–
Life Cycle Assessment (LCA) of Truck Steel Wheels
PACANA Andrzej, SIWIEC Dominika, DWORNICKA Renata
Abstract. The automotive industry is one of the main sources of greenhouse gas emissions. Therefore, various solutions are sought in automotive products that will eliminate their negative impact on the environment. The objective of the article was to analyze the environmental impact of a truck steel wheel during its life cycle (LCA) in terms of ecological footprint. The method was life cycle assessment (LCA) according to ISO 14040. The environmental impact analysis was carried out using the OpenLCA program with the ecoinvent v3.10 database. The ecological footprint included impacts for the following categories: carbon dioxide (CO2), land occupation, and nuclear. The total impact on the life cycle of the analyzed truck wheel (with the adopted assumptions) in terms of ecological footprint was estimated at 7.31E+09 m2a. The main environmental burdens were: heat production, heat and power cogeneration, uranium production, electricity production, and underground uranium mine’s operation. The results may be useful for improving the processes for creating steel truck wheels. Therefore, future research will focus on developing and analyzing different scenarios of steel truck wheel solutions for the main environmental loads identified from the ecological footprint.
Keywords
Life Cycle Assessment, Steel, Wheel, Vehicle, Mechanical Engineering
Published online 10/20/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: PACANA Andrzej, SIWIEC Dominika, DWORNICKA Renata, Life Cycle Assessment (LCA) of Truck Steel Wheels, Materials Research Proceedings, Vol. 45, pp 213-222, 2024
DOI: https://doi.org/10.21741/9781644903315-25
The article was published as article 25 of the book Terotechnology XIII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] D. Siwiec, A. Pacana, A New Model Supporting Stability Quality of Materials and Industrial Products, Materials 15 (2022) art. 4440. https://doi.org/10.3390/ma15134440
[2] A. Pacana, A. Gazda, D. Malindzak and R. Stefko, Study on improving the quality of stretch film by Shainin method, Przemysl Chemiczny 93 (2014) 243-245. https://doi.org/10.12916/przemchem.2014.243
[3] A. Pacana, D. Siwiec, Universal Model to Support the Quality Improvement of Industrial Products, Materials 14 (2021) art. 7872. https://doi.org/10.3390/ma14247872
[4] L. Gao, Z. Wang, Y. Wang, T. Peng, W. Liu and R. Tang, LCA-Based Multi-Scenario Study on Steel or Aluminum Wheel Hub for Passenger Vehicles. Procedia CIRP 116 (2023) 191-196, dhttps://doi.org/10.1016/j.procir.2023.02.033
[5] X. Zhu, Y. Tian and S. Wang, Comparing Two Types of Mainstream Disposable Lunch Boxes by LCA and Exploring the Possibility of Converting Carbon Dioxide into Products. Heliyon 9 (2023) art. e13480. https://doi.org/10.1016/j.heliyon.2023.e13480
[6] B. Gajdzik, M. Jaciow, R. Wolniak, R. Wolny and W. Grebski, Energy Behaviors of Prosumers in Example of Polish Households, Energies 16 (2023) art. 3186. https://doi.org/10.3390/en16073186
[7] J. Grenz, M. Ostermann, K. Käsewieter, F. Cerdas, T. Marten, C. Herrmann and T. Tröster, Integrating Prospective LCA in the Development of Automotive Components, Sustainability 15 (2023) art. 10041. https://doi.org/10.3390/su151310041
[8] A. Pacana, A. Radon-Cholewa, J. Pacana and A. Wozny, The study of stickiness of packaging film by Shainin method, Przemysl Chemiczny 94 (2015) 1334-1336. https://doi.org/10.15199/62.2015.8.17
[9] D. Siwiec, A. Pacana, Predicting Design Solutions with Scenarios Considering the Quality of Materials and Products Based on a Life Cycle Assessment (LCA), Materials 17 (2024) art. 951. https://doi.org/10.3390/ma17040951
[10] A. Pacana, D. Siwiec, Method of Determining Sequence Actions of Products Improvement, Materials 15 (2022) art. 6321. https://doi.org/10.3390/ma15186321
[11] T. Suzuki, T. Fukuyama, H. Zushi, T. Origuchi and J. Takahashi, Evaluation of Effects of Lightening Trucks on Environment by LCA, in Proc. 2003 IEEE 58th Vehicular Technol. Conf. VTC 2003-Fall (IEEE Cat. No.03CH37484), IEEE, 2003, pp. 344–347. https://doi.org/10.1109/ECODIM.2003.1322689
[12] L.Yang, C. Hao and Y. Chai, Life Cycle Assessment of Commercial Delivery Trucks: Diesel, Plug-In Electric, and Battery-Swap Electric, Sustainability 10 (2018) art. 4547, https://doi.org/10.3390/su10124547
[13] D. Stas, D. Burchart-Korol, R. Lenort, P. Wicher and D. Holman, Case Study of Life Cycle Assessment of Diesel and CNG Trucks, in Proc. of the 8th Carpathian Logistics Congress, Ostrava, Tanger, 2018, pp. 827-832.
