Effect of Ash from Thermal Conversion of Municipal Waste on the Strength Parameters and Frost Resistance of Cement Mortars

Effect of Ash from Thermal Conversion of Municipal Waste on the Strength Parameters and Frost Resistance of Cement Mortars

PIETRZAK Alina

Abstract. The paper presents the possibility of using waste, fly ash, generated in the process of thermal conversion of municipal waste in cement mortar technology. For the study, fly ash in the amount of 5% to 30% by weight of cement was used as a substitute for sand. A total of 7 different cement mortars were made, including a standard (control) mortar. The following tests were performed for the prepared samples: flexural and compressive strength after 7 and 28 days of maturation, frost resistance, water absorption, and consistency test for fresh mortars.

Keywords
Cement Mortars, Fly Ash, Waste

Published online 10/20/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PIETRZAK Alina, Effect of Ash from Thermal Conversion of Municipal Waste on the Strength Parameters and Frost Resistance of Cement Mortars, Materials Research Proceedings, Vol. 45, pp 155-164, 2024

DOI: https://doi.org/10.21741/9781644903315-19

The article was published as article 19 of the book Terotechnology XIII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] J. Bień, Forecasting municipal waste accumulation rate and personal consumption expenditures using vector autoregressive (VAR) model, Prod. Eng. Arch. 28 (2022) 150-156. https://doi.org/10.30657/pea.2022.28.17
[2] J. Bień, Production and use of waste-derived fuels in Poland: current status and perspectives. Prod. Eng. Arch. 27 (2021) 36-41. https://doi.org/10.30657/pea.2021.27.5
[3] A. Deja, W. Ślączka, L. Dzhuguryan, T. Dzhuguryan and R. Ulewicz, Green technologies in smart city multifloor manufacturing clusters: A framework for additive manufacturing management. Prod. Eng. Arch. 29 (2023) 428-443. https://doi.org/10.30657/pea.2023.29.48
[4] D. Francois, C. Criado, Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator, J. Hazard. Mater. 139 (2007) 543-549. https://doi.org/10.1016/j.jhazmat.2005.02.019
[5] M. Ulewicz, J. Jura, Influence of mix fly and bottom ashes from biomass on selected properties of cement mortars, Key Eng. Mater. 828 (2020) 14-17. https://doi.org/10.4028/www.scientific.net/KEM.828.14.
[6] M. Ulewicz, J. Jura and A. Gnatowski, Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion – A New Material for Sustainable Construction. Sustainability 16 (2024) art.3079. https://doi.org/10.3390/su16073079.
[7] J. Jura, Influence of type of biomass burned on the properties of cement mortar containing fly ash, CoOEP 9 (2020) 77-82, doi: https://doi.org/10.17512/bozpe.2020.1.09
[8] J. Jura, M. Ulewicz, Assessment of the possibility of using fly ash from biomass combustion for concrete, Materials 14 (2021) art.6708. https://doi.org/10.3390/ma14216708
[9] T. Kalak, P. Szypura, R. Cierpiszewski and M. Ulewicz, Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials 16 (2023) art.4043. https://doi.org/10.3390/ma16114043
[10] J. Popławski, Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, CoOEP 9 (2020) 89-96. https://doi.org/10.17512/bozpe.2020.1.11
[11] A. Pietrzak, The Impact of Waste Generated from Thermal Transformation of Municipal Wate on Selected Properties of Cement Mortar, System Safety: Human-Technical Facility Environment 5 (2023) 142-150. https://doi.org/10.2478/czoto-2023-0016
[12] M. Ulewicz, J. Halbiniak, Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochemical Problems of Mineral Processing 52 (2016) 1002-1010. https://doi.org/10.5277/ppmp160237
[13] A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.V. Borrachero, J. Payá and J.M. Monzó, Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements, J. Cleaner Prod. 279 (2021) art.123713. https://doi.org/10.1016/j.jclepro.2020.123713
[14] L. Gautam, J.K. Jain, P. Kalla and S. Choudhary, A review on the utilization of ceramic waste in sustainable construction products, Materials Today Proceedings 43 (2021) 1884-1891. https://doi.org/10.1016/j.matpr.2020.10.829
[15] S. Ray, M. Haque, M.N. Sakib, A.F. Mita, M.D.M. Rahman and B.B. Tanmoy, Use of ceramic wastes as aggregates in concrete production. A review, Journal of Building Engineering 43 (2021) art.102567. https://doi.org/10.1016/j.jobe.2021.102567
[16] A. Pietrzak, M. Ulewicz, Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties, Materials 16 (2023) art.2231. https://doi.org/10.3390/ma16062231
