–
Drivers of AI Adoption in Enterprises: A European-Wide Analysis
GUALANDRI Fabio, KUZIOR Aleksandra
Abstract. Europe is one of the major global regions that has led the adoption of artificial intelligence (AI) in the corporate environment, leading to a significant shift in the technological and organizational landscape of the business world. As the continental economies are deeply embedded in economic and institutional layers, different factors might lead to higher AI adoption. This paper seeks to explore the factors that play a role in the diffusion of AI across various sectors and industries in Europe via quantitative statistical analysis of individual, corporate, and government-related variables. Results tend to indicate budget spending in research and development and digital intensity of companies as the most significant factors but assert that varied influences, not necessarily interrelated, can shape adoption patterns.
Keywords
Artificial Intelligence (AI), Technology Adoption, Sustainable Development
Published online 10/20/2024, 9 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: GUALANDRI Fabio, KUZIOR Aleksandra, Drivers of AI Adoption in Enterprises: A European-Wide Analysis, Materials Research Proceedings, Vol. 45, pp 240-248, 2024
DOI: https://doi.org/10.21741/9781644903315-28
The article was published as article 28 of the book Terotechnology XIII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] V. Ricardo, H. Azizpour, I. Leite, M. Balaam, V. Dignum, S. Domisch, A. Felländer, S. D. Langhans, M. Tegmark and F. Fuso Nerini. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals, Nature Communications 11 (2020) 233. https://doi.org/10.1038/s41467-019-14108-y
[2] A. Kuzior, M. Sira and P. Brozek, Using Blockchain and Artificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency, Virtual Economics 5 (2022) 69–90. https://doi.org/10.34021/ve.2022.05.03(4)
[3] A. Deja, R. Ulewicz and Y. Kyrychenko, Analysis and assessment of environmental threats in maritime transport, Transportation Research Procedia 55 (2021) 1073–1080. https://doi.org/10.1016/j.trpro.2021.07.078
[4] G. Fabio, A. Kuzior, Home Energy Management Systems Adoption Scenarios: The Case of Italy, Energies 16 (2023) art. 4946. https://doi.org /10.3390/en16134946
[5] Ł.J. Orman, N. Krawczyk, N. Radek, S. Honus, J. Pietraszek, L. Dębska, A. Dudek and A. Kalinowski, Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings, Energies 16 (2023) art. 6663. https://doi.org/10.3390/en16186663
[6] M. Jordi, 5-E Levers: A New Conceptual Model for Achieving Carbon Neutrality in Cities, Sustainability 16 (2024) art. 1678. https://doi.org/10.3390/su16041678
[7] S. Dou, H., Zhu, S. Wu and Y. Shen, A review of information technology application in reducing carbon emission: From buildings to tunnels, Journal of Cleaner Production 452 (2024) art. 142162. https://doi.org/10.1016/j.jclepro.2024.142162
[8] O.U.R. Abbasi, S.B.A. Bukhari, S. Iqbal, et al. Energy management strategy based on renewables and battery energy storage system with IoT enabled energy monitoring, Electr. Eng. 106 (2024) 3031-3043. https://doi.org/10.1007/s00202-023-02133-6
[9] A. Kuzior, A. Kwilinski and V. Tkachenko. Sustainable development of organizations based on the combinatorial model of artificial intelligence, Entrepreneurship and Sustainability Issues 7.2 (2019) 1353-1376. http://doi.org/10.9770/jesi.2019.7.2(39)
[10] S. Bilan, P. Šuleř, O. Skrynnyk, E. Krajňáková, and T. Vasilyeva, Systematic bibliometric review of artificial intelligence technology in organizational management, development, change and culture, Business: Theory and Practice 23 (2022) 1-13. https://doi.org/10.3846/btp.2022.13204
[11] K. Steffen, M. Baumgartner and E. Cherubini, Prerequisites for the Adoption of AI Technologies in Manufacturing – Evidence from a Worldwide Sample of Manufacturing Companies, Technovation 110 (2022) art. 102375. https://doi.org/10.1016/j.technovation.2021.102375
[12] C. Trocin, I. Våge Hovland, P. Mikalef and C. Dremel, How Artificial Intelligence Affords Digital Innovation: A Cross-Case Analysis of Scandinavian Companies, Technol. Forecast. Social Change 173 (2021) art. 121081. https://doi.org/10.1016/j.techfore.2021.121081
[13] B. Deakin, Best Practices and Important Considerations for AI and Digital Transformation in an Economic Downturn, Journal of Digital Banking 8 (2023) art. 30-36.