[14] A.E.M. Oever, D. Costa and M. Messagie, Prospective Life Cycle Assessment of Alternatively Fueled Heavy-Duty Trucks, Applied Energy 336 (2023) art. 120834, https://doi.org/10.1016/j.apenergy.2023.120834
[15] M. Jahangir Samet, H. Liimatainen and O.P.R. van Vliet, GHG Emission Reduction Potential of Road Freight Transport by Using Battery Electric Trucks in Finland and Switzerland. Applied Energy 347 (2023) art. 121361. https://doi.org/10.1016/j.apenergy.2023.121361
[16] S. Poulikidou, L. Jerpdal, A. Björklund and M. Åkermo, Environmental Performance of Self-Reinforced Composites in Automotive Applications — Case Study on a Heavy Truck Component. Mater. Des. 103 (2016) 321-329. https://doi.org/10.1016/j.matdes.2016.04.090
[17] Y. Zhao, T. Ercan and O. Tatari, Life Cycle Based Multi-Criteria Optimization for Optimal Allocation of Commercial Delivery Truck Fleet in the United States, Sustain. Prod. Consum. 8 (2016) 18-31. https://doi.org/10.1016/j.spc.2016.04.003
[18] S. Hanesch, F. Schöpp, L. Göllner-Völker and L. Schebek, Life Cycle Assessment of an Emerging Overhead Line Hybrid Truck in Short-Haul Pilot Operation, J. Clean. Prod. 338 (2022) art. 130600. https://doi.org/10.1016/j.jclepro.2022.130600
[19] Comparative Life Cycle Assessment of Aluminium and Steel Truck Wheels, PE INTERNATIONAL & Five Winds Strategic Consulting: Boston, USA, 2012.
[20] A. Ciroth, ICT for Environment in Life Cycle Applications OpenLCA — A New Open Source Software for Life Cycle Assessment, Int. J. Life Cycle Assess. 12 (2007) 209-210. https://doi.org/10.1065/lca2007.06.337
[21] M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen and H.-J. Klüppel, The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 11 (2006) 80-85. https://doi.org/10.1065/lca2006.02.002
[22] L. Čuček, J.J. Klemeš and Z. Kravanja, Overview of Environmental Footprints, in Assessing and Measuring Environmental Impact and Sustainability, Elsevier, 2015, pp. 131-193.
