Photoresponsive Nanoparticles for One Health
Estelle Leonard, Suresh Sagadevan
Photoresponsive nanoparticles (NPs) have emerged as innovative tools within the “One Health” framework, addressing interconnected health issues spanning humans, animals, and the environment. “One Health” represents an integrative approach that underscores the interdependence of human, animal, and environmental health, tackling challenges such as zoonoses, food safety, and antimicrobial resistance. This study explores the role of photoresponsive NPs, focusing on photochromic and photothermal NPs, in advancing applications relevant to One Health. We describe the synthesis and functional characteristics of photochromic and photothermal NPs, emphasizing their responsiveness to light as a means of controlled action. Photoresponsive NPs such as zinc oxide, magnesium oxide, and titanium dioxide exhibit significant activity against phytopathogens, providing sustainable solutions to agricultural health threats and reducing reliance on chemical pesticides. Furthermore, the study details advancements in photoresponsive NPs for human health applications, including their utility in targeted drug delivery and release, cancer phototherapy, diagnostic imaging, biosensing, and wound healing. These applications showcase the potential of photoresponsive NPs to enhance treatment precision and efficacy while minimizing side effects.
Keywords
Photoresponsive Nanoparticles, Photochromic Nanoparticles, Photothermal Nanoparticles, Drug Delivery, Drug Release
Published online 12/15/2024, 21 pages
Citation: Estelle Leonard, Suresh Sagadevan, Photoresponsive Nanoparticles for One Health, Materials Research Foundations, Vol. 171, pp 1-21, 2024
DOI: https://doi.org/10.21741/9781644903339-1
Part of the book on Advances in Healthcare and Nanoparticle Toxicology
References
[1] M. Hayyan, M.A. Hashim, I.M. AlNashef, Superoxide Ion: Generation and Chemical Implications, Chem. Rev. 116 (2016) 3029–3085. https://doi.org/10.1021/acs.chemrev.5b00407
[2] J. Bogdan, J. Pławińska-Czarnak, J. Zarzyńska, Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review, Nanoscale Res Lett 12 (2017) 225. https://doi.org/10.1186/s11671-017-2007-y
[3] A.J. Das, R. Kumar, S.P. Goutam, Sunlight Irradiation Induced Synthesis of Silver Nanoparticles using Glycolipid Bio-surfactant and Exploring the Antibacterial Activity, J Bioengineer & Biomedical Sci 06 (2016). https://doi.org/10.4172/2155-9538.1000208
[4] L.L.G. Al-mahamad, Analytical study to determine the optical properties of gold nanoparticles in the visible solar spectrum, Heliyon 8 (2022) e09966. https://doi.org/10.1016/j.heliyon.2022.e09966
[5] I. Apostolova, A. Apostolov, J. Wesselinowa, Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia, Materials 16 (2023) 2353. https://doi.org/10.3390/ma16062353
[6] J. Low, M. Kreider, D. Pulsifer, A. Jones, T. Gilani, Band Gap Energy in Silicon, AJUR 7 (2008). https://doi.org/10.33697/ajur.2008.010
[7] A. Kessler, J. Hedberg, E. Blomberg, I. Odnevall, Reactive Oxygen Species Formed by Metal and Metal Oxide Nanoparticles in Physiological Media—A Review of Reactions of Importance to Nanotoxicity and Proposal for Categorization, Nanomaterials 12 (2022) 1922. https://doi.org/10.3390/nano12111922
[8] Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles, ACS Nano 6 (2012) 5164–5173. https://doi.org/10.1021/nn300934k
[9] Z. Yu, Q. Li, J. Wang, Y. Yu, Y. Wang, Q. Zhou, P. Li, Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field, Nanoscale Res Lett 15 (2020) 115. https://doi.org/10.1186/s11671-020-03344-7
[10] R.M. Atlas, One Health: Its Origins and Future, in: J.S. Mackenzie, M. Jeggo, P. Daszak, J.A. Richt (Eds.), One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases: The Concept and Examples of a One Health Approach, Springer, Berlin, Heidelberg, 2013: pp. 1–13. https://doi.org/10.1007/82_2012_223
[11] J. Zinsstag, E. Schelling, D. Waltner-Toews, M. Tanner, From “one medicine” to “one health” and systemic approaches to health and well-being, Preventive Veterinary Medicine 101 (2011) 148–156. https://doi.org/10.1016/j.prevetmed.2010.07.003
[12] C.W. Schwabe, Veterinary medicine and human health., Baltimore: Williams & Wilkins, 1984.
