–
Multiphysics Modeling of Direct-Start Induction Motor Considering Rotor Unbalance
GOROSHKO Andrii, DWORNICKA Renata, ZEMBYTSKA Maryna
Abstract. The paper proposes a multiphysics model of the dynamics of an induction motor with a squirrel-cage rotor, taking into account the forced vibrations caused by the mass and magnetic eccentricity of the rotor. The model is based on numerical modeling of the motor operation, analytical modeling of the motor oscillations with a rotor containing mass eccentricity and numerical modeling of the motor oscillations with a rotor containing static and dynamic magnetic eccentricity. The model makes it possible to simulate vibrations of rotors and induction motor casings with account of moments of unbalanced forces of mechanical and electromagnetic nature. The model takes into account the polyharmonic nature of vibrations and makes it possible to study their effect on the electrical and energy parameters of the motor during acceleration during direct start and in steady-state mode. As a result of numerical simulations of a three-phase induction motor, it was found that the maximum permissible vibrations increase power consumption by 5% in steady-state mode and by 10% during direct start.
Keywords
Induction Motor, Eccentricity of Rotor Mass, Magnetic Eccentricity, Unbalanced Magnetic Pull, Vibration
Published online 10/20/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: GOROSHKO Andrii, DWORNICKA Renata, ZEMBYTSKA Maryna, Multiphysics Modeling of Direct-Start Induction Motor Considering Rotor Unbalance, Materials Research Proceedings, Vol. 45, pp 267-276, 2024
DOI: https://doi.org/10.21741/9781644903315-31
The article was published as article 31 of the book Terotechnology XIII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] N. Bell Richard et al, Report of large motor reliability survey of industrial and commercial installations, Part II. IEEE Trans. Ind. Appl. 21(4) (1985) 865-872. https://doi.org/10.1109/TIA.1985.349533
[2] E.P. Cornell, E.L. Owen, J.C. Appiarius, R.M. McCoy, P. F. Albrecht and D. W. Houghtaling, Improved motors for utility applications, Final report, United States: N. p., Web. (1982). https://doi.org/10.2172/6759687
[3] J. Xul, X. Zheng, J. Zhang and X. Liu, Vibration Characteristics of Unbalance Response for Motorized Spindle System, Procedia Engineering. 174 (2017) 331-340. https://doi.org/10.1016/j.proeng.2017.01.148
[4] D. G. Dorrell, M. Hsieh and Y. Guo, Unbalanced Magnet Pull in Large Brushless Rare-Earth Permanent Magnet Motors with Rotor Eccentricity, IEEE Transactions on Magnetics. 45 (2009) 4586-4589. https://doi.org/10.1109/TMAG.2009.2022338
[5] P.A. Delgado-Arredondo et al, Comparative study of time-frequency decomposition techniques for fault detection in induction motors using vibration analysis during startup transient, Shock and Vibration. (2015). http://doi.org/10.1155/2015/708034
[6] H. Kim, E. Sikanen, J. Nerg, T. Sillanpää and J. T. Sopanen, Unbalanced Magnetic Pull Effects on Rotordynamics of a High-Speed Induction Generator Supported by Active Magnetic Bearings – Analysis and Experimental Verification: In IEEE Access. 8 (2020) 212361-212370. 2020. https://doi.org/10.1109/ACCESS.2020.3039629
[7] J. Du, Y. Li, Analysis on the Variation Laws of Electromagnetic Force Wave and Vibration Response of Squirrel-Cage Induction Motor under Rotor Eccentricity, Electronics. 12(6) (2023) 1295. https://doi.org/10.3390/electronics12061295
[8] Y.L. He et al, Effect of static/dynamic air‐gap eccentricity on stator and rotor vibration characteristics in doubly‐fed induction generator, IET Electric Power Applications, 16(11) (2022) 1378-1394. http://doi.org/10.1049/elp2.12234