[23] A. Lehmann, V. Bach and M. Finkbeiner, EU Product Environmental Footprint—Mid-Term Review of the Pilot Phase, Sustainability 8 (2016) art. 92. https://doi.org/10.3390/su8010092
[24] E.E. Özbaş, S.Y. Hunce, H.K. Özcan and A. Öngen, Ecological Footprint Calculation, in Environmental Science and Engineering, 2019, pp. 179-186. https://doi.org/10.1007/978-3-319-95888-0_15
[25] M.S. Mancini, A. Galli, V. Niccolucci, D. Lin, S. Bastianoni, M. Wackernagel and N. Marchettini, Ecological Footprint: Refining the Carbon Footprint Calculation. Ecol. Indic. 61 (2016) 390-403. https://doi.org/10.1016/j.ecolind.2015.09.040
[26] B. Gajdzik, R. Wolniak and W. Grebski, Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry, Energies 16 (2023) art.3384. https://doi.org/10.3390/en16083384
[27] R. Gawlik, Encompassing the Work-Life Balance into Early Career Decision-Making of Future Employees Through the Analytic Hierarchy Process. Advances in Intelligent Systems and Computing 594 (2018) 137-147. https://doi.org/10.1007/978-3-319-60372-8_14
[28] G. Majewski, Ł.J. Orman, M. Telejko, N. Radek, J. Pietraszek and A. Dudek, Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment, Energies 13 (2020) art. 1973. https://doi.org/10.3390/en13081973
[29] Ł.J. Orman, G. Majewski, N. Radek and J. Pietraszek, Analysis of Thermal Comfort in Intelligent and Traditional Buildings, Energies 15 (2022) art. 6522. https://doi.org/10.3390/en15186522
[30] Ł.J. Orman, N. Krawczyk, N. Radek, S. Honus, J. Pietraszek, L. Dębska, A. Dudek and A. Kalinowski, Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings, Energies 16 (2023) art. 6663. https://doi.org/10.3390/en16186663
[31] A. Szczotok, N. Radek and R. Dwornicka, Effect of the induction hardening on microstructures of the selected steels, METAL 2018 – 27th Int. Conf. Metall. Mater. (2018) 1264-1269.
[32] T. Lipiński, R. Ulewicz, The effect of the impurities spaces on the quality of structural steel working at variable loads, Open Eng. 11 (2021) 233-238. https://doi.org/10.1515/eng-2021-0024
[33] T. Lipiński, Effect of Modifier Form on Mechanical Properties of Hypoeutectic Silumin, Materials 16 (2023) art. 5250. https://doi.org/10.3390/ma16155250
[34] A. Goroshko, V. Royzman and J. Pietraszek, Construction and practical application of hybrid statistically-determined models of multistage mechanical systems, Mechanika 20 (2014) 489-493. https://doi.org/10.5755/j01.mech.20.5.8221
[35] M. Krynke, R. Ulewicz, Analysis of the influence of slewing bearing mounting on their static load capacity, Transportation Research Procedia 40 (2019) 745-750. https://doi.org/10.1016/j.trpro.2019.07.105
[36] P. Wos, R. Dindorf and J. Takosoglu, Bricklaying robot lifting and levelling system, Communications – Scientific Letters of the University of Žilina 23 (2021) B257-B264. https://doi.org/10.26552/COM.C.2021.4.B257-B264
[37] N. Radek, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, J. Świderski, M. Radek and D. Gontarski, The effect of laser treatment on operational properties of ESD coatings, METAL 2021 – 30th Int. Conf. Metall. Mater. (2021) 876-882. https://doi.org/10.37904/metal.2021.4212
[38] N. Radek, R. Dwornicka and D. Gontarski, The impact of laser processing on the performance properties of electro-spark coatings, World Congress in Computational Mechanics and ECCOMAS Congress 1000 (2021) 1-10. https://doi.org/10.23967/wccm-eccomas.2020.336
[39] N. Radek, J. Pietraszek and Ł. Pasieczynski, Technology and application of anti-graffiti coating systems for rolling stock, METAL 2019 – 28th Int. Conf. Metall. Mater. (2019) 1127-1132.