[13] D. Destoumieux-Garzón, P. Mavingui, G. Boetsch, J. Boissier, F. Darriet, P. Duboz, C. Fritsch, P. Giraudoux, F. Le Roux, S. Morand, C. Paillard, D. Pontier, C. Sueur, Y. Voituron, The One Health Concept: 10 Years Old and a Long Road Ahead, Frontiers in Veterinary Science 5 (2018) online.
[14] M. Hristovski, A. Cvetkovik, I. Cvetkovik, V. Dukoska, Concept of one health-a new professional imperative, Maced J Med Sci 3 (2010) 229–232.
[15] L. Cantas, K. Suer, Review: The Important Bacterial Zoonoses in “One Health” Concept, Frontiers in Public Health 2 (2014) online.
[16] R.D. Griego, T. Rosen, I.F. Orengo, J.E. Wolf, Dog, cat, and human bites: A review, Journal of the American Academy of Dermatology 33 (1995) 1019–1029. https://doi.org/10.1016/0190-9622(95)90296-1
[17] M. Assis, M.O. Gonçalves, C.C. de Foggi, M. Burck, S. dos Passos Ramos, L.O. Libero, A.R.C. Braga, E. Longo, C.P. de Sousa, Applications of (nano)encapsulated natural products by physical and chemical methods, in: J.N. Cruz (Ed.), Drug Discovery and Design Using Natural Products, Springer Nature Switzerland, Cham, 2023: pp. 323–374. https://doi.org/10.1007/978-3-031-35205-8_11
[18] A. Easton, New virus is identified in Malaysia epidemic, BMJ 318 (1999) 1232–1232. https://doi.org/10.1136/bmj.318.7193.1232b
[19] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules 28 (2023) 710. https://doi.org/10.3390/molecules28020710
[20] A.H.C. van Bruggen, E.M. Goss, A. Havelaar, A.D. van Diepeningen, M.R. Finckh, J.G. Morris, One Health – Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health, Science of The Total Environment 664 (2019) 927–937. https://doi.org/10.1016/j.scitotenv.2019.02.091
[21] M.A. Clark, M. Springmann, J. Hill, D. Tilman, Multiple health and environmental impacts of foods, Proceedings of the National Academy of Sciences 116 (2019) 23357–23362. https://doi.org/10.1073/pnas.1906908116
[22] A. White, J.M. Hughes, Critical Importance of a One Health Approach to Antimicrobial Resistance, EcoHealth 16 (2019) 404–409. https://doi.org/10.1007/s10393-019-01415-5
[23] S. Hernando-Amado, T.M. Coque, F. Baquero, J.L. Martínez, Defining and combating antibiotic resistance from One Health and Global Health perspectives, Nat Microbiol 4 (2019) 1432–1442. https://doi.org/10.1038/s41564-019-0503-9
[24] S.A. McEwen, P.J. Collignon, Antimicrobial Resistance: a One Health Perspective, in: Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, John Wiley & Sons, Ltd, 2018: pp. 521–547. https://doi.org/10.1128/9781555819804.ch25
[25] J.N. Cruz, S. Muzammil, A. Ashraf, M.U. Ijaz, M.H. Siddique, R. Abbas, M. Sadia, Saba, S. Hayat, R.R. Lima, A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents, Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e29500
[26] L.H. Kahn, Antimicrobial resistance: a One Health perspective, Transactions of The Royal Society of Tropical Medicine and Hygiene 111 (2017) 255–260. https://doi.org/10.1093/trstmh/trx050
[27] M.O.A. Sommer, G. Dantas, G.M. Church, Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora, Science 325 (2009) 1128–1131. https://doi.org/10.1126/science.1176950
[28] M. Barron, The Gut Resistome and the Spread of Antimicrobial Resistance, ASM.Org (2022). https://asm.org:443/Articles/2022/June/The-Gut-Resistome-and-the-Spread-of-Antimicrobial (accessed July 31, 2023).