[14] M. Chui, L. Yee, B. Hall, A. Singla and A. Sukharevsky, The state of AI in 2023: Generative AI’s breakout year, McKinsey & Company (2023). https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
[15] Eurostat. Artificial intelligence by size class of enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_ai/default/table?lang=en
[16] Eurostat. Enterprises that provided training to develop/upgrade ICT skills of their personnel by size class of enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_ske_itts/default/table?lang=en
[17] Eurostat. Digital Intensity by size class of enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_e_dii/default/table?lang=en
[18] Eurostat. Individuals who have basic or above basic overall digital skills. Available online: https://ec.europa.eu/eurostat/databrowser/view/ISOC_SK_DSKL_I21__custom_2397093/bookmark/table?lang=en&bookmarkId=dc481686-c938-4e07-b03c-8e039f532857
[19] K. Zhu, S. Dong, S.X. Xu and K.L. Kraemer, Innovation Diffusion in Global Contexts: Determinants of Post-Adoption Digital Transformation of European Companies, Europ. J. Inf. Systems 15 (2006) 601-616. https://doi.org/10.1057/palgrave.ejis.3000650.
[20] R. Medaglia, L. Tangi, The Adoption of Artificial Intelligence in the Public Sector in Europe: Drivers, Features, and Impacts, in ICEGOV ’22 15th Int. Conf. Theory and Practice of Electronic Governance, 10-18, Assoc. Comp. Machinery, 2022. https://doi.org/10.1145/3560107.3560110
[21] Eurostat. Share of government budget appropriations or outlays on research and development. Available online: https://ec.europa.eu/eurostat/databrowser/view/tsc00007/default/table?lang=en
[22] Eurostat. Employment in high- and medium-high technology manufacturing sectors and knowledge-intensive service sectors. Available online: https://ec.europa.eu/eurostat/databrowser/view/ISOC_SK_DSKL_I21__custom_2397093/bookmark/table?lang=en&bookmarkId=dc481686-c938-4e07-b03c-8e039f532857
[23] Eurostat. High-tech exports. Available online: https://ec.europa.eu/eurostat/databrowser/view/tin00140/default/table?lang=en
[24] Eurostat. Enterprises that employ ICT specialists by size class of enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_ske_itspe/default/table?lang=en
[25] S. Saniuk, S. Grabowska and A. Thibbotuwawa, Challenges of industrial systems in terms of the crucial role of humans in the Industry 5.0 environment, Prod. Eng. Arch. 30 (2024) 94-104. https://doi.org/10.30657/pea.2024.30.9
[26] B. Gabrielyan, A. Markosyan, N. Almastyan and D. Madoyan, Energy efficiency in household sector, Prod. Eng. Arch. 30 (2024) 136-144. https://doi.org/10.30657/pea.2024.30.13
[27] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[28] A. Szczotok, J. Nawrocki, A. Gądek-Moszczak and M. Kołomycki, The bootstrap analysis of one-way ANOVA stability in the case of the ceramic shell mould of airfoil blade casting, Solid State Phenom. 235 (2015) 24-30. https://doi.org/10.4028/www.scientific.net/SSP.235.24
[29] T. Lipiński, Effect of Modifier Form on Mechanical Properties of Hypoeutectic Silumin, Materials 16 (2023) art. 5250. https://doi.org/10.3390/ma16155250
[30] T. Lipiński, J. Pietraszek, Modification of alsi7mg alloy with sr and sb, Engineering for Rural Development 22 (2023) 179-184. https://doi.org/10.22616/ERDev.2023.22.TF034