[40] N. Radek, R. Dwornicka, Fire properties of intumescent coating systems for the rolling stock, Communications – Scientific Letters of the University of Žilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96
[41] E. Augustyn, M.S. Kozień and M. Prącik, FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes, Archives of Acoustics 39 (2014) 639-644. https://doi.org/10.2478/aoa-2014-0069
[42] E. Augustyn, M.S. Kozień, Analytical solution of excited torsional vibrations of prismatic thin-walled beams, Journal of Theoretical and Applied Mechanics (Poland) 53 (2015) 991-1004. https://doi.org/10.15632/jtam-pl.53.4.991
[43] Ł. Łacny, M. Kozień and D. Ziemiański, Selected overview of the impact of ground motion on the vibrations of particle accelerators, AIP Conf. Proc. 2239 (2020) art. 20025. https://doi.org/10.1063/5.0008950
[44] M. Opydo, A. Dudek and R. Kobyłecki, Characteristics of solids accumulation on steel samples during co-combustion of biomass and coal in a CFB boiler, Biomass and Bioenergy 120 (2019) 291-300. https://doi.org/10.1016/j.biombioe.2018.11.027
[45] Ł.J. Orman, N. Radek, J. Pietraszek and D. Gontarski, Discussion of the heat flux calculation method during pool boiling on meshed heaters, System Safety: Human – Technical Facility – Environment 2 (2020) 247-252. https://doi.org/10.2478/czoto-2020-0030
[46] Ł.J. Orman, N. Radek, S. Honus and J. Pietraszek, Application of laser treatment technology for boiling heat transfer augmentation, Prod. Eng. Arch. 30 (2024) 259-265. https://doi.org/10.30657/pea.2024.30.25
[47] M. Zenkiewicz, T. Zuk and J. Pietraszek, Modeling electrostatic separation of mixtures of poly(ϵ-caprolactone) with polyfvinyl chloride) or polyfethylene terephthalate), Przemysl Chemiczny 95 (2016) 1687-1692. https://doi.org/10.15199/62.2016.9.6
[48] M. Zenkiewicz, T. Zuk, J. Pietraszek, P. Rytlewski, K. Moraczewski and M. Stepczyńska, Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835
[49] T. Zuk, J. Pietraszek and M. Zenkiewicz, Modeling of electrostatic separation process for some polymer mixtures, Polimery/Polymers 61 (2016) 519-527. https://doi.org/10.14314/polimery.2016.519
[50] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[51] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[52] J. Pietraszek, A. Szczotok and E. Kocyłowska, Factorial approach to assessment of GPU computational efficiency in surrogate models, Adv. Mater. Res. 874 (2014) 157-162. https://doi.org/10.4028/www.scientific.net/AMR.874.157
[53] J. Pietraszek, M. Seńcio, J. Diakun, A. Gądek-Moszczak and M. Stojek, The parametric RSM model with higher order terms for the meat tumbler machine process, Solid State Phenom. 235 (2015) 37-44. https://doi.org/10.4028/www.scientific.net/SSP.235.37
[54] M. Kekez, L. Radziszewski, Modelling of pressure in the injection pipe of a diesel engine by computational intelligence, Proc. Inst. Mech. Eng., Part D: J. Automobile Eng. 225 (2011) 1660-1670. https://doi.org/10.1177/0954407011411388
[55] J. Pietraszek, Fuzzy regression compared to classical experimental design in the case of flywheel assembly, Lecture Notes in Computer Science 7267 LNAI (2012) 310-317. https://doi.org/10.1007/978-3-642-29347-4_36
[56] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[57] A. Szczotok, J. Nawrocki, A. Gądek-Moszczak and M. Kołomycki, The bootstrap analysis of one-way ANOVA stability in the case of the ceramic shell mould of airfoil blade casting, Solid State Phenom. 235 (2015) 24-30. https://doi.org/10.4028/www.scientific.net/SSP.235.24
[58] J. Pietraszek, L. Wojnar, The bootstrap approach to the statistical significance of parameters in RSM model, ECCOMAS Congress 2016 – Proc. 7th Europ. Congr. Comp. Methods in Appl. Sci. Eng. 1 (2016) 2003-2009. https://doi.org/10.7712/100016.1937.9138
[59] J. Pietraszek, R. Dwornicka and A. Szczotok, The bootstrap approach to the statistical significance of parameters in the fixed effects model, ECCOMAS Congress 2016 – Proc. 7th Europ. Congr. Comp. Methods in Appl. Sci. Eng. 3 (2016) 6061-6068. https://doi.org/10.7712/100016.2240.9206
[60] M. Krynke, Risk management in the process of personnel allocation to jobs, System Safety: Human – Technical Facility – Environment 2 (2020) 82-90. https://doi.org/10.2478/czoto-2020-0011
[61] A. Czajkowska, M. Ingaldi, Application of Servqual and Servperf Methods to Assess the Quality of Teaching Services – Comparative Analysis, Manuf. Technol. 21 (2021) 294-305. https://doi.org/10.21062/mft.2021.041
[62] K. Knop, Analysing the machines working time utilization for improvement purposes, Prod. Eng. Arch. 27 (2021) 137-147. https://doi.org/10.30657/pea.2021.27.18
[63] M. Radek, A. Pietraszek, A. Kozień, K. Radek and J. Pietraszek, Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Mater. Res. Proc. 34 (2023) 453-459. https://doi.org/10.21741/9781644902691-52