[9] U. Werner, Influence of the Foundation on the Threshold of Stability for Rotating Machines with Roller Bearings—A Theoretical Analysis, Journal of Applied Mathematics and Physics. 5 (2017) 1380-1397. https://doi.org/10.4236/jamp.2017.56114
[10] U. Werner, Influence of electromagnetic field damping on forced vibrations of induction rotors caused by dynamic rotor eccentricity, ZAMM-Journal of Applied Mathematics and Mechanics. 97(1) (2017). 38–59. https://doi.org/10.1002/zamm.201500285
[11] H. Kim, J. Nerg, T. Choudhury and J. T. Sopanen, Rotordynamic simulation method of induction motors including the effects of unbalanced magnetic pull, IEEE Access. 8 (2020) 21631-21643. https://doi.org/10.1109/ACCESS.2020.2968915
[12] U. Werner, Mathematical multibody model of a soft mounted induction motor regarding forced vibrations due to dynamic rotor eccentricities considering electromagnetic field damping, J. Appl. Math. Phys. 5(2) (2017) 346-364. https://doi.org/10.4236/jamp.2017.52032
[13] P. Song, W. Li, S. Mukundan and N.C. Kar, An Overview of Noise-Vibration-Harshness Analysis for Induction Machines and Permanent Magnet Synchronous Machines, 10th International Electric Drives Production Conference (EDPC), (2020). 1-8. https://doi.org/10.1109/EDPC51184.2020.9388189
[14] S. Goolak, O. Gubarevych, E. Yermolenko, M. Slobodyanyuk and O. Gorobchenko, Mathematical modeling of an induction motor for vehicles, Eastern-European Journal of Enterprise Technologies. 2(2) (2020) 104. https://doi.org/10.15587/1729-4061.2020.199559
[15] P.C. Krause, O. Wasynczuk and S.D. Sudhoff, Analysis of Electric Machinery and Drive Systems, IEEE® Press, (2002). http://doi.org/10.1109/9780470544167
[16] A.V. Goroshko, M.V. Zembytska and V.P. Paiuk, Induction motor vibrations caused by mechanical and magnetic rotor eccentricity, Journal of Engineering Sciences (Ukraine) 11(1) (2024) D66–D77. https://doi.org/10.21272/jes.2024.11(1).d8
[17] E. Augustyn, M.S. Kozien, Analytical solution of excited torsional vibrations of prismatic thin-walled beams, Journal of Theoretical and Applied Mechanics (Poland) 53 (2015) 991-1004. https://doi.org/10.15632/jtam-pl.53.4.991
[18] E. Augustyn, M.S. Kozień and M. Prącik, FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes, Archives of Acoustics 39 (2014) 639-644. https://doi.org/10.2478/aoa-2014-0069
[19] A. Goroshko, V. Royzman and J. Pietraszek, Construction and practical application of hybrid statistically-determined models of multistage mechanical systems, Mechanika 20 (2014) 489-493. https://doi.org/10.5755/j01.mech.20.5.8221
[20] M. Krynke, R. Ulewicz, Analysis of the influence of slewing bearing mounting on their static load capacity, Transportation Research Procedia 40 (2019) 745-750. https://doi.org/10.1016/j.trpro.2019.07.105
[21] E. Lisowski, G. Filo, Automated heavy load lifting and moving system using pneumatic cushions, Automation in Construction 50 (2015) 91-101. https://doi.org/10.1016/j.autcon.2014.12.004
[22] R. Dindorf, J. Takosoglu and P. Wos, Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems, Energies 16 (2023) art. 4153. https://doi.org/10.3390/en16104153
[23] N. Radek, J. Pietraszek, M. Radek and O. Paraska, The influence of plasma cutting parameters on the geometric structure of cut surfaces, Mater. Res. Proc. 17 (2020) 132-137. https://doi.org/10.21741/9781644901038-20
[24] N. Radek, J. Pietraszek, J. Bronček and P. Fabian, Properties of Steel Welded with CO2 Laser, Lecture Notes in Mech. Eng. (2020) 571-580. https://doi.org/10.1007/978-3-030-33146-7_65