[29] D.-W. Kim, C.-J. Cha, Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission, Exp Mol Med 53 (2021) 301–309. https://doi.org/10.1038/s12276-021-00569-z
[30] W.A. Velema, J.P. van der Berg, M.J. Hansen, W. Szymanski, A.J.M. Driessen, B.L. Feringa, Optical control of antibacterial activity., Nat. Chem. 5 (2013) 924–928. https://doi.org/10.1038/nchem.1750
[31] V.A. Barachevsky, Photochromic Nanoparticles and Their Properties, Crystallography Reports 63 (2018) 271–275. https://doi.org/10.1134/S1063774518020025/METRICS
[32] B. Hatamluyi, M. Rezayi, S. Amel Jamehdar, K.S. Rizi, M. Mojarrad, Z. Meshkat, H. Choobin, S. Soleimanpour, M.T. Boroushaki, Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification, Biosensors and Bioelectronics 207 (2022) 114209. https://doi.org/10.1016/J.BIOS.2022.114209
[33] N.G. Naga, M.I. Shaaban, Quorum sensing and quorum sensing inhibitors of natural origin, in: J.N. Cruz (Ed.), Drug Discovery and Design Using Natural Products, Springer Nature Switzerland, Cham, 2023: pp. 395–416. https://doi.org/10.1007/978-3-031-35205-8_13
[34] M. Babazadeh-Mamaqani, H. Roghani-Mamaqani, A. Abdollahi, M. Salami-Kalajahi, Optical Chemosensors based on Spiropyran-Doped Polymer Nanoparticles for Sensing pH of Aqueous Media, Langmuir 38 (2022) 9410–9420. https://doi.org/10.1021/acs.langmuir.2c01389
[35] D. Lu, S. Liu, H. Zhang, X. Zhang, W. Li, Synthesis and characterization of photochromic polyurethane nanoparticles by miniemulsion polymerization, Dyes and Pigments 219 (2023) 111647. https://doi.org/10.1016/j.dyepig.2023.111647
[36] J. Zheng, Y. Di, L. Gao, X. Kong, Y. Zheng, J. Han, J. Wang, Construction of fluorescent biosensing system based on DNA templated quantum dots- graphene oxide interactions for detecting carcinoembryonic antigen, Materials Technology 37 (2022) 2116–2122. https://doi.org/10.1080/10667857.2021.1943120
[37] V.S. Nagtode, C. Cardoza, H.K.A. Yasin, S.N. Mali, S.M. Tambe, P. Roy, K. Singh, A. Goel, P.D. Amin, B.R. Thorat, J.N. Cruz, A.P. Pratap, Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability─Comparison, Applications, Market, and Future Prospects, ACS Omega 8 (2023) 11674–11699. https://doi.org/10.1021/acsomega.3c00591
[38] S.G. Alamdari, M. Amini, N. Jalilzadeh, B. Baradaran, R. Mohammadzadeh, A. Mokhtarzadeh, F. Oroojalian, Recent advances in nanoparticle-based photothermal therapy for breast cancer, Journal of Controlled Release 349 (2022) 269–303. https://doi.org/10.1016/j.jconrel.2022.06.050
[39] R. Xiong, F. Sauvage, J.C. Fraire, C. Huang, S.C. De Smedt, K. Braeckmans, Photothermal Nanomaterial-Mediated Photoporation, Accounts of Chemical Research 56 (2023) 631–643. https://doi.org/10.1021/acs.accounts.2c00770
[40] W. Zhao, Y. Liu, P. Zhang, P. Zhou, Z. Wu, B. Lou, Y. Jiang, N. Shakoor, M. Li, Y. Li, I. Lynch, Y. Rui, Z. Tan, Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture, NanoImpact 28 (2022) 100420. https://doi.org/10.1016/j.impact.2022.100420
[41] K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, Journal of Alloys and Compounds 727 (2017) 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
[42] R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing, Journal of Science: Advanced Materials and Devices 2 (2017) 51–58. https://doi.org/10.1016/j.jsamd.2017.02.002
[43] E. Kanakari, C. Dendrinou-Samara, Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles, Materials 16 (2023) 2388. https://doi.org/10.3390/ma16062388
[44] C. Wang, X. Hu, Y. Gao, Y. Ji, ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells, BioMed Research International 2015 (2015) 1–9. https://doi.org/10.1155/2015/423287
[45] A. Raghunath, E. Perumal, Metal oxide nanoparticles as antimicrobial agents: a promise for the future, International Journal of Antimicrobial Agents 49 (2017) 137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011
[46] Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni, Appl Environ Microbiol 77 (2011) 2325–2331. https://doi.org/10.1128/AEM.02149-10
[47] N. Pariona, F. Paraguay-Delgado, S. Basurto-Cereceda, J.E. Morales-Mendoza, L.A. Hermida-Montero, A.I. Mtz-Enriquez, Shape-dependent antifungal activity of ZnO particles against phytopathogenic fungi, Appl Nanosci 10 (2020) 435–443. https://doi.org/10.1007/s13204-019-01127-w
[48] J.A. Wrather, S.R. Koenning, Estimates of Disease Effects on Soybean Yields in the United States 2003 to 2005, J Nematol 38 (2006) 173–180.