[17] M. Ulewicz, A. Pietrzak, Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats, Materials 14 (2021) art.872. https://doi.org/10.3390/ma14040872
[18] Pietrzak, The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, CoOEP 8 (2019) 29-35. https://doi.org/10.17512/bozpe.2019.1.03.
[19] Helbrych, Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, CoOEP 8 (2019) 131-136. https://doi.org/10.17512/bozpe.2019.1.14.
[20] Czajkowska, W. Raczkiewicz and M. Ingaldi, Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies, Prod. Eng. Arch. 29 (2023) 288-297. http://doi.org/10.30657/pea.2023.29.33
[21] P. Helbrych, Mechanical properties of concretes modified with steel fibers and polypropylene, Sci. J. Maritime Univ. Szczecin 71 (2022) 56-63. https://doi.org/10.17402/518
[22] A. Pietrzak, M. Ulewicz, Effect of waste from cathode ray tube glass (CRT) on the strength parameters of cement mortars, Building Materials 10 (2017) 49-50. https://doi.org/10.15199/33.2017.10.16
[23] S.K. Adhikary, D.K. Ashish and Z Rudžionis, Expanded glass as light-weight aggregate in concrete – A review, Journal of Cleaner Production 313 (2021) art.127848. https://doi.org/10.1016/j.jclepro.2021.127848
[24] B. Dębska, J. Krasoń and L. Lichołai, The evaluation of the possible utilization of waste glass in sustainable mortars, CoOEP 9 (2020) 7-15. https://doi.org/10.17512/bozpe.2020.2.01
[25] T. Lis, K. Nowacki, Pro-ecological possibilities of using metallurgical waste in the production of aggregates, Prod. Eng. Arch. 28 (2022) 252-256. https://doi.org/10.30657/pea.2022.28.31.
[26] N.G. Muradyan, A.A. Arzumanyan, M.A. Kalantaryan, Y.V. Vardanyan, M. Yeranosyan, M. Ulewicz, D. Laroze and M.G. Barseghyan, The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method, Materials 16 (2023) art.5516. https://doi.org/10.3390/ma16165516
[27] W. Martinez-Molina, H.L. Chavez-Garcia, T. Perez-Lopez, E.M. Alonso-Guzman, M. Arreola-Sanchez, M.A. Navarrete-Seras, J.A. Borrego-Perez, A. Sanchez-Calvillo, J.A. Guzman-Torres and J.T. Perez-Quiroz, Effect of the Addition of Agribusiness and Industrial Wastes as a Partial Substitution of Portland Cement for the Carbonation of Mortars, Materials 14 (2021) art.7276. https://doi.org/10.3390/ma14237276
[28] M. Tutak, J. Brodny, D. Siwiec, R. Ulewicz and P. Bindzár, Studying the level of sustainable energy development of the European union countries and their similarity based on the economic and demographic potential, Energies 13 (2020) art. 6643. https://doi.org/10.3390/en13246643
[29] A. Deja, T. Dzhuguryan, L. Dzhuguryan, O. Konradi and R. Ulewicz, Smart sustainable city manufacturing and logistics: A framework for city logistics node 4.0 operations, Energies 14 (2021) art. 8380. https://doi.org/10.3390/en14248380
[30] R. Dwornicka, The impact of the power plant unit start-up scheme on the pollution load, Adv. Mater. Res. 874 (2014) 63-69. https://doi.org/10.4028/www.scientific.net/AMR.874.63
[31] A. Deja, R. Ulewicz and Y. Kyrychenko, Analysis and assessment of environmental threats in maritime transport, Transportation Research Procedia 55 (2021) 1073-1080. https://doi.org/10.1016/j.trpro.2021.07.078
[32] M. Zenkiewicz, T. Zuk, J. Pietraszek, P. Rytlewski, K. Moraczewski and M. Stepczyńska, Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835
[33] T. Zuk, J. Pietraszek and M. Zenkiewicz, Modeling of electrostatic separation process for some polymer mixtures, Polimery/Polymers 61 (2016) 519-527. https://doi.org/10.14314/polimery.2016.519
[34] E. Radzyminska-Lenarcik, M. Ulewicz, Polymer inclusion membranes (PIMs) doped with alkylimidazole and their application in the separation of non-ferrous metal ions, Polymers 11 (2019) art. 1780. https://doi.org/10.3390/polym11111780
[35] T. Kalak, R. Cierpiszewski and M. Ulewicz, High efficiency of the removal process of pb(Ii) and cu(ii) ions with the use of fly ash from incineration of sunflower and wood waste using the cfbc technology, Energies 14 (2021) art. 1771. https://doi.org/10.3390/en14061771
[36] K.L. Škůrková, M. Ingaldi, Recycling process of the aluminium cans as an example of the renewable material sources, Adv. Mater. Res. 1001 (2014) 103-108. https://doi.org/10.4028/www.scientific.net/AMR.1001.103
[37] S.T. Dziuba, M. Ingaldi, Segregation and recycling of packaging waste by individual consumers in Poland, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 3 (2015) 545-552.
