Optimization Processes Using Bioinspired Algorithms – A Literature Analysis

Optimization Processes Using Bioinspired Algorithms – A Literature Analysis

YEFYMENKO Oleksandr, DMYTRIIEVA Oksana, KUZIOR Aleksandra, PTUSHKA Anastasiia, KASHKEVICH Svitlana

Abstract. Today’s management decisions depend on the successful solution of optimization problems that are discontinuous, undifferentiated, and multimodal. One approach to improving the efficiency of solving optimization problems is bioinspired algorithms. The article briefly reviews work on bio-inspired algorithms and classical algorithms in relation to optimization processes. Based on the literature analysis, the weaknesses of classical and bioinspired algorithms are identified. Further research directions are also identified.

Keywords
Optimization, Bioinspired Algorithms, Management, Dynamic Systems

Published online 10/20/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: YEFYMENKO Oleksandr, DMYTRIIEVA Oksana, KUZIOR Aleksandra, PTUSHKA Anastasiia, KASHKEVICH Svitlana, Optimization Processes Using Bioinspired Algorithms – A Literature Analysis, Materials Research Proceedings, Vol. 45, pp 296-303, 2024

DOI: https://doi.org/10.21741/9781644903315-34

The article was published as article 34 of the book Terotechnology XIII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. V. Shyshatskyi, O. M. Bashkyrov and O. M. Kostyna, Rozvytok intehrovanykh system zv’yazku ta peredachi danykh dlya potreb Zbroynykh Syl, Naukovo-tekhnichnyy zhurnal Ozbroyennya ta viys’kova tekhnika 1(5) (2015).
[2] V. Dudnyk, Y. Sinenko, M. Matsyk, Y. Demchenko, R. Zhyvotovskyi, I. Repilo, O. Zabolotnyi, A. Simonenko, P. Pozdniakov and A. Shyshatskyi, Development of a method for training artificial neural networks for intelligent decision support systems, Eastern-Europ. J. Enterprise Technol. 3 (2020) 37–47. https://doi.org/10.15587/1729-4061.2020.203301
[3] O. Sova, A. Shyshatskyi, O. Salnikova, O. Zhuk, O. Trotsko and Y. Hrokholskyi, Development of a method for assessment and forecasting of the radio electronic environment, EUREKA: Physics and Eng. 4 (2021) 30-40. https://doi.org/10.21303/2461-4262.2021.001940
[4] H. Pievtsov, O. Turinskyi, R. Zhyvotovskyi, O. Sova, O. Zvieriev, B. Lanetskii and A. Shyshatskyi, Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Eng. 4 (2020) 78-89. https://doi.org/10.21303/2461-4262.2020.001353
[5] P. Zuiev, R. Zhyvotovskyi, O. Zvieriev, S. Hatsenko, V. Kuprii, O. Nakonechnyi, M. Adamenko, A. Shyshatskyi, Y. Neroznak and V. Velychko, Development of complex methodology of processing heterogeneous data in intelligent decision support systems, Eastern-Europ. J. Enterprise Technol. 4 (2020) 14‒23. https://doi.org/10.15587/1729-4061.2020.208554
[6] A. Shyshatskyi, O. Zvieriev, O. Salnikova, Y. Demchenko, O. Trotsko and Y. Neroznak, Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System, Int. J. Adv. Trends Comp. Sci. Eng. 9 (2020) 5583‒5590. https://doi.org/10.30534/ijatcse/2020/206942020
[7] N. Yeromina, V. Kurban, S. Mykus, O. Peredrii, O. Voloshchenko, V. Kosenko, V. Kuzavkov, O. Babeliuk, M. Derevianko and H. Kovalov, The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment, Int. J. Emerg. Technol. Adv. Eng. 11 (2021) 37-41. https://doi.org/10.46338/ijetae0521_05
[8] A.P. Rotshteyn, Intellektual’nyye tekhnologii identifikatsii: nechotkiye mnozhestva, geneticheskiye algoritmy, neyronnyye seti. Vinnitsa: “UNIVERSUM”. 320 (1999).
[9] Y.-C. Ko, H. Fujitа, An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Inf. Sci. 486 (2019) 190–203. https://doi.org/10.1016/j.ins.2019.01.079
[10] I.J. Ramaji, A.M. Memari, Interpretation of structural analytical models from the coordination view in building information models, Autom. Constr. 90 (2018) 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