[49] R. Dean, J. a. L. Van Kan, Z.A. Pretorius, K.E. Hammond-Kosack, A. Di Pietro, P.D. Spanu, J.J. Rudd, M. Dickman, R. Kahmann, J. Ellis, G.D. Foster, The Top 10 fungal pathogens in molecular plant pathology, Molecular Plant Pathology 13 (2012) 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
[50] P. Tryfon, N.N. Kamou, S. Mourdikoudis, K. Karamanoli, U. Menkissoglu-Spiroudi, C. Dendrinou-Samara, CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application, Materials 14 (2021) 7600. https://doi.org/10.3390/ma14247600
[51] J.W. Kronstad, ed., Fungal pathology, Kluwer Academic Publishers, Dordrecht, 2000.
[52] G.S. Abawi, R.G. Grogan, Epidemiology of diseases caused by Sclerotinia spp., Phytopathology 69 (1979) 899–904.
[53] P.A. Arciniegas-Grijalba, M.C. Patiño-Portela, L.P. Mosquera-Sánchez, B.E. Guerra Sierra, J.E. Muñoz-Florez, L.A. Erazo-Castillo, J.E. Rodríguez-Páez, ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp., Materials Science and Engineering: C 98 (2019) 808–825. https://doi.org/10.1016/j.msec.2019.01.031
[54] H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. Abdul Rahman, Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review, J Animal Sci Biotechnol 10 (2019) 57. https://doi.org/10.1186/s40104-019-0368-z
[55] D. Jain, Shivani, A.A. Bhojiya, H. Singh, H.K. Daima, M. Singh, S.R. Mohanty, B.J. Stephen, A. Singh, Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties, Front. Chem. 8 (2020) 778. https://doi.org/10.3389/fchem.2020.00778
[56] Z. Luksiene, N. Rasiukeviciute, B. Zudyte, N. Uselis, Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles, Journal of Photochemistry and Photobiology B: Biology 203 (2020) 111656. https://doi.org/10.1016/j.jphotobiol.2019.111656
[57] M.A. Schell, Control of Virulence and Pathogenicity Genes of Ralstonia Solanacearum by an Elaborate Sensory Network, Annu. Rev. Phytopathol. 38 (2000) 263–292. https://doi.org/10.1146/annurev.phyto.38.1.263
[58] L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, W. Ding, Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum, Front. Microbiol. 9 (2018) 790. https://doi.org/10.3389/fmicb.2018.00790
[59] T. Ahmed, M. Noman, M. Shahid, M.S. Shahid, B. Li, Antibacterial potential of green magnesium oxide nanoparticles against rice pathogen Acidovorax oryzae, Materials Letters 282 (2021) 128839. https://doi.org/10.1016/j.matlet.2020.128839
[60] M.I. Khan, M.N. Akhtar, N. Ashraf, J. Najeeb, H. Munir, T.I. Awan, M.B. Tahir, M.R. Kabli, Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy, Appl Nanosci 10 (2020) 2351–2364. https://doi.org/10.1007/s13204-020-01414-x
[61] L. Kőrösi, B. Pertics, G. Schneider, B. Bognár, J. Kovács, V. Meynen, A. Scarpellini, L. Pasquale, M. Prato, Photocatalytic Inactivation of Plant Pathogenic Bacteria Using TiO2 Nanoparticles Prepared Hydrothermally, Nanomaterials 10 (2020) 1730. https://doi.org/10.3390/nano10091730
[62] M.L. Paret, G.E. Vallad, D.R. Averett, J.B. Jones, S.M. Olson, Photocatalysis: Effect of Light-Activated Nanoscale Formulations of TiO2 on Xanthomonas perforans and Control of Bacterial Spot of Tomato, Phytopathology® 103 (2013) 228–236. https://doi.org/10.1094/PHYTO-08-12-0183-R
