Cement-Based Composites Doped with Steelmaking Waste as an Element of a Closed-Loop Economy

Cement-Based Composites Doped with Steelmaking Waste as an Element of a Closed-Loop Economy

ULEWICZ Małgorzata

Abstract. The article analyzes the possibility of using sludge and slag from the steel production process to produce cement-based composites, i.e., mortars and concretes. Currently, the use of steelmaking waste is low, which means that large amounts of this material are deposited in landfills and industrial waste heaps, posing a threat to the natural environment. On the other hand, the production of cement-based composites uses large amounts of sand and natural aggregate, the resources of which in some countries around the world are running out or the available natural aggregate does not meet the construction requirements. Therefore, using waste as an alternative material to sand and aggregate is an important element of an economy moving towards a circular economy. This paper presents the characteristics of the generated metallurgical waste and the costs associated with their disposal in landfills. The influence of the addition of steel waste on the physical and mechanical parameters of mortars and concretes produced with their participation was discussed.

Keywords
Circular Economy, Steelmaking Waste, Metallurgical Waste, Concrete, Cement Mortar

Published online 10/20/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ULEWICZ Małgorzata, Cement-Based Composites Doped with Steelmaking Waste as an Element of a Closed-Loop Economy, Materials Research Proceedings, Vol. 45, pp 165-174, 2024

