–
Modern Vehicle Armor Technologies
OLSZEWSKI Dawid, KRYSIAK Piotr, PARTYKA Jacek, WYSOCZAŃSKI Andrzej, JASIŃSKI Wiesław
Abstract. The article explores modern approaches to armoring vehicles exposed to kinetic threats. It discusses the advantages and disadvantages of various solutions compared to other materials. The study concludes with recommendations underscoring the need for continued scientific research to advance ballistic armor technology, thereby enhancing the safety of drivers, operators, crews, and passengers. The article aims to summarize the current body of knowledge on vehicle armor and to raise awareness of this important topic.
Keywords
Armor, Armored Vehicles, Crew Safety
Published online 10/20/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: OLSZEWSKI Dawid, KRYSIAK Piotr, PARTYKA Jacek, WYSOCZAŃSKI Andrzej, JASIŃSKI Wiesław, Modern Vehicle Armor Technologies, Materials Research Proceedings, Vol. 45, pp 132-139, 2024
DOI: https://doi.org/10.21741/9781644903315-16
The article was published as article 16 of the book Terotechnology XIII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] K. Jach, R. Świerczyński and M. Magier, Analiza numeryczna procesu penetracji stalowego pancerza przez pocisk podkalibrowy z penetratorem jednorodnym i segmentowym, Biuletyn WAT Vol. LVII nr 1 (2008), 185-186.
[2] M. Magier, Rozwój opancerzenia czołgów w aspekcie jego odporności na penetrację amunicją kinetyczną, Probl. Tech. Uzbroj. 47 (2018) 75-80. https://doi.org/10.5604/01.3001.0012.8313
[3] L. Starczewski, S. Szczęch and D. Tudyka, Badania stali pancernej w aspekcie ich skuteczności ochronnej, Prace Instytutu Metalurgii Żelaza 62(1) (2010) 110-111.
[4] STANAG 4569 “Procedures for evaluating the protection levels of logistic and light armored vehicles for KE and artillery threat”
[5] M. Cegła, Materiały ceramiczne stosowane w osłonach balistycznych, Problemy Techniki Uzbrojenia 43(131) (2014) 19-25.
[6] M. Wesołowska, B. Delczyk-Olejniczak, Włókna w balistyce – dziś i jutro, Techniczne Wyroby Włókiennicze 1/2 (2011), 41-50.
[7] Nauka o materiałach. Wykład VII: kompozyty. [online]. 2017. [viewed: 2024-04-28]. Available from: https://home.agh.edu.pl/~lis/wp-content/uploads/2017/02/nom_VII-2017-Kompozyty.pdf.
[8] M. Fejdyś, M. Łandwijt, Włókna techniczne wzmacniające materiały kompozytowe, Techniczne Wyroby Włókiennicze 18(1/2) (2010) 12-22.
[9] N. Węgrzyn, Analiza przydatności UHMWPE do zastosowań na osłonę balistyczną robota interwencyjnego dla służb ratowniczych, Bachelor’s thesis, Warsaw University of Technology (2013) 55-58.
[10] A. Deja, R. Ulewicz and Y. Kyrychenko, Analysis and assessment of environmental threats in maritime transport, Transportation Research Procedia 55 (2021) 1073-1080. https://doi.org/10.1016/j.trpro.2021.07.078
[11] M. Ulewicz, W. Walkowiak, K. Brandt and I. Porwolik-Czomperlik, Ion flotation of zinc(II) and cadmium(II) in the presence of side-armed diphosphaza-16-crown-6 ethers, Separation Science and Technology 38 (2003) 633-645. https://doi.org/10.1081/SS-120016655
[12] E. Radzyminska-Lenarcik, M. Ulewicz, The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(II), nickel(II), copper(II), and zinc(II) ions, Polish J. Chem. Technol. 17 (2015) 51-56. https://doi.org/10.1515/pjct-2015-0029
[13] Ł.J. Orman, N. Radek, J. Pietraszek and D. Gontarski, Discussion of the heat flux calculation method during pool boiling on meshed heaters, System Safety: Human – Technical Facility – Environment 2 (2020) 247-252. https://doi.org/10.2478/czoto-2020-0030
[14] Ł.J. Orman, N. Radek, J. Pietraszek, J. Wojtkowiak and M. Szczepaniak, Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement, Materials 16 (2023) art. 1365. https://doi.org/10.3390/ma16041365
[15] Ł.J. Orman, N. Radek, S. Honus and J. Pietraszek, Application of laser treatment technology for boiling heat transfer augmentation, Prod. Eng. Arch. 30 (2024) 259-265. https://doi.org/10.30657/pea.2024.30.25
[16] M. Opydo, A. Dudek and R. Kobyłecki, Characteristics of solids accumulation on steel samples during co-combustion of biomass and coal in a CFB boiler, Biomass and Bioenergy 120 (2019) 291-300. https://doi.org/10.1016/j.biombioe.2018.11.027
[17] T. Lipiński, D. Karpisz, Corrosion rate of 1.4152 stainless steel in a hot nitrate acid, METAL 2019 – 28th Int. Conf. Metall. Mater., (2019) 1086-1091.