[31] A. Szczotok, J. Nawrocki and J. Pietraszek, The Impact of the Thickness of the Ceramic Shell Mould on the (γ + γ′) Eutectic in the IN713C Superalloy Airfoil Blade Casting, Arch. Metall. Mater. 62 (2017) 587-593. https://doi.org/10.1515/amm-2017-0087
[32] P. Jonšta, Z. Jonšta, S. Brožová, M. Ingaldi, J. Pietraszek and D. Klimecka-Tatar, The effect of rare earth metals alloying on the internal quality of industrially produced heavy steel forgings, Materials 14 (2021) art. 5160. https://doi.org/10.3390/ma14185160
[33] N. Radek, A. Szczotok, A. Gądek-Moszczak, R. Dwornicka, J. Bronček and J. Pietraszek, The impact of laser processing parameters on the properties of electro-spark deposited coatings, Arch. Metall. Mater. 63 (2018) 809-816. https://doi.org/10.24425/122407
[34] N. Radek, M. Scendo, I. Pliszka and O. Paraska, Properties of Electro-Spark Deposited Coatings Modified via Laser Beam, Powder Metallurgy and Metal Ceramics 57 (2018) 316-324. https://doi.org/10.1007/s11106-018-9984-y
[35] N. Radek, D. Tokar, A. Kalinowski and J. Pietraszek, Influence of laser texturing on tribological properties of DLC coatings, Prod. Eng. Arch. 27 (2021) 119-123. https://doi.org/10.30657/pea.2021.27.15
[36] N. Radek, A. Kalinowski, J. Orman, M. Szczepaniak, J. Świderski, D. Gontarski, J. Bronček and J. Pietraszek, Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater. (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[37] N. Radek, J. Konstanty, J. Pietraszek, Ł.J. Orman, M. Szczepaniak and D. Przestacki, The effect of laser beam processing on the properties of WC-Co coatings deposited on steel, Materials 14 (2021) art. 538. https://doi.org/10.3390/ma14030538
[38] A. Dudek, B. Lisiecka, N. Radek, Ł.J. Orman and J. Pietraszek, Laser Surface Alloying of Sintered Stainless Steel, Materials 15 (2022) art. 6061. https://doi.org/10.3390/ma15176061
[39] T. Zuk, J. Pietraszek and M. Zenkiewicz, Modeling of electrostatic separation process for some polymer mixtures, Polimery/Polymers 61 (2016) 519-527. https://doi.org/10.14314/polimery.2016.519
[40] A. Pacana, K. Czerwinska and R. Dwornicka, Analysis of quality control efficiency in the automotive industry, Transportation Research Procedia 55 (2021) 691-698. https://doi.org/10.1016/j.trpro.2021.07.037
[41] M.S. Kozień, J. Wiciak, Passive structural acoustic control of the smart plate – FEM simulation, Acta Physica Polonica A 118 (2010) 1186-1188. https://doi.org/10.12693/APhysPolA.118.1186
[42] E. Augustyn, M.S. Kozień and M. Prącik, FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes, Archives of Acoustics 39 (2014) 639-644. https://doi.org/10.2478/aoa-2014-0069
[43] A. Goroshko, V. Royzman and J. Pietraszek, Construction and practical application of hybrid statistically-determined models of multistage mechanical systems, Mechanika 20 (2014) 489-493. https://doi.org/10.5755/j01.mech.20.5.8221
[44] J. Smyrski, et al., Design of the forward straw tube tracker for the PANDA experiment, Journal of Instrumentation 12 (2017) art. C06032. https://doi.org/10.1088/1748-0221/12/06/C06032
[45] G. Barucca, et al., The potential of Λ and Ξ- studies with PANDA at FAIR, Europ. Phys. J. A. 57 (2021) art. 154. https://doi.org/10.1140/epja/s10050-021-00386-y
[46] R. Perrault, J. Clark, Artificial Intelligence Index Report 2024, April 16, 2024. https://policycommons.net/artifacts/12089781/hai_ai-index-report-2024/12983534/