DOI: https://doi.org/10.21741/9781644903315-20

The article was published as article 20 of the book Terotechnology XIII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] B. Dębska, J. Krasoń and L. Lichołai, The evaluation of the possible utilization of waste glass in sustainable mortars, CoOEP 9(2) (2020) 7-15. https://doi.org/10.17512/bozpe.2020.2.01P
[2] S. Nahi, N. Leklou, A. Khelidj, M.N. Oudjit and A. Zenati, Properties of cement pastes and mortars containing recycled green glass powder, Constr Build Mater. 262 (2020) art.120875. https://doi.org/10.1016/j.conbuildmat.2020.120875
[3] M. Ulewicz, J. Halbiniak, Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochem. Probl. Miner. Process. 52(2) (2016) 1002−1010. http://dx.doi.org/10.5277/ppmp160237
[4] M. Ulewicz, A. Pietrzak, Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats, Materials 14 (2021) art.872, https://doi: 10.3390/ma14040872
[5] M. Ulewicz, J. Jura and A. Gnatowski, Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion – New Material for Sustainable Construction. Sustainability 16 (2024) art.3079. https://doi.org/10.3390/su16073079
[6] A. Pietrzak, M. Ulewicz, Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties. Materials 16(6) (2023) art.2231. https://doi.org/10.3390/ma16062231
[7] M. Ulewicz, J. Jura, Influence of mix fly and bottom ashes from biomass on selected properties of cement mortars, Key Engineering Materials 828 (2020) 14-17. https://doi.org/10.4028/www.scientific.net/KEM.828.14
[8] A. Pietrzak, The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, CoOEP 8(1) (2019) 29-35, https://doi.org/10.17512/bozpe.2019.1.03.
[9] T. Kalak, P. Szypura, R. Cierpiszewski and M. Ulewicz, Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials 16 (2023) art.4043. https://doi.org/10.3390/ma16114043
[10] A. Pietrzak, The Impact of Waste Generated from Thermal Transformation of Municipal Wate on Selected Properties of Cement Mortar, System Safety: Human-Technical Facility Environment 5(1) (2023) 142-150. https://doi.org/10.2478/czoto-2023-0016
[11] N.G. Muradyan, A.A. Arzumanyan, M.A. Kalantaryan, Y.V. Vardanyan, M. Yeranosyan, M. Ulewicz, D. Laroze and M.G. Barseghyan, The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method, Materials 16 (2023) art.5516. https://doi.org/10.3390/ma16165516
[12] Q. Zhao, L. Pang, D. Wang, Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review. Materials 15 (2022) art.3803. https://doi.org/10.3390/ma15113803
[13] A.M. Rashad, D.M. Sadek and H.A. Hassan, An investigation on blast-furnace slag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J. Clean. Prod. 112 (2016) 1086-1096. https://doi.org/10.1016/j.jclepro.2015.07.127
[14] J. Jura, Analysis of the impact of sludge and slag waste on basic properties of cement mortars, System Safety: Human-Technical Facility-Environment 5(1) (2023) 130-141. https://doi.org/10.2478/czoto-2023-0015
[15] O. Gencel, O. Karadag, O.H. Oren and T. Bilir, Steel slag and its applications in cement and concrete technology: A review, Constr. Build. Mater. 283 (2021) art. 122783, https://doi.org/10.1016/j.conbuildmat.2021.122783
[16] World Steel Association (Ed.): Steel industry co-products, April 2021, Brussels, Belgium
[17] J.H. Bang, S.W. Lee, C. Jeon, S. Park, K. Song, J.W. Jo and S. Chae, Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO2 Mineralization, Energies 9 (2016) art.996. https://doi.org/10.3390/en9120996
[18] T. Lis, K. Nowacki. Pro-ecological possibilities of using metallurgical waste in the production of aggregates. Prod. Eng. Arch. 28 (2022) 252-256. https://doi.org/10.30657/pea.2022.28.31
[19] M. Tutak, J. Brodny, D. Siwiec, R. Ulewicz and P. Bindzár, Studying the level of sustainable energy development of the European union countries and their similarity based on the economic and demographic potential, Energies 13 (2020) art. 6643. https://doi.org/10.3390/en13246643
[20] A. Deja, T. Dzhuguryan, L. Dzhuguryan, O. Konradi and R. Ulewicz, Smart sustainable city manufacturing and logistics: A framework for city logistics node 4.0 operations, Energies 14 (2021) art. 8380. https://doi.org/10.3390/en14248380
[21] O. Paraska, T. Rak, D. Rotar and N. Radek, Research on the effect of compositions of ecologically safe substances on the hygienic properties of textile products, Eastern-Europ. J. Enterpr. Technol. 1 (2019) 43-49. https://doi.org/10.15587/1729-4061.2019.156657
[22] O. Paraska, O. Synyuk, N. Radek, E. Zolotenko and M. Yuriy, Usage of biosurfactants as environmental friendly detergents for textile products cleaning, Vlakna a Textil 30 (2023) 42-51. https://doi.org/10.15240/tul/008/2023-5-005
[23] M. Zenkiewicz, T. Zuk and J. Pietraszek, Modeling electrostatic separation of mixtures of poly(ϵ-caprolactone) with polyfvinyl chloride) or polyfethylene terephthalate), Przemysl Chemiczny 95 (2016) 1687-1692. https://doi.org/10.15199/62.2016.9.6
