, K. Araki, Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications, Frontiers in Nanotechnology 3 (2021). https://www.frontiersin.org/articles/10.3389/fnano.2021.735434 (accessed July 4, 2023).
[89] A.M. Itoo, M. Paul, S.G. Padaga, B. Ghosh, S. Biswas, Nanotherapeutic Intervention in Photodynamic Therapy for Cancer, ACS Omega 7 (2022) 45882–45909. https://doi.org/10.1021/acsomega.2c05852
[90] D. Ziental, B. Czarczynska-Goslinska, D.T. Mlynarczyk, A. Glowacka-Sobotta, B. Stanisz, T. Goslinski, L. Sobotta, Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine, Nanomaterials (Basel) 10 (2020) 387. https://doi.org/10.3390/nano10020387
[91] S. Senapati, A.K. Mahanta, S. Kumar, P. Maiti, Controlled drug delivery vehicles for cancer treatment and their performance, Signal Transduct Target Ther 3 (2018) 7. https://doi.org/10.1038/s41392-017-0004-3
[92] J. Violet Mary, C. Pragathiswaran, N. Anusuya, Photocatalytic, degradation, sensing of Pb2+ using titanium nanoparticles synthesized via plant extract of Cissusquadrangularis: In-vitroanalysis of microbial and anti-cancer activities, Journal of Molecular Structure 1236 (2021) 130144. https://doi.org/10.1016/j.molstruc.2021.130144
[93] J. Shen, J. Karges, K. Xiong, Y. Chen, L. Ji, H. Chao, Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy, Biomaterials 275 (2021) 120979. https://doi.org/10.1016/j.biomaterials.2021.120979
[94] H. Kim, D. Jeon, S. Oh, K. Nam, S. Son, M.C. Gye, I. Shin, Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells, Environmental Research 175 (2019) 117–123. https://doi.org/10.1016/j.envres.2019.05.001
[95] M. Pourmadadi, A. Tajiki, M. Abdouss, A green approach for preparation of polyacrylic acid/starch incorporated with titanium dioxide nanocomposite as a biocompatible platform for curcumin delivery to breast cancer cells, International Journal of Biological Macromolecules 242 (2023) 124785. https://doi.org/10.1016/j.ijbiomac.2023.124785
[96] S.A. Ferraro, M.G. Domingo, A. Etcheverrito, D.G. Olmedo, D.R. Tasat, Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells, Journal of Trace Elements in Medicine and Biology 57 (2020) 126413. https://doi.org/10.1016/j.jtemb.2019.126413
[97] Q. Feng, Y. Liu, J. Huang, K. Chen, J. Huang, K. Xiao, Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings, Scientific Reports 8 (2018) 1–13.
[98] A.J. Giustini, A.A. Petryk, S.M. Cassim, J.A. Tate, I. Baker, P.J. Hoopes, Magnetic Nanoparticle Hyperthermia in Cancer Treatment, Nano Life 1 (2010) 10.1142/S1793984410000067. https://doi.org/10.1142/S1793984410000067
[99] K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J Neurooncol 103 (2011) 317–324. https://doi.org/10.1007/s11060-010-0389-0
[100] Y. Pu, H. Ke, C. Wu, S. Xu, Y. Xiao, L. Han, G. Lyu, S. Li, Superparamaetic iron oxide nanoparticles target BxPC-3 cells and silence MUC4 for theranostics of pancreatic cancer, Biochimica et Biophysica Acta (BBA) – General Subjects 1867 (2023) 130383. https://doi.org/10.1016/j.bbagen.2023.130383
[101] C. Nascimento, F. Castro, M. Domingues, A. Lage, É. Alves, R. de Oliveira, C. de Melo, C. Eduardo Calzavara-Silva, B. Sarmento, Reprogramming of tumor-associated macrophages by polyaniline-coated iron oxide nanoparticles applied to treatment of breast cancer, International Journal of Pharmaceutics 636 (2023) 122866. https://doi.org/10.1016/j.ijpharm.2023.122866