[25] K. Knop, E. Olejarz and R. Ulewicz, Evaluating and Improving the Effectiveness of Visual Inspection of Products from the Automotive Industry, Lecture Notes in Mech. Eng. (2019) 231-243. https://doi.org/10.1007/978-3-030-17269-5_17
[26] G. Barucca, et al., The potential of Λ and Ξ- studies with PANDA at FAIR, Europ. Phys. J. A. 57 (2021) art. 154. https://doi.org/10.1140/epja/s10050-021-00386-y
[27] T. Lipiński, P. Szabracki, Mechanical properties of AlSi9Mg alloy with a sodium modifier, Solid State Phenom. 223 (2015) 78-86. https://doi.org/10.4028/www.scientific.net/SSP.223.78
[28] T. Lipiński, Quality, Microstructure, and Properties of Metal Alloys, Materials 16 (2023) art. 3019. https://doi.org/10.3390/ma16083019
[29] T. Lipiński, The Influence of the Proportions of Titanium and Boron in the Al and AlSi7-Based Master Alloy on the Microstructure and Mechanical Properties of Hypoeutectic Silumin, AlSi7Mg, Appl. Sci. 13 (2023) art. 12590. https://doi.org/10.3390/app132312590
[30] N. Radek, R. Dwornicka and D. Gontarski, The impact of laser processing on the performance properties of electro-spark coatings, World Congress in Computational Mechanics and ECCOMAS Congress 1000 (2021) 1-10. https://doi.org/10.23967/wccm-eccomas.2020.336
[31] N. Radek, A. Kalinowski, J. Pietraszek, J. Orman, M. Szczepaniak, A. Januszko, J. Kamiński, J. Bronček and O. Paraska, Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122. https://doi.org/10.30657/pea.2022.28.13
[32] N. Radek, J. Pietraszek, J. Bronček, D. Gontarski, A. Szczotok, O. Paraska and K. Mulczyk, Laser Processing of WC-Co Coatings, Mater. Res. Proc. 24 (2022) 34-38. https://doi.org/10.21741/9781644902059-6
[33] N. Radek, J. Pietraszek and A. Szczotok, Technology and application of electro-spark deposited coatings, METAL 2017 – 26th Int. Conf. Metall. Mater. (2017) 1432-1437.
[34] N. Radek, A. Szczotok, A. Gądek-Moszczak, R. Dwornicka, J. Bronček and J. Pietraszek, The impact of laser processing parameters on the properties of electro-spark deposited coatings, Arch. Metall. Mater. 63 (2018) 809-816. https://doi.org/10.24425/122407
[35] A. Dudek, B. Lisiecka, N. Radek, Ł.J. Orman and J. Pietraszek, Laser Surface Alloying of Sintered Stainless Steel, Materials 15 (2022) art. 6061. https://doi.org/10.3390/ma15176061
[36] T. Lipiński, J. Pietraszek, Influence of animal slurry on carbon C35 steel with different microstructure at room temperature, Engineering for Rural Development 21 (2022) 344-350. https://doi.org/10.22616/ERDev.2022.21.TF115
[37] T. Lipiński, J. Pietraszek and A. Wach, Influence of oxygen content in medium carbon steel on bending fatigue strength, Engineering for Rural Development 21 (2022) 351-356. https://doi.org/10.22616/ERDev.2022.21.TF116
[38] D. Siwiec, R. Dwornicka and A. Pacana, Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Mater. Res. Proc. 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
[39] K. Czerwinska, R. Dwornicka and A. Pacana, Improving quality control of siluminial castings used in the automotive industry, METAL 2020 – 29th Int. Conf. Metall. Mater. (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661
[40] P. Ratajczyk, A. Katrusiak, K.A. Bogdanowicz, W. Przybył, P. Krysiak, A. Kwak and A. Iwan, Mechanical strain, thermal and pressure effects on the absorption edge of an organic charge-transfer polymer for flexible photovoltaics and sensors, Materials Advances 3 (2022) 2697-2705. https://doi.org/10.1039/d1ma01066b