[24] M. Zenkiewicz, T. Zuk, J. Pietraszek, P. Rytlewski, K. Moraczewski and M. Stepczyńska, Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835
[25] T. Zuk, J. Pietraszek and M. Zenkiewicz, Modeling of electrostatic separation process for some polymer mixtures, Polimery/Polymers 61 (2016) 519-527. https://doi.org/10.14314/polimery.2016.519
[26] A. Deja, R. Ulewicz and Y. Kyrychenko, Analysis and assessment of environmental threats in maritime transport, Transportation Research Procedia 55 (2021) 1073-1080. https://doi.org/10.1016/j.trpro.2021.07.078
[27] R. Dwornicka, The impact of the power plant unit start-up scheme on the pollution load, Adv. Mater. Res. 874 (2014) 63-69. https://doi.org/10.4028/www.scientific.net/AMR.874.63
[28] K. Knop, R. Ulewicz, Assessment of technology, technological resources and quality in the manufacturing of timber products, Digitalisation and Circular Economy: Forestry and Forestry Based Industry Implications – Proceedings of Scientific Papers (2019) 251-256.
[29] A. Kuzior, S. Arefiev and Z. Poberezhna, Informatization of innovative technologies for ensuring macroeconomic trends in the conditions of a circular economy, J. Open Innov.: Technol. Market Complex. 9 (2023) art. 100001. https://doi.org/10.1016/j.joitmc.2023.01.001
[30] K.L. Škůrková, M. Ingaldi, Recycling process of the aluminium cans as an example of the renewable material sources, Adv. Mater. Res. 1001 (2014) 103-108. https://doi.org/10.4028/www.scientific.net/AMR.1001.103
[31] S.T. Dziuba, M. Ingaldi, Segregation and recycling of packaging waste by individual consumers in Poland, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 3 (2015) 545-552.
[32] A. Pacana, R. Ulewicz, Research of determinants motiving to implement the environmental management system, Polish J. Manag. Stud. 16 (2017) 165-174. https://doi.org/10.17512/pjms.2017.16.1.14
[33] A. Kuzior, A. Lobanova and L. Kalashnikova, Green energy in Ukraine: State, public demands, and trends, Energies 14 (2021) art. 7745. https://doi.org/10.3390/en14227745
[34] D. Siwiec, R. Dwornicka and A. Pacana, Improving the process of achieving required microstructure and mechanical properties of 38MNVS6 steel, METAL 2020 – 29th Int. Conf. Metall. Mater., (2020) 591-596. https://doi.org/10.37904/metal.2020.3525
[35] D. Siwiec, R. Dwornicka and A. Pacana, An analysis of the influence double normalization process on mechanical properties and microstructure 38mnvs6 steel, METAL 2021 – 30th Anniv. Int. Conf. Metall. Mater., (2021) 579-584. https://doi.org/10.37904/metal.2021.4162
[36] P. Jonšta, Z. Jonšta, S. Brožová, M. Ingaldi, J. Pietraszek and D. Klimecka-Tatar, The effect of rare earth metals alloying on the internal quality of industrially produced heavy steel forgings, Materials 14 (2021) art. 5160. https://doi.org/10.3390/ma14185160
[37] T. Lipiński, Effect of Al5TiB Master Alloy with P on Microstructure and Mechanical Properties of AlSi7Mg Alloy, Metals 13 (2023) art. 1560. https://doi.org/10.3390/met13091560
[38] K. Czerwińska, R. Dwornicka and A. Pacana, Improving quality control of siluminial castings used in the automotive industry, METAL 2020 – 29th Int. Conf. Metall. Mater., (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661
[39] A. Pacana, R. Ulewicz, Analysis of causes and effects of implementation of the quality management system compliant with iso 9001, Polish J. Manag. Stud. 21 (2020) 283-296. https://doi.org/10.17512/pjms.2020.21.1.21
[40] S. Borkowski, R. Ulewicz, J. Selejdak, M. Konstanciak and D. Klimecka-Tatar, Analysis of technological strategies on the example of the production of the tramway wheels, Archives of Materials Science and Engineering 57 (2012) 69-74.
[41] M. Ingaldi, D. Klimecka-Tatar, Digitization of the service provision process – Requirements and readiness of the small and medium-sized enterprise sector, Procedia Computer Science 200 (2022) 237-246. https://doi.org/10.1016/j.procs.2022.01.222
[42] A. Pacana, K. Czerwinska and R. Dwornicka, Analysis of quality control efficiency in the automotive industry, Transportation Research Procedia 55 (2021) 691-698. https://doi.org/10.1016/j.trpro.2021.07.037
[43] R. Dwornicka, J. Pietraszek, The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09
[44] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[45] J. Pietraszek, J. Korzekwa and A. Goroshko, The principal component analysis of tribological tests of surface layers modified with IF-WS2 nanoparticles, Solid State Phenom. 235 (2015) 9-15. https://doi.org/10.4028/www.scientific.net/SSP.235.9
[46] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[47] J. Pietraszek, A. Szczotok and E. Kocyłowska, Factorial approach to assessment of GPU computational efficiency in surrogate models, Adv. Mater. Res. 874 (2014) 157-162. https://doi.org/10.4028/www.scientific.net/AMR.874.157