[102] T.-L. Ho, C. Mutalik, L. Rethi, H.-N.T. Nguyen, P.-R. Jheng, C.-C. Wong, T.-S. Yang, T.T. Nguyen, B.W. Mansel, C.-A. Wang, E.-Y. Chuang, Cancer-targeted fucoidan‑iron oxide nanoparticles for synergistic chemotherapy/chemodynamic theranostics through amplification of P-selectin and oxidative stress, International Journal of Biological Macromolecules 235 (2023) 123821. https://doi.org/10.1016/j.ijbiomac.2023.123821
[103] Z. Wang, Y. Wang, H. Li, Y. Lan, Z. Zeng, J. Yao, M. Li, H. Xia, Fabrication of Etoposide-loaded superparamagnetic iron oxide nanoparticles (SPIONs) induced apoptosis in glioma cancer cells, Process Biochemistry 128 (2023) 126–136. https://doi.org/10.1016/j.procbio.2023.02.026
[104] B. Freis, M.D.L.Á. Ramírez, S. Furgiuele, F. Journe, C. Cheignon, L.J. Charbonnière, C. Henoumont, C. Kiefer, D. Mertz, C. Affolter-Zbaraszczuk, F. Meyer, S. Saussez, S. Laurent, M. Tasso, S. Bégin-Colin, Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells, International Journal of Pharmaceutics 635 (2023) 122654. https://doi.org/10.1016/j.ijpharm.2023.122654
[105] Y. Li, X. Wang, B. Ding, C. He, C. Zhang, J. Li, H. Wang, Z. Li, G. Wang, Y. Wang, H. Chen, P. Ma, B. Sun, Synergistic Apoptosis-Ferroptosis: Oxaliplatin loaded amorphous iron oxide nanoparticles for High-efficiency therapy of orthotopic pancreatic cancer and CA19-9 levels decrease, Chemical Engineering Journal 464 (2023) 142690. https://doi.org/10.1016/j.cej.2023.142690
[106] S. Majeed, N.A.B. Mohd Rozi, M. Danish, M.N. Mohamad Ibrahim, E.L. Joel, In vitro apoptosis and molecular response of engineered green iron oxide nanoparticles with l-arginine in MDA-MB-231 breast cancer cells, Journal of Drug Delivery Science and Technology 80 (2023) 104185. https://doi.org/10.1016/j.jddst.2023.104185
[107] J. Nayak, K.S. Prajapati, S. Kumar, V.K. Vashistha, S.K. Sahoo, R. Kumar, Thiolated β-cyclodextrin modified iron oxide nanoparticles for effective targeted cancer therapy, Materials Today Communications 33 (2022) 104644. https://doi.org/10.1016/j.mtcomm.2022.104644
[108] S. Bhal, C.N. Kundu, Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics, Med Oncol 40 (2023) 82. https://doi.org/10.1007/s12032-022-01905-7
[109] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules 28 (2023) 710. https://doi.org/10.3390/molecules28020710
[110] B. Lu, X. Huang, J. Mo, W. Zhao, Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting, Frontiers in Pharmacology 7 (2016). https://www.frontiersin.org/articles/10.3389/fphar.2016.00084 (accessed July 4, 2023).
[111] M.F. Attia, N. Anton, J. Wallyn, Z. Omran, T.F. Vandamme, An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites, Journal of Pharmacy and Pharmacology 71 (2019) 1185–1198. https://doi.org/10.1111/jphp.13098
[112] Z. Yang, N. Sun, R. Cheng, C. Zhao, J. Liu, Z. Tian, Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells, Journal of Materials Chemistry B 5 (2017) 6762–6775.
[113] J. Li, W. Xu, X. Yuan, H. Chen, H. Song, B. Wang, J. Han, Polymer–lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells, International Journal of Nanomedicine (2017) 6909–6921.
[114] A. Abou-ElNaga, G. Mutawa, I.M. El-Sherbiny, H. Abd-ElGhaffar, A.A. Allam, J. Ajarem, S.A. Mousa, Novel nano-therapeutic approach actively targets human ovarian cancer stem cells after xenograft into nude mice, International Journal of Molecular Sciences 18 (2017) 813.