[11] C.J. Pérez-González, M. Colebrook, J.L. Roda-García and C.B. Rosa-Remedios, Developing a data analytics platform to support decision making in emergency and security management. Expert Syst. Appl. 120 (2019) 167-184. https://doi.org/10.1016/j.eswa.2018.11.023
[12] H. Chen, Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process, Procedia Comp. Sci. 131 (2018) 952-958. https://doi.org/10.1016/j.procs.2018.04.233
[13] H.K. Chan, X. Sun and S.-H. Chung, When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decis. Support Syst. (2019) 1-37. https://doi.org/10.1016/j.dss.2019.113114
[14] A.M.S. Osman, A novel big data analytics framework for smart cities. Future Generation Comp. Systems 91 (2019) 620-633. https://doi.org/10.1016/j.future.2018.06.046
[15] I. Gödri, C. Kardos, A. Pfeiffer and J. Váncza, Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals 68 (2019) 471-474. https://doi.org/10.1016/j.cirp.2019.04.001.
[16] J.L. Harding, Data quality in the integration and analysis of data from multiple sources: some research challenges. Int. Arch. Photogramm. Remote Sensing and Spatial Inf. Sci. XL-2/W1 (2013) 59-63. https://doi.org/10.5194/isprsarchives-XL-2-W1-59-2013
[17] B. Kosko, Fuzzy cognitive maps. Int. J. Man-Machine Studies 1 (1986) 65-75.
[18] M. Koval, O. Sova, A. Shyshatskyi, Y. Artabaiev, N. Garashchuk, Y. Yivzhenko, Y. Luscshay, L. Dovhopoliuk, O. Haidenko and M. Dorofeev, Improving the method for increasing the efficiency of decision­making based on bio­inspired algorithms. Eastern­Europ. J. Enterprise Technol. 6 (2022) 6-13. https://doi.org/10.15587/1729-4061.2022.268621
[19] A.D. Maccarone, J.N. Brzorad and H.M. Stone, Characteristics and Energetics of Great Egret and Snowy Egret Foraging Flights, Waterbirds 31 (2008) 541-549. https://doi.org/10.1675/1524-4695-31.4.541
[20] A. Koshlan, O. Salnikova, M. Chekhovska, R. Zhyvotovskyi, Y. Prokopenko, T. Hurskyi, A. Yefymenko, Y. Kalashnikov, S. Petruk and A. Shyshatskyi, Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data, Eastern-Europ. J. Enterprise Technol. 5 (2019) 16-27. https://doi.org/10.15587/1729-4061.2019.180197
[21] Q.A. Mahdi, A. Shyshatskyi, Y. Prokopenko, T. Ivakhnenko, D. Kupriyenko, V. Golian, R. Lazuta, S. Kravchenko, N. Protas and A. Momit, Development of estimation and forecasting method in intelligent decision support systems. Eastern-Europ. J. Enterprise Technol. 3 (2021) 51-62. https://doi.org/10.15587/1729-4061.2021.232718
[22] B. Noh, J. Son, H. Park and S. Chang. In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining, Sustainability 9 (2017) art. 2119. https://doi.org/10.3390/su9112119
[23] V. Petrasa, A. Petrasova, J. Jeziorska and H. Mitasova. Processing UAV and lidar point clouds in Grass GIS, Int. Arch. Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B7 (2016). XXIII ISPRS Congress. Prague, Czech Republic. https://doi.org/10.5194/isprs-archives-XLI-B7-945-2016
[24] E.V. Bodyansky, V.M. Strukov and D.Y. Uzlov. Generalized metrics in the problem of multidimensional data analysis with different types of features. Collection of Scientific Papers of the Kharkiv National University of the Air Force 3(52) (2017) 98-101.
[25] S. Polovina, B. Radić, R. Ristić and V. Milčanović. Spatial and temporal analysis of natural resources degradation in the Likodra river watershed. Glasnik Šumarskog Fakulteta: Univerzitet u Beogradu 114 (2016) 169-188. https://doi.org/10.2298/GSF1614169P
[26] I.A. Poryadin, E.V. Smirnova. Binary Classification Method of Social Network Users. Nauka i Obrazovanie. 0(2) (2017) 121-137. https://doi.org/10.7463/0217.0000915
[27] V.V. Semenov, I.S. Lebedev. Processing of signal information in problems of monitoring information security of unmanned autonomous objects. Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki 19(3) (2019) 492-499. https://doi.org/10.17586/2226-1494-2019-19-3-492-498
