–
Random Cellular Scanning Method for Ablative Laser Micro Machining
WITKOWSKI Grzegorz
Abstract. The article indicates the impact of the laser beam trajectory on the effect of interaction on material during the laser milling process, which is not often mentioned in scientific reports. The article presents the results of an experiment consisting in random cellular scanning method. For this purpose, an original system of random surface scanning was developed and tested. The processed area was divided into finite unit cells, which were once, randomly processed with a laser beam. The procedure was repeated for subsequent scanning processes. The article focuses on determining and comparing Ra and Sa roughness parameter values for random cellular scanning strategy during changes of number of processed layers. The micromachining process was performed using a laser device with UV picosecond pulses.
Keywords
Laser Milling, Laser Machining, Scanning Strategy
Published online 10/20/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: WITKOWSKI Grzegorz, Random Cellular Scanning Method for Ablative Laser Micro Machining, Materials Research Proceedings, Vol. 45, pp 41-48, 2024
DOI: https://doi.org/10.21741/9781644903315-6
The article was published as article 6 of the book Terotechnology XIII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] S. Faas, U. Bielke, R. Weber and T. Graf. Prediction of the surface structures resulting from heat accumulation during processing with picosecond laser pulses at the average power of 420 W, Applied Physics A 124 (2018) art.612. https://doi.org/10.1007/s00339-018-2040-4
[2] A. Žemaitis, M. Gaidys, M. Brikas, P. Gecys, G. Raciukaitis and M. Gedvilas. (2018). Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Scientific Reports 8 (2018) art.17376. https://doi.org/10.1038/s41598-018-35604-z
[3] S. Rung, N. Häcker and R. Hellmann. Micromachining of Alumina Using a High-Power Ultrashort-Pulsed Laser, Materials 15 (2022), art. 5328. https://doi.org/10.3390/ma15155328
[4], E. Hørdum Valente, C. Gundlach, T. L. Christiansen and M. A. J. Somers. Effect of Scanning Strategy During Selective Laser Melting on Surface Topography, Porosity, and Microstructure of Additively Manufactured Ti-6Al-4V, Applied Sciences 9 (2019) art. 5554. https://doi.org/10.3390/app9245554
[5] G. Witkowski, S. Tofil and K. Mulczyk. Effect of laser beam trajectory on pocket geometry in laser micromachining, Open Engineering 10 (2020) 830-838. https://doi.org/10.1515/eng-2020-0093
[6] B. AlMangour, D. Grzesiak and J-M. Yang. Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites, Journal of Alloys and Compounds 728 (2017) 424-435. https://doi.org/10.1016/j.jallcom.2017.08.022
[7] A. Szczotok, J. Nawrocki and J. Pietraszek, The Impact of the Thickness of the Ceramic Shell Mould on the (γ + γ′) Eutectic in the IN713C Superalloy Airfoil Blade Casting, Arch. Metall. Mater. 62 (2017) 587-593. https://doi.org/10.1515/amm-2017-0087
[8] D. Siwiec, R. Dwornicka and A. Pacana, Improving the process of achieving required microstructure and mechanical properties of 38MNVS6 steel, METAL 2020 – 29th Int. Conf. Metall. Mater., (2020) 591-596. https://doi.org/10.37904/metal.2020.3525
[9] T. Lipiński, R. Ulewicz, The effect of the impurities spaces on the quality of structural steel working at variable loads, Open Eng. 11 (2021) 233-238. https://doi.org/10.1515/eng-2021-0024
[10] N. Radek, J. Pietraszek and Ł. Pasieczynski, Technology and application of anti-graffiti coating systems for rolling stock, METAL 2019 – 28th Int. Conf. Metall. Mater., (2019) 1127-1132.