[41] K.A. Bogdanowicz, S. Lalik, P. Ratajczak, A. Katrusiak, P. Krysiak, A.I. Pawłowska, M. Marzec and A. Iwan, A new look at imines and their mixture with PC71BM for organic, flexible photovoltaics, Sci. Rep. 13 (2023) art. 13240. https://doi.org/10.1038/s41598-023-38978-x
[42] E. Radzyminska-Lenarcik, M. Ulewicz, The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(II), nickel(II), copper(II), and zinc(II) ions, Polish J. Chem. Technol. 17 (2015) 51-56. https://doi.org/10.1515/pjct-2015-0029
[43] E. Radzyminska-Lenarcik, M. Ulewicz, Polymer inclusion membranes (PIMs) doped with alkylimidazole and their application in the separation of non-ferrous metal ions, Polymers 11 (2019) art. 1780. https://doi.org/10.3390/polym11111780
[44] G. Majewski, Ł.J. Orman, M. Telejko, N. Radek, J. Pietraszek and A. Dudek, Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment, Energies 13 (2020) art. 1973. https://doi.org/10.3390/en13081973
[45] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[46] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[47] J. Pietraszek, Fuzzy regression compared to classical experimental design in the case of flywheel assembly, Lecture Notes in Computer Science 7267 LNAI (2012) 310-317. https://doi.org/10.1007/978-3-642-29347-4_36
[48] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[49] J. Pietraszek, R. Dwornicka, M. Krawczyk and M. Kołomycki, The non-parametric approach to the quantification of the uncertainty in the design of experiments modelling, UNCECOMP 2017 – 2nd Int. Conf. Uncert. Quant. Comp. Sci. Eng. (2017) 598-604. https://doi.org/10.7712/120217.5395.17225
[50] I. Dominik, J. Kwasniewski, L. Krzysztof and R. Dwornicka, Preliminary signal filtering in Self-Excited Acoustical System for stress change measurement, CCC – Chinese Control Conference (2013) art. 6640759.
[51] J. Pietraszek, L. Wojnar, The bootstrap approach to the statistical significance of parameters in RSM model, ECCOMAS Congress 2016 –7th Europ. Congr. Comp. Methods in Applied Sciences and Engineering 1 (2016) 2003-2009. https://doi.org/10.7712/100016.1937.9138
[52] B. Jasiewicz, J. Pietraszek, S. Duda, S. Pietrzak, B. Pruszczyński, T. Parol, T. Potaczek and A. Gądek-Moszczak, Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment, Foot and Ankle Surgery 27 (2021) 371-376. https://doi.org/10.1016/j.fas.2020.04.015
[53] A. Gądek-Moszczak, N. Radek, I. Pliszka, J. Augustyn-Nadzieja and Ł.J. Orman, Nano X-ray Tomography Application for Quantitative Surface Layer Geometry Analysis after Laser Beam Modification, Materials 15 (2022) art. 5935. https://doi.org/10.3390/ma15175935
[54] R. Ulewicz, M. Mazur, K. Knop and R. Dwornicka, Logistic controlling processes and quality issues in a cast iron foundry, Mater. Res. Proc. 17 (2020) 65-71. https://doi.org/10.21741/9781644901038-10
[55] R. Ulewicz, B. Krstić and M. Ingaldi, Mining Industry 4.0 – Opportunities and Barriers, Acta Montanistica Slovaca 27 (2022) 291-305. https://doi.org/10.46544/AMS.v2i2.02
[56] R. Ulewicz, M. Ulewicz, Problems in the Implementation of the Lean Concept in the Construction Industries, Lecture Notes in Civil Engineering 47 (2020) 495-500. https://doi.org/10.1007/978-3-030-27011-7_63
[57] R. Ulewicz, D. Kleszcz and M. Ulewicz, Implementation of Lean Instruments in Ceramics Industries, Management Systems in Production Engineering 29 (2021) 203-207. https://doi.org/10.2478/mspe-2021-0025
[58] M. Radek, A. Pietraszek, A. Kozień, K. Radek and J. Pietraszek, Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Mater. Res. Proc. 34 (2023) 453-459. https://doi.org/10.21741/9781644902691-52