[115] R.K. Verma, W. Yu, S.P. Singh, S. Shankar, R.K. Srivastava, Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway, Nanomedicine: Nanotechnology, Biology and Medicine 11 (2015) 2061–2070.
[116] N. Sun, C. Zhao, R. Cheng, Z. Liu, X. Li, A. Lu, Z. Tian, Z. Yang, Cargo-free nanomedicine with pH sensitivity for codelivery of DOX conjugated prodrug with SN38 to synergistically eradicate breast cancer stem cells, Molecular Pharmaceutics 15 (2018) 3343–3355.
[117] M. Wang, F. Xie, X. Wen, H. Chen, H. Zhang, J. Liu, H. Zhang, H. Zou, Y. Yu, Y. Chen, Therapeutic PEG-ceramide nanomicelles synergize with salinomycin to target both liver cancer cells and cancer stem cells, Nanomedicine 12 (2017) 1025–1042.
[118] Y. Mi, Y. Huang, J. Deng, The enhanced delivery of salinomycin to CD133+ ovarian cancer stem cells through CD133 antibody conjugation with poly (lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles, Oncology Letters 15 (2018) 6611–6621.
[119] D. Chen, X. Pan, F. Xie, Y. Lu, H. Zou, C. Yin, Y. Zhang, J. Gao, Codelivery of doxorubicin and elacridar to target both liver cancer cells and stem cells by polylactide-co-glycolide/d-alpha-tocopherol polyethylene glycol 1000 succinate nanoparticles, International Journal of Nanomedicine (2018) 6855–6870.
[120] Y. Zhang, Q. Zhang, J. Sun, H. Liu, Q. Li, The combination therapy of salinomycin and gefitinib using poly (d, l-lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles for targeting both lung cancer stem cells and cancer cells, OncoTargets and Therapy (2017) 5653–5666.
[121] A.L.C. de Souza, A. do Rego Pires, C.A.F. Moraes, C.H.C. de Matos, K.I.P. dos Santos, R.C. e Silva, S.P.C. Acuña, S. dos Santos Araújo, Chromatographic methods for separation and identification of bioactive compounds, in: J.N. Cruz (Ed.), Drug Discovery and Design Using Natural Products, Springer Nature Switzerland, Cham, 2023: pp. 153–176. https://doi.org/10.1007/978-3-031-35205-8_6
[122] V. Ejigah, O. Owoseni, P. Bataille-Backer, O.D. Ogundipe, F.A. Fisusi, S.K. Adesina, Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect, Polymers (Basel) 14 (2022) 2601. https://doi.org/10.3390/polym14132601
[123] M.A. Dheyab, A.A. Aziz, P. Moradi Khaniabadi, M.S. Jameel, N. Oladzadabbasabadi, S.A. Mohammed, R.S. Abdullah, B. Mehrdel, Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine, Int J Mol Sci 23 (2022) 7400. https://doi.org/10.3390/ijms23137400
[124] Y. Zhao, W. Zhao, Y.C. Lim, T. Liu, Salinomycin-Loaded Gold Nanoparticles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death, Mol Pharm 16 (2019) 2532–2539. https://doi.org/10.1021/acs.molpharmaceut.9b00132
[125] C. Hu, M. Niestroj, D. Yuan, S. Chang, J. Chen, Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles, Int J Nanomedicine 10 (2015) 2065–2077. https://doi.org/10.2147/IJN.S72144
[126] H.J. Kim, H. Takemoto, Y. Yi, M. Zheng, Y. Maeda, H. Chaya, K. Hayashi, P. Mi, F. Pittella, R.J. Christie, Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles, ACS Nano 8 (2014) 8979–8991
[127] Y. Yi, H.J. Kim, P. Mi, M. Zheng, H. Takemoto, K. Toh, B.S. Kim, K. Hayashi, M. Naito, Y. Matsumoto, Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles, Journal of Controlled Release 244 (2016) 247–256.