[63] P. Pan, D. Svirskis, S.W.P. Rees, D. Barker, G.I.N. Waterhouse, Z. Wu, Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications, Journal of Controlled Release 338 (2021) 446–461. https://doi.org/10.1016/j.jconrel.2021.08.053
[64] G. Shim, S. Jeong, J.L. Oh, Y. Kang, Lipid-based nanoparticles for photosensitive drug delivery systems, Journal of Pharmaceutical Investigation 52 (2022) 151–160. https://doi.org/10.1007/s40005-021-00553-9
[65] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations 10 (2023) 21. https://doi.org/10.3390/separations10010021
[66] T. Li, Y. Geng, H. Zhang, J. Wang, Y. Feng, Z. Chen, X. Xie, X. Qin, S. Li, C. Wu, Y. Liu, H. Yang, A versatile nanoplatform for synergistic chemo-photothermal therapy and multimodal imaging against breast cancer, Taylor & Francis, 2020. https://doi.org/10.1080/17425247.2020.1736033
[67] E.G.R. Dias, K. Davis, M.S. do Nascimento Remígio, T.S. Rabelo, M.S.M. da Silva, J.K.L. Vale, Essential oil as a source of bioactive compounds for the pharmaceutical industry, in: J.N. Cruz (Ed.), Drug Discovery and Design Using Natural Products, Springer Nature Switzerland, Cham, 2023: pp. 501–524. https://doi.org/10.1007/978-3-031-35205-8_18
[68] X. Liang, Y. Xie, J. Wu, J. Wang, M. Petković, M. Stepić, J. Zhao, J. Ma, L. Mi, Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo, Journal of Photochemistry and Photobiology. B, Biology 215 (2021). https://doi.org/10.1016/J.JPHOTOBIOL.2020.112122
[69] D.R. Sánchez-Ramírez, R. Domínguez-Ríos, J. Juárez, M. Valdés, N. Hassan, A. Quintero-Ramos, A. del Toro-Arreola, S. Barbosa, P. Taboada, A. Topete, A. Daneri-Navarro, Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer, Materials Science and Engineering: C 116 (2020) 111196. https://doi.org/10.1016/J.MSEC.2020.111196
[70] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Frontiers in Microbiology 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743
[71] Y. Jia, Y. Song, Y. Qu, J. Peng, K. Shi, D. Du, H. Li, Y. Lin, Z. Qian, Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer, Nano Research 13 (2020) 1739–1748. https://doi.org/10.1007/s12274-020-2800-2
[72] B. Purohit, P.R. Vernekar, N.P. Shetti, P. Chandra, Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis, Sensors International 1 (2020) 100040. https://doi.org/10.1016/J.SINTL.2020.100040
[73] M.R. Hasan, P. Sharma, R. Pilloton, M. Khanuja, J. Narang, Colorimetric biosensor for the naked-eye detection of ovarian cancer biomarker PDGF using citrate modified gold nanoparticles, Biosensors and Bioelectronics: X 11 (2022) 100142. https://doi.org/10.1016/j.biosx.2022.100142
[74] L. Qiu, C. Wang, M. Lan, Q. Guo, X. Du, S. Zhou, P. Cui, T. Hong, P. Jiang, J. Wang, J. Xia, Antibacterial Photodynamic Gold Nanoparticles for Skin Infection, ACS Applied Bio Materials 4 (2021) 3124–3132. https://doi.org/10.1021/acsabm.0c01505
[75] I.N. de F. Ramos, M.F. da Silva, J.M.S. Lopes, J.N. Cruz, F.S. Alves, J. de A.R. do Rego, M.L. da Costa, P.P. de Assumpção, D. do S. Barros Brasil, A.S. Khayat, Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer, Molecules 28 (2023) 5587. https://doi.org/10.3390/molecules28145587