[11] N. Radek, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, J. Świderski, M. Radek and D. Gontarski, The effect of laser treatment on operational properties of ESD coatings, METAL 2021 – 30th Anniversary Int. Conf. Metall. Mater., (2021) 876-882. https://doi.org/10.37904/metal.2021.4212
[12] N. Radek, A. Kalinowski, J. Pietraszek, J. Orman, M. Szczepaniak, A. Januszko, J. Kamiński, J. Bronček and O. Paraska, Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122. https://doi.org/10.30657/pea.2022.28.13
[13] N. Radek, J. Pietraszek, A. Szczotok, P. Fabian and A. Kalinowski, Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[14] N. Radek, A. Kalinowski, J. Orman, M. Szczepaniak, J. Świderski, D. Gontarski, J. Bronček and J. Pietraszek, Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater., (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[15] D. Siwiec, R. Dwornicka and A. Pacana, Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Mater. Res. Proc. 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
[16] K. Czerwinska, R. Dwornicka and A. Pacana, Improving quality control of siluminial castings used in the automotive industry, METAL 2020 – 29th Int. Conf. Metall. Mater., (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661
[17] M. Zenkiewicz, T. Zuk and J. Pietraszek, Modeling electrostatic separation of mixtures of poly(ϵ-caprolactone) with polyfvinyl chloride) or polyfethylene terephthalate), Przemysl Chemiczny 95 (2016) 1687-1692. https://doi.org/10.15199/62.2016.9.6
[18] M. Zenkiewicz, T. Zuk, J. Pietraszek, P. Rytlewski, K. Moraczewski and M. Stepczyńska, Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835
[19] A. Deja, R. Ulewicz and Y. Kyrychenko, Analysis and assessment of environmental threats in maritime transport, Transportation Research Procedia 55 (2021) 1073-1080. https://doi.org/10.1016/j.trpro.2021.07.078
[20] Ł.J. Orman, N. Radek, J. Pietraszek and A. Szczotok, Laser treated metal heat exchangers for boiling heat transfer enhancement, METAL 2021 – 30th Int. Conf. Metall. Mater., (2021) 870-875. https://doi.org/10.37904/metal.2021.4209
[21] Ł.J. Orman, N. Radek, J. Pietraszek, J. Wojtkowiak and M. Szczepaniak, Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement, Materials 16 (2023) art. 1365. https://doi.org/10.3390/ma16041365
[22] Ł.J. Orman, N. Radek, S. Honus and J. Pietraszek, Application of laser treatment technology for boiling heat transfer augmentation, Prod. Eng. Arch. 30 (2024) 259-265. https://doi.org/10.30657/pea.2024.30.25
[23] A. Goroshko, V. Royzman and J. Pietraszek, Construction and practical application of hybrid statistically-determined models of multistage mechanical systems, Mechanika 20 (2014) 489-493. https://doi.org/10.5755/j01.mech.20.5.8221
[24] I. Drach, A. Goroshko and R. Dwornicka, Design Principles of Horizontal Drum Machines with Low Vibration, Adv. Sci. Technol. Res. J. 15 (2021) 258-268. https://doi.org/10.12913/22998624/136441
[25] J.M. Djoković, R.R. Nikolić, J. Bujnak, B. Hadzima, F. Pastorek, R. Dwornicka and R. Ulewicz, Selection of the Optimal Window Type and Orientation for the Two Cities in Serbia and One in Slovakia, Energies 15 (2022) art. 323. https://doi.org/10.3390/en15010323
[26] Ł.J. Orman, G. Majewski, N. Radek and J. Pietraszek, Analysis of Thermal Comfort in Intelligent and Traditional Buildings, Energies 15 (2022) art. 6522. https://doi.org/10.3390/en15186522
[27] Ł.J. Orman, N. Krawczyk, N. Radek, S. Honus, J. Pietraszek, L. Dębska, A. Dudek and A. Kalinowski, Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings, Energies 16 (2023) art. 6663. https://doi.org/10.3390/en16186663
[28] E. Augustyn, M.S. Kozien, Analytical solution of excited torsional vibrations of prismatic thin-walled beams, Journal of Theoretical and Applied Mechanics (Poland) 53 (2015) 991-1004. https://doi.org/10.15632/jtam-pl.53.4.991
[29] E. Augustyn, M.S. Kozień and M. Prącik, FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes, Archives of Acoustics 39 (2014) 639-644. https://doi.org/10.2478/aoa-2014-0069
[30] A. Bąkowski, M. Kekez, L. Radziszewski and A. Sapietova, Vibroacoustic real time fuel classification in diesel engine, Archives of Acoustics 43 (2018) 385-395. https://doi.org/10.24425/123910
[31] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[32] R. Dwornicka, J. Pietraszek, The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09
[33] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[34] J. Pietraszek, A. Szczotok and E. Kocyłowska, Factorial approach to assessment of GPU computational efficiency in surrogate models, Adv. Mater. Res. 874 (2014) 157-162. https://doi.org/10.4028/www.scientific.net/AMR.874.157
[35] J. Pietraszek, M. Seńcio, J. Diakun, A. Gądek-Moszczak and M. Stojek, The parametric RSM model with higher order terms for the meat tumbler machine process, Solid State Phenom. 235 (2015) 37-44. https://doi.org/10.4028/www.scientific.net/SSP.235.37
[36] J. Pietraszek, Fuzzy regression compared to classical experimental design in the case of flywheel assembly, Lecture Notes in Computer Science 7267 LNAI (2012) 310-317. https://doi.org/10.1007/978-3-642-29347-4_36
[37] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[38] S. Borkowski, M. Ingaldi, Workers evaluations of ribbed wire competition and rolling mill technological possibilities, METAL 2013 – 22nd Int. Conf. Metall. Mater., (2013) 1920-1925.
[39] N. Radek, J. Pietraszek and B. Antoszewski, The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology, Adv. Mater. Res. 874 (2014) 29-34. https://doi.org/10.4028/www.scientific.net/AMR.874.29
[40] R. Ulewicz, B. Krstić and M. Ingaldi, Mining Industry 4.0 – Opportunities and Barriers, Acta Montanistica Slovaca 27 (2022) 291-305. https://doi.org/10.46544/AMS.v2i2.02