[128] K. Cao, Y. Du, X. Bao, M. Han, R. Su, J. Pang, S. Liu, Z. Shi, F. Yan, S. Feng, Glutathione-Bioimprinted Nanoparticles Targeting of N6-methyladenosine FTO Demethylase as a Strategy against Leukemic Stem Cells, Small 18 (2022) e2106558. https://doi.org/10.1002/smll.202106558
[129] S.-T. Ning, S.-Y. Lee, M.-F. Wei, C.-L. Peng, S.Y.-F. Lin, M.-H. Tsai, P.-C. Lee, Y.-H. Shih, C.-Y. Lin, T.-Y. Luo, M.-J. Shieh, Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles, ACS Appl Mater Interfaces 8 (2016) 17793–17804. https://doi.org/10.1021/acsami.6b04403
[130] L.M. Lazer, Y. Kesavan, R. Gor, I. Ramachandran, S. Pathak, S. Narayan, M. Anbalagan, S. Ramalingam, Targeting colon cancer stem cells using novel doublecortin like kinase 1 antibody functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles, Colloids Surf B Biointerfaces 217 (2022) 112612. https://doi.org/10.1016/j.colsurfb.2022.112612
[131] E. Espinosa-Cano, M. Huerta-Madroñal, P. Cámara-Sánchez, J. Seras-Franzoso, S. Schwartz, I. Abasolo, J. San Román, M.R. Aguilar, Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways, Mater Sci Eng C Mater Biol Appl 124 (2021) 112024. https://doi.org/10.1016/j.msec.2021.112024
[132] S.R. Dash, S. Chatterjee, S. Sinha, B. Das, S. Paul, R. Pradhan, C. Sethy, R. Panda, J. Tripathy, C.N. Kundu, NIR irradiation enhances the apoptotic potentiality of quinacrine-gold hybrid nanoparticles by modulation of HSP-70 in oral cancer stem cells, Nanomedicine 40 (2022) 102502. https://doi.org/10.1016/j.nano.2021.102502
[133] S.R. Dash, B. Das, C. Das, S. Sinha, S. Paul, R. Pradhan, C.N. Kundu, Near-infrared enhances antiangiogenic potentiality of quinacrine-gold hybrid nanoparticles in breast cancer stem cells via deregulation of HSP-70/TGF-β, Nanomedicine (Lond) 18 (2023) 19–33. https://doi.org/10.2217/nnm-2022-0243
[134] Y. Xiao, D. Yu, Tumor microenvironment as a therapeutic target in cancer, Pharmacol Ther 221 (2021) 107753. https://doi.org/10.1016/j.pharmthera.2020.107753
[135] Q. Yu, Y. Qiu, J. Li, X. Tang, X. Wang, X. Cun, S. Xu, Y. Liu, M. Li, Z. Zhang, Q. He, Targeting cancer-associated fibroblasts by dual-responsive lipid-albumin nanoparticles to enhance drug perfusion for pancreatic tumor therapy, Journal of Controlled Release 321 (2020) 564–575. https://doi.org/10.1016/j.jconrel.2020.02.040
[136] F. Xing, J. Saidou, K. Watabe, Cancer associated fibroblasts (CAFs) in tumor microenvironment, Front Biosci 15 (2010) 166–179.
[137] S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, J.S. Pajarinen, H. Nejadnik, S. Goodman, M. Moseley, Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues, Nature Nanotechnology 11 (2016) 986–994.
[138] Y. Sang, Q. Deng, F. Cao, Z. Liu, Y. You, H. Liu, J. Ren, X. Qu, Remodeling macrophages by an iron nanotrap for tumor growth suppression, ACS Nano 15 (2021) 19298–19309.
[139] H. Zhao, B. Zhao, L. Wu, H. Xiao, K. Ding, C. Zheng, Q. Song, L. Sun, L. Wang, Z. Zhang, Amplified cancer immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment, ACS Nano 13 (2019) 12553–12566.
[140] S.R. Ali, S. Kumari, S.K. Prasad, R.S. Prasad, S.K. Sinha, A. Shakya, Drug development projects guided by ethnobotany and ethnopharmacology studies, in: J.N. Cruz (Ed.), Drug Discovery and Design Using Natural Products, Springer Nature Switzerland, Cham, 2023: pp. 3–21. https://doi.org/10.1007/978-3-031-35205-8_1
[141] Y. Zhang, Y. Chen, J. Li, X. Zhu, Y. Liu, X. Wang, H. Wang, Y. Yao, Y. Gao, Z. Chen, Development of toll-like receptor agonist-loaded nanoparticles as precision immunotherapy for reprogramming tumor-associated macrophages, ACS Applied Materials & Interfaces 13 (2021) 24442–24452.