[18] T. Lipiński, J. Pietraszek, Corrosion of the S235JR Carbon Steel after Normalizing and Overheating Annealing in 2.5% Sulphuric Acid at Room Temperature, Mater. Res. Proc. 24 (2022) 102-108. https://doi.org/10.21741/9781644902059-16
[19] A. Dudek, Microstructure and properties of the composites: Hydroxyapatite with addition of zirconia phase, J. Eng. Mater. Technol. 133 (2011) art. 21006. https://doi.org/10.1115/1.4003104
[20] R. Ulewicz, M. Mazur and O. Bokůvka, Structure and mechanical properties of fine-grained steels, Periodica Polytech. Transp. Eng. 41 (2013) 111-115. https://doi.org/10.3311/PPtr.7110
[21] A. Dudek, B. Lisiecka and R. Ulewicz, The effect of alloying method on the structure and properties of sintered stainless steel, Arch. Metall. Mater. 62 (2017) 281-287. https://doi.org/10.1515/amm-2017-0042
[22] N. Radek, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, J. Świderski, M. Radek and D. Gontarski, The effect of laser treatment on operational properties of ESD coatings, METAL 2021 – 30th Int. Conf. Metall. Mater., (2021) 876-882. https://doi.org/10.37904/metal.2021.4212
[23] N. Radek, R. Dwornicka and D. Gontarski, The impact of laser processing on the performance properties of electro-spark coatings, World Congress in Computational Mechanics and ECCOMAS Congress 1000 (2021) 1-10. https://doi.org/10.23967/wccm-eccomas.2020.336
[24] N. Radek, A. Kalinowski, J. Pietraszek, J. Orman, M. Szczepaniak, A. Januszko, J. Kamiński, J. Bronček and O. Paraska, Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122. https://doi.org/10.30657/pea.2022.28.13
[25] N. Radek, J. Pietraszek, J. Bronček, D. Gontarski, A. Szczotok, O. Paraska and K. Mulczyk, Laser Processing of WC-Co Coatings, Mater. Res. Proc. 24 (2022) 34-38. https://doi.org/10.21741/9781644902059-6
[26] N. Radek, J. Pietraszek, A. Szczotok, P. Fabian and A. Kalinowski, Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[27] N. Radek, A. Kalinowski, J. Orman, M. Szczepaniak, J. Świderski, D. Gontarski, J. Bronček and J. Pietraszek, Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater. (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[28] P. Szataniak, F. Novy and R. Ulewicz, HSLA steels – Comparison of cutting techniques, METAL 2014 – 23rd Int. Conf. Metall. Mater., (2014) 778-783.
[29] N. Radek, J. Pietraszek, M. Radek and O. Paraska, The influence of plasma cutting parameters on the geometric structure of cut surfaces, Mater. Res. Proc. 17 (2020) 132-137. https://doi.org/10.21741/9781644901038-20
[30] T. Lipiński, Effect of Al5TiB Master Alloy with P on Microstructure and Mechanical Properties of AlSi7Mg Alloy, Metals 13 (2023) art. 1560. https://doi.org/10.3390/met13091560
[31] R. Dwornicka, J. Pietraszek, The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09
[32] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[33] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[34] J. Pietraszek, J. Korzekwa and A. Goroshko, The principal component analysis of tribological tests of surface layers modified with IF-WS2 nanoparticles, Solid State Phenom. 235 (2015) 9-15. https://doi.org/10.4028/www.scientific.net/SSP.235.9
[35] A. Dudek, B. Lisiecka, N. Radek, Ł.J. Orman and J. Pietraszek, Laser Surface Alloying of Sintered Stainless Steel, Materials 15 (2022) art. 6061. https://doi.org/10.3390/ma15176061
[36] P.J. Romanowicz, D. Smolarski and M.S. Kozién, Using the Effect of Compression Stress in Fatigue Analysis of the Roller Bearing for Bimodal Stress Histories, Materials 15 (2022) art. 196. https://doi.org/10.3390/ma15010196
[37] T. Lipiński, J. Pietraszek and A. Wach, Influence of oxygen content in medium carbon steel on bending fatigue strength, Engineering for Rural Development 21 (2022) 351-356. https://doi.org/10.22616/ERDev.2022.21.TF116
[38] A. Pacana, R. Ulewicz, Analysis of causes and effects of implementation of the quality management system compliant with iso 9001, Polish J. Manag. Stud. 21 (2020) 283-296. https://doi.org/10.17512/pjms.2020.21.1.21
[39] A. Pacana, K. Czerwińska, Model of diagnosing and searching for incompatibilities in aluminium castings, Materials 14 (2021) art. 6497. https://doi.org/10.3390/ma14216497
[40] M. Krynke, Personnel Management on the Production Line Using the FlexSim Simulation Environment