[48] J. Pietraszek, Fuzzy regression compared to classical experimental design in the case of flywheel assembly, Lecture Notes in Computer Science 7267 LNAI (2012) 310-317. https://doi.org/10.1007/978-3-642-29347-4_36
[49] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[50] A. Piwowarczyk, I. Jastrzębska, Enhancing Materials Science through Computer Image Analysis and IQA Approaches, Mater. Res. Proc. 34 (2023) 374-379. https://doi.org/10.21741/9781644902691-43
[51] M. Radek, A. Pietraszek, A. Kozień, K. Radek and J. Pietraszek, Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Mater. Res. Proc. 34 (2023) 453-459. https://doi.org/10.21741/9781644902691-52
[52] R. Ulewicz, Application of servqual method for evaluation of quality of educational services at the university of higher education, Polish J. Manag. Stud. 9 (2014) 254-264.
[53] A. Kuzior, J. Ober and J. Karwot, Stakeholder expectation of corporate social responsibility practices: A case study of PWiK Rybnik, Poland, Energies 14 (2021) art. 3337. https://doi.org/10.3390/en14113337
[54] A. Kozień, Efficient management of cultural heritage by local government bodies, Wiadomości Konserwatorskie 2020 (2020) 7-16. https://doi.org/10.48234/WK64HERITAGE
[55] E. Kozień, A. Kozień, Institutional aspects of health and safety at work in Poland, System Safety: Human – Technical Facility – Environment 1 (2019) 240-247. https://doi.org/10.2478/czoto-2019-0031
[56] E. Kozień, A. Kozień, Is ordoliberalism democratic? – legal approach, System Safety: Human – Technical Facility – Environment 2 (2020) 33-38. https://doi.org/10.2478/czoto-2020-0005
[57] A. Kuzior, D. Krawczyk, P. Brożek, O. Pakhnenko, T. Vasylieva and S. Lyeonov, Resilience of Smart Cities to the Consequences of the COVID-19 Pandemic in the Context of Sustainable Development, Sustainability 14 (2022) art. 12645. https://doi.org/10.3390/su141912645
[58] Decision 2000/532/EC – Commission Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste.
[59] EUROSLAG homepage. https://www.euroslag.com/products/properties/ (accessed 30 April 2024).
[60] B. Pang, Z. Zhou, X. Cheng, P. Du and H. Xu, ITZ properties of concrete with carbonated steel slag aggregate in salty freeze-thaw environment, Construct. Build. Mater. 114 (2016) 162–171. https://doi.org/10.1016/j.conbuildmat.2016.03.168
[61] M. Bodor, R.M. Santos, G. Cristea, M. Salman, O. Cizer, R.I. Iacobescu, Y.W. Chiang, K. Van Balen, M. Vlad and T. Van Gerven, Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars, Cement Concr. Compos. 65 (2016) 55–66. https://doi.org/10.1016/j.cemconcomp.2015.10.002
[62] M. Lai, J. Zou, B. Yao, J. Ho, X. Zhuang and Q. Wang, Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate, Construct. Build. Mater. 277 (2021) 122269. https://doi.org/10.1016/j.conbuildmat.2021.122269
[63] I. Santamaría-Vicario, A. Rodríguez, C. Junco, S. Gutiérrez-González and V. Calderón, Durability behavior of steelmaking slag masonry mortars, Mater. Des. 97 (2016) 307-315. https://doi.org/10.1016/j.matdes.2016.02.080
[64] A.S. Brand, J.R. Roesler, Steel furnace slag aggregate expansion and hardened concrete properties, Cement Concr. Compos. 60 (2015) 1-9. https://doi.org/10.1016/j.cemconcomp.2015.04.006
[65] Y.J. Lee, H.-G. Kim, M.-J. Kim, D.-H. Kim, D.-S. Kim and K.-H. Kim, Bond performance of reinforced concrete beams with electric arc furnace slag aggregates, Construct. Build. Mater. 244 (2020), art.118366. https://doi.org/10.1016/j.conbuildmat.2020.118366
[66] M. Alwaeli, J. Gołaszewski, M. Niesler, J. Pizoń and M. Gołaszewska, Recycle option for metallurgical sludge waste as a partial replacement for natural sand in mortars containing CSA cement to save the environment and natural resources, J. Hazard. Mater. 398 (2020) art.123101, https://doi.org/10.1016/j.jhazmat.2020.123101
[67] World Steel Association (Ed.): World Steel in Figures 2022 – Concise version, finalized April 2022, Brussels, Belgium
[68] EUROSLAG homepage. https://www.euroslag.com/products/statistics/statistics-2021 (accessed 30 April 2024).
[69] A.M. Rashad, Behavior of steel slag aggregate in mortar and concrete – A comprehensive overview, J. Build. Eng. 53 (2022) art.104536. https://doi.org/10.1016/j.jobe.2022.104536
[70] Ö. Özkan, Sulfate resistance of mortars produced wi̇th Granulated Blast Furnace and Steel Slag additive cements, J. Fac. Eng. Archit. Gazi Univ. 23(1) (2008) 1–8. https://hdl.handle.net/20.500.12628/7693
[71] H. Rooholamini, R. Sedghi, B. Ghobadipour and M. Adresi, Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete, Construct. Build. Mater. 211 (2019) 88-98. https://doi.org/10.1016/j.conbuildmat.2019.03.223
[72] W. Traczyk, Rynek stali: produkcja globalna i polska. https://magazynprzemyslowy.pl/artykuly/rynek-stali-produkcja-globalna-i-polska (accessed 30 April 2024).
[73] Notice Minister of Climate and Environmental of August 4, 2023, on the rates of fees for the use of the environment for 2024, Official Journal of the Republic of Poland, Pos. 914.