[142] R. Pal, B. Chakraborty, A. Nath, L.M. Singh, M. Ali, D.S. Rahman, S.K. Ghosh, A. Basu, S. Bhattacharya, R. Baral, M. Sengupta, Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach, International Immunopharmacology 38 (2016) 332–341. https://doi.org/10.1016/j.intimp.2016.06.006
[143] L. Jiang, Z. Wang, Y. Wang, S. Liu, Y. Xu, C. Zhang, L. Li, S. Si, B. Yao, W. Dai, H. Li, Re-exposure of chitosan by an inhalable microsphere providing the re-education of TAMs for lung cancer treatment with assistant from sustained H2S generation, International Journal of Pharmaceutics (2023) 123142. https://doi.org/10.1016/j.ijpharm.2023.123142
[144] R.F. de A. Júnior, G.A. Lira, T. Schomann, R.S. Cavalcante, N.F. Vilar, R.C.M. de Paula, R.F. Gomes, C.K. Chung, C. Jorquera-Cordero, O. Vepris, A.B. Chan, L.J. Cruz, Retinoic acid-loaded PLGA nanocarriers targeting cell cholesterol potentialize the antitumour effect of PD-L1 antibody by preventing epithelial-mesenchymal transition mediated by M2-TAM in colorectal cancer, Translational Oncology 31 (2023) 101647. https://doi.org/10.1016/j.tranon.2023.101647
[145] J. Peng, J. Zhou, R. Sun, Y. Chen, D. Pan, Q. Wang, Y. Chen, Z. Gong, Q. Du, Dual-targeting of artesunate and chloroquine to tumor cells and tumor-associated macrophages by a biomimetic PLGA nanoparticle for colorectal cancer treatment, International Journal of Biological Macromolecules 244 (2023) 125163. https://doi.org/10.1016/j.ijbiomac.2023.125163
[146] C. Pundkar, F. Antony, X. Kang, A. Mishra, R.J. Babu, P. Chen, F. Li, A. Suryawanshi, Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity, Heliyon 9 (2023) e16688. https://doi.org/10.1016/j.heliyon.2023.e16688
[147] M. Mahmoudian, A. Namdar, P. Zakeri-Milani, H. Valizadeh, S. Elahi, A.M. Darwesh, J.M. Seubert, A.G. Siraki, W.H. Roa, N.B. Chacra, R. Löbenberg, Interaction of M2 macrophages with hepatocellular carcinoma co-culture system in the presence of doxorubicin-loaded nanoparticles, Journal of Drug Delivery Science and Technology 73 (2022) 103487. https://doi.org/10.1016/j.jddst.2022.103487
[148] C. Hu, X. Liu, W. Ran, J. Meng, Y. Zhai, P. Zhang, Q. Yin, H. Yu, Z. Zhang, Y. Li, Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer, Biomaterials 144 (2017) 60–72.
[149] X. Chen, W. Zhou, C. Liang, S. Shi, X. Yu, Q. Chen, T. Sun, Y. Lu, Y. Zhang, Q. Guo, Codelivery nanosystem targeting the deep microenvironment of pancreatic cancer, Nano Letters 19 (2019) 3527–3534.
[150] H. Zhang, L. Chen, Y. Zhao, N. Luo, J. Shi, S. Xu, L. Ma, M. Wang, M. Gu, C. Mu, Y. Xiong, Relaxin-encapsulated polymeric metformin nanoparticles remodel tumor immune microenvironment by reducing CAFs for efficient triple-negative breast cancer immunotherapy, Asian Journal of Pharmaceutical Sciences 18 (2023) 100796. https://doi.org/10.1016/j.ajps.2023.100796
[151] R. Pradhan, S. Paul, B. Das, S. Sinha, S.R. Dash, M. Mandal, C.N. Kundu, Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway, The Journal of Nutritional Biochemistry 113 (2023) 109257. https://doi.org/10.1016/j.jnutbio.2022.109257
[152] Y. Zhang, C.K. Elechalawar, M.N. Hossen, E.R. Francek, A. Dey, S. Wilhelm, R. Bhattacharya, P. Mukherjee, Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells, Bioactive Materials 6 (2021) 326–332. https://doi.org/10.1016/j.bioactmat.2020.08.009
[153] N. Nishida, H. Yano, T. Nishida, T. Kamura, M. Kojiro, Angiogenesis in Cancer, Vasc Health Risk Manag 2 (2006) 213–219.
[154] I. Zuazo-Gaztelu, O. Casanovas, Unraveling the Role of Angiogenesis in Cancer Ecosystems, Frontiers in Oncology 8 (2018). https://www.frontiersin.org/articles/10.3389/fonc.2018.00248 (accessed July 6, 2023).
[155] T. Liu, D. Zhang, W. Song, Z. Tang, J. Zhu, Z. Ma, X. Wang, X. Chen, T. Tong, A poly (l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor, Acta Biomaterialia 53 (2017) 179–189.
[156] A.V. Samrot, M.S. Sree, D. Rajalakshmi, L.N.R. Prakash, P. Prakash, Natural biopolymers as scaffold, in: J.N. Cruz (Ed.), Drug Discovery and Design Using Natural Products, Springer Nature Switzerland, Cham, 2023: pp. 23–36. https://doi.org/10.1007/978-3-031-35205-8_20.
[157] Z. Liu, N. Shen, Z. Tang, D. Zhang, L. Ma, C. Yang, X. Chen, An eximious and affordable GSH stimulus-responsive poly (α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy, Biomaterials Science 7 (2019) 2803–2811.
[158] D. Zhu, Y. Li, Z. Zhang, Z. Xue, Z. Hua, X. Luo, T. Zhao, C. Lu, Y. Liu, Recent advances of nanotechnology-based tumor vessel-targeting strategies, J Nanobiotechnology 19 (2021) 435. https://doi.org/10.1186/s12951-021-01190-y
[159] L. Battaglia, M. Gallarate, E. Peira, D. Chirio, I. Solazzi, S.M.A. Giordano, C.L. Gigliotti, C. Riganti, C. Dianzani, Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies, Nanotechnology 26 (2015) 255102.
[160] C.-F. Wang, E.M. Mäkilä, M.H. Kaasalainen, M.V. Hagström, J.J. Salonen, J.T. Hirvonen, H.A. Santos, Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy, Acta Biomaterialia 16 (2015) 206–214.
[161] J. Wang, H. Wang, J. Li, Z. Liu, H. Xie, X. Wei, D. Lu, R. Zhuang, X. Xu, S. Zheng, iRGD-decorated polymeric nanoparticles for the efficient delivery of vandetanib to hepatocellular carcinoma: preparation and in vitro and in vivo evaluation, ACS Applied Materials & Interfaces 8 (2016) 19228–19237.
[162] M. Shibuya, Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis, Genes Cancer 2 (2011) 1097–1105. https://doi.org/10.1177/1947601911423031
[163] X. Shan, W. Yu, X. Ni, T. Xu, C. Lei, Z. Liu, X. Hu, Y. Zhang, B. Cai, B. Wang, Effect of chitosan magnetic nanoparticles loaded with Ang2-siRNA plasmids on the growth of melanoma xenografts in nude mice, Cancer Management and Research (2020) 7475–7485.
[164] L. Zhang, Y. Qi, H. Min, C. Ni, F. Wang, B. Wang, H. Qin, Y. Zhang, G. Liu, Y. Qin, Cooperatively responsive peptide nanotherapeutic that regulates angiopoietin receptor Tie2 activity in tumor microenvironment to prevent breast tumor relapse after chemotherapy, ACS Nano 13 (2019) 5091–5102.
[165] S. Prabha, B. Sharma, V. Labhasetwar, Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice, Cancer Gene Therapy 19 (2012) 530–537.
[166] Y.-Y. Guan, X. Luan, J.-R. Xu, Y.-R. Liu, Q. Lu, C. Wang, H.-J. Liu, Y.-G. Gao, H.-Z. Chen, C. Fang, Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis, Biomaterials 35 (2014) 3060–3070.
[167] P. Mukherjee, R. Bhattacharya, P. Wang, L. Wang, S. Basu, J.A. Nagy, A. Atala, D. Mukhopadhyay, S. Soker, Antiangiogenic properties of gold nanoparticles, Clinical Cancer Research 11 (2005) 3530–3534.
[168] Y. Xu, Z. Wen, Z. Xu, Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism, Anticancer Research 29 (2009) 5103–5109.
[169] G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, S. Sarkar, Drug Resistance in Cancer: An Overview, Cancers (Basel) 6 (2014) 1769–1792. https://doi.org/10.3390/cancers6031769
[170] N. Vasan, J. Baselga, D.M. Hyman, A view on drug resistance in cancer, Nature 575 (2019) 299–309. https://doi.org/10.1038/s41586-019-1730-1
[171] T.B. Emran, A. Shahriar, A.R. Mahmud, T. Rahman, M.H. Abir, Mohd.F.-R. Siddiquee, H. Ahmed, N. Rahman, F. Nainu, E. Wahyudin, S. Mitra, K. Dhama, M.M. Habiballah, S. Haque, A. Islam, M.M. Hassan, Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches, Frontiers in Oncology 12 (2022). https://www.frontiersin.org/articles/10.3389/fonc.2022.891652 (accessed July 7, 2023).
[172] H.O. Alsaab, S. Sau, R.M. Alzhrani, V.T. Cheriyan, L.A. Polin, U. Vaishampayan, A.K. Rishi, A.K. Iyer, Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages, Biomaterials 183 (2018) 280–294.
[173] X. Song, L. Feng, C. Liang, K. Yang, Z. Liu, Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies, Nano Letters 16 (2016) 6145–6153.
[174] Z. Wang, Z. Xu, G. Zhu, A Platinum(IV) Anticancer Prodrug Targeting Nucleotide Excision Repair To Overcome Cisplatin Resistance, Angew Chem Int Ed Engl 55 (2016) 15564–15568. https://doi.org/10.1002/anie.201608936
[175] J. Chen, X. Wang, Y. Yuan, H. Chen, L. Zhang, H. Xiao, J. Chen, Y. Zhao, J. Chang, W. Guo, X.-J. Liang, Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine, Sci Adv 7 (2021) eabc5267. https://doi.org/10.1126/sciadv.abc5267
[176] S.K. Vishwakarma, P. Sharmila, A. Bardia, L. Chandrakala, N. Raju, G. Sravani, B.V.S. Sastry, M.A. Habeeb, A.A. Khan, M. Dhayal, Use of biocompatible sorafenib-gold nanoconjugates for reversal of drug resistance in human hepatoblatoma cells, Scientific Reports 7 (2017) 8539.
[177] K.L. Swetha, M. Paul, K.S. Maravajjala, S. Kumbham, S. Biswas, A. Roy, Overcoming drug resistance with a docetaxel and disulfiram loaded pH-sensitive nanoparticle, Journal of Controlled Release 356 (2023) 93–114. https://doi.org/10.1016/j.jconrel.2023.02.023
[178] N. Maliyakkal, A. Appadath Beeran, N. Udupa, Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells, Saudi Pharmaceutical Journal 29 (2021) 857–873. https://doi.org/10.1016/j.jsps.2021.07.001
[179] B. Du, W. Zhu, L. Yu, Y. Wang, M. Zheng, J. Huang, G. Shen, J. Zhou, H. Yao, TPGS2k-PLGA composite nanoparticles by depleting lipid rafts in colon cancer cells for overcoming drug resistance, Nanomedicine: Nanotechnology, Biology and Medicine 35 (2021) 102307. https://doi.org/10.1016/j.nano.2020.102307
[180] H. Guo, Y. Liu, Y. Wang, J. Wu, X. Yang, R. Li, Y. Wang, N. Zhang, pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells, Carbohydrate Polymers 111 (2014) 908–917. https://doi.org/10.1016/j.carbpol.2014.05.057
[181] S.F. El-Menshawe, O.M. Sayed, H.A. Abou Taleb, M.A. Saweris, D.M. Zaher, H.A. Omar, The use of new quinazolinone derivative and doxorubicin loaded solid lipid nanoparticles in reversing drug resistance in experimental cancer cell lines: A systematic study, Journal of Drug Delivery Science and Technology 56 (2020) 101569. https://doi.org/10.1016/j.jddst.2020.101569
[182] B.-Y. Liu, C. Wu, X.-Y. He, R.-X. Zhuo, S.-X. Cheng, Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment, Science Bulletin 61 (2016) 552–560. https://doi.org/10.1007/s11434-016-1039-5
[183] S.K. Singh, J.W. Lillard, R. Singh, Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer, Cancer Letters 427 (2018) 49–62. https://doi.org/10.1016/j.canlet.2018.04.017
[184] S.-E. Lee, C.D. Lee, J.B. Ahn, D.-H. Kim, J.K. Lee, J.-Y. Lee, J.-S. Choi, J.-S. Park, Hyaluronic acid-coated solid lipid nanoparticles to overcome drug-resistance in tumor cells, Journal of Drug Delivery Science and Technology 50 (2019) 365–371. https://doi.org/10.1016/j.jddst.2019.01.042
[185] S.R. Dash, C.N. Kundu, Photothermal Therapy: A New Approach to Eradicate Cancer, Current Nanoscience 18 (n.d.) 31–47.
[186] N. Ma, M.-K. Zhang, X.-S. Wang, L. Zhang, J. Feng, X.-Z. Zhang, NIR Light-Triggered Degradable MoTe2 Nanosheets for Combined Photothermal and Chemotherapy of Cancer, Advanced Functional Materials 28 (2018) 1801139. https://doi.org/10.1002/adfm.201801139
[187] L. Zhang, D. Jing, L. Wang, Y. Sun, J.J. Li, B. Hill, F. Yang, Y. Li, K.S. Lam, Unique Photochemo-Immuno-Nanoplatform against Orthotopic Xenograft Oral Cancer and Metastatic Syngeneic Breast Cancer, Nano Lett. 18 (2018) 7092–7103. https://doi.org/10.1021/acs.nanolett.8b03096
[188] Z. Wang, H. Xing, A. Liu, L. Guan, X. Li, L. He, Y. Sun, A.V. Zvyagin, B. Yang, Q. Lin, Multifunctional nano-system for multi-mode targeted imaging and enhanced photothermal therapy of metastatic prostate cancer, Acta Biomaterialia 166 (2023) 581–592. https://doi.org/10.1016/j.actbio.2023.05.014
[189] A. Granja, R. Lima-Sousa, C.G. Alves, D. de Melo-Diogo, C. Nunes, C.T. Sousa, I.J. Correia, S. Reis, Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer, Biomaterials Advances 151 (2023) 213443. https://doi.org/10.1016/j.bioadv.2023.213443
[190] L. Bian, N. Wang, K. Tuersong, A. Kaidierdan, J. Li, J. Gong, Oxygen vacancy engineering of TiO2 nanosheets for enhanced photothermal therapy against cervical cancer in the second near-infrared window, Colloids and Surfaces B: Biointerfaces 229 (2023) 113427. https://doi.org/10.1016/j.colsurfb.2023.113427
[191] J. Yang, Z. Sun, Q. Dou, S. Hui, P. Zhang, R. Liu, D. Wang, S. Jiang, NIR-light-responsive chemo-photothermal hydrogel system with controlled DOX release and photothermal effect for cancer therapy, Colloids and Surfaces A: Physicochemical and Engineering Aspects 667 (2023) 131407. https://doi.org/10.1016/j.colsurfa.2023.131407
[192] S.R. Dash, C.N. Kundu, Promising opportunities and potential risk of nanoparticle on the society, IET Nanobiotechnol 14 (2020) 253–260. https://doi.org/10.1049/iet-nbt.2019.0303