[38] M. Ulewicz, A. Pietrzak, Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats, Materials 14 (2021) art. 872. https://doi.org/10.3390/ma14040872
[39] M. Radek, A. Pietraszek, A. Kozień, K. Radek and J. Pietraszek, Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Mater. Res. Proc. 34 (2023) 453-459. https://doi.org/10.21741/9781644902691-52
[40] A. Kuzior, D. Krawczyk, P. Brożek, O. Pakhnenko, T. Vasylieva and S. Lyeonov, Resilience of Smart Cities to the Consequences of the COVID-19 Pandemic in the Context of Sustainable Development, Sustainability 14 (2022) art. 12645. https://doi.org/10.3390/su141912645
[41] E. Kozień, A. Kozień, Institutional aspects of health and safety at work in poland, System Safety: Human – Technical Facility – Environment 1 (2019) 240-247. https://doi.org/10.2478/czoto-2019-0031
[42] Ł.J. Orman, G. Majewski, N. Radek and J. Pietraszek, Analysis of Thermal Comfort in Intelligent and Traditional Buildings, Energies 15 (2022) art. 6522. https://doi.org/10.3390/en15186522
[43] Ł.J. Orman, N. Krawczyk, N. Radek, S. Honus, J. Pietraszek, L. Dębska, A. Dudek and A. Kalinowski, Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings, Energies 16 (2023) art. 6663. https://doi.org/10.3390/en16186663
[44] Ł.J. Orman, N. Radek, J. Pietraszek, J. Wojtkowiak and M. Szczepaniak, Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement, Materials 16 (2023) art. 1365. https://doi.org/10.3390/ma16041365
[45] Ł.J. Orman, N. Radek, S. Honus and J. Pietraszek, Application of laser treatment technology for boiling heat transfer augmentation, Prod. Eng. Arch. 30 (2024) 259-265. https://doi.org/10.30657/pea.2024.30.25
[46] P. Krysiak, M. Szczepaniak, P. Wojcieszyńska and W. Jasiński, Strength testing of a composite mounting frame for a multi-sensor detection system, Mater. Res. Proc. 17 (2020) 165-170. https://doi.org/10.21741/9781644901038-25
[47] P. Krysiak, R. Owczarek, W. Błażejewski and A. Błachut, Strength testing and ring stiffness testing of underground composite pressure pipes, Mater. Res. Proc. 17 (2020) 191-202. https://doi.org/10.21741/9781644901038-29
[48] A. Pacana, R. Ulewicz, Research of determinants motiving to implement the environmental management system, Polish J. Manag. Stud. 16 (2017) 165-174. https://doi.org/10.17512/pjms.2017.16.1.14
[49] R. Ulewicz, Quality management system operation in the woodworking industry, The Path Forward for Wood Products: A Global Perspective – Proc. of Sci. Papers (2016) 51-56.
[50] K. Czerwińska, R. Dwornicka and A. Pacana, Improving quality control of siluminial castings used in the automotive industry, METAL 2020 – 29th Int. Conf. Metall. Mater., (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661
[51] N. Radek, J. Pietraszek, J. Bronček and P. Fabian, Properties of Steel Welded with CO2 Laser, Lecture Notes in Mechanical Engineering (2020) 571-580. https://doi.org/10.1007/978-3-030-33146-7_65
[52] A. Gądek-Moszczak, N. Radek, I. Pliszka, J. Augustyn-Nadzieja and Ł.J. Orman, Nano X-ray Tomography Application for Quantitative Surface Layer Geometry Analysis after Laser Beam Modification, Materials 15 (2022) art. 5935. https://doi.org/10.3390/ma15175935
[53] N. Naprstkova, J. Cais and M. Ingaldi, Modification of AlSi9CuMnNi alloy by antimony and heat treatment and their influence on tool wear after turning, Manuf. Technol. 16 (2016) 209-214.
[54] N. Radek, R. Dwornicka, Fire properties of intumescent coating systems for the rolling stock, Communications – Scientific Letters of the University of Žilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96
[55] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[56] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[57] A. Szczotok, J. Nawrocki, A. Gądek-Moszczak and M. Kołomycki, The bootstrap analysis of one-way ANOVA stability in the case of the ceramic shell mould of airfoil blade casting, Solid State Phenom. 235 (2015) 24-30. https://doi.org/10.4028/www.scientific.net/SSP.235.24
[58] A. Gądek-Moszczak, N. Radek, S. Wroński and J. Tarasiuk, Application the 3D image analysis techniques for assessment the quality of material surface layer before and after laser treatment, Adv. Mater. Res. 874 (2014) 133-138. https://doi.org/10.4028/www.scientific.net/AMR.874.133
[59] A. Piwowarczyk, I. Jastrzębska, Enhancing Materials Science through Computer Image Analysis and IQA Approaches, Mater. Res. Proc. 34 (2023) 374-379. https://doi.org/10.21741/9781644902691-43