[28] A. Kukulska, T. Salata, K. Cegielska and M. Szylar. Methodology of evaluation and correction of geometric data topology in QGIS software. Acta Scientiarum Polonorum. Formatio Circumiectus 17 (2018) 137-150. https://doi.org/10.15576/ASP.FC/2018.17.1.137.
[29] D. Klimecka-Tatar, The powdered magnets technology improvement by biencapsulation method and its effect on mechanical properties, Manuf. Technol. 14 (2014) 30-36.
[30] T. Lipiński, P. Szabracki, Mechanical properties of AlSi9Mg alloy with a sodium modifier, Solid State Phenom. 223 (2015) 78-86. https://doi.org/10.4028/www.scientific.net/SSP.223.78
[31] D. Siwiec, R. Dwornicka and A. Pacana, Improving the process of achieving required microstructure and mechanical properties of 38MNVS6 steel, METAL 2020 – 29th Int. Conf. Metall. Mater. (2020) 591-596. https://doi.org/10.37904/metal.2020.3525
[32] N. Radek, J. Pietraszek and Ł. Pasieczynski, Technology and application of anti-graffiti coating systems for rolling stock, METAL 2019 – 28th Int. Conf. Metall. Mater. (2019) 1127-1132.
[33] N. Radek, R. Dwornicka, Fire properties of intumescent coating systems for the rolling stock, Communications – Scientific Letters of the University of Žilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96
[34] N. Radek, Properties of coating system for rail vehicles, System Safety: Human – Technical Facility – Environment 4 (2022) 157-163. https://doi.org/10.2478/czoto-2022-0016
[35] T. Lipiński, J. Pietraszek and A. Wach, Influence of oxygen content in medium carbon steel on bending fatigue strength, Engineering for Rural Development 21 (2022) 351-356. https://doi.org/10.22616/ERDev.2022.21.TF116
[36] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[37] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[38] J. Pietraszek, R. Dwornicka, M. Krawczyk and M. Kołomycki, The non-parametric approach to the quantification of the uncertainty in the design of experiments modelling, UNCECOMP 2017 – Proc. 2nd Int. Conf. Uncert. Quant. Comp. Sci. Eng. 2017-January (2017) 598-604. https://doi.org/10.7712/120217.5395.17225
[39] A. Bąkowski, V. Dekŷŝ, L. Radziszewski, Z. Skrobacki and P. Świetlik, Estimation of uncertainty and variability of urban traffic volume measurements in Kielce, Automotive Safety 2018 – 11th Int. Sci. Tech. Conf. (2018) 1-8. https://doi.org/10.1109/AUTOSAFE.2018.8373314
[40] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[41] J. Pietraszek, L. Wojnar, The bootstrap approach to the statistical significance of parameters in RSM model, ECCOMAS Congress 2016 – Proc. 7th Europ. Congr. Comp. Methods in Appl. Sci. Eng. 1 (2016) 2003-2009. https://doi.org/10.7712/100016.1937.9138
[42] A. Urbański, S. Ligęza and P. Przecherski, The modelling of layered rocks using a numerical homogenisation technique and an artificial neural network, Technical Transactions 120 (2023) art. e2023007. https://doi.org/10.37705/TechTrans/e2023007
[43] L. Wojnar, A. Gądek-Moszczak and J. Pietraszek, On the role of histomorphometric (stereological) microstructure parameters in the prediction of vertebrae compression strength, Image Analysis and Stereology 38 (2019) 63-73. https://doi.org/10.5566/ias.2028
[44] B. Jasiewicz, J. Pietraszek, S. Duda, S. Pietrzak, B. Pruszczyński, T. Parol, T. Potaczek and A. Gądek-Moszczak, Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment, Foot and Ankle Surgery 27 (2021) 371-376. https://doi.org/10.1016/j.fas.2020.04.015
[45] J. Selejdak, R. Ulewicz and M. Ingaldi, The evaluation of the use of a device for producing metal elements applied in civil engineering, METAL 2014 – 23rd Int. Conf. Metall. Mater. (2014) 1882-1888.
[46] R. Ulewicz, M. Mazur, K. Knop and R. Dwornicka, Logistic controlling processes and quality issues in a cast iron foundry, Mater. Res. Proc. 17 (2020) 65-71. https://doi.org/10.21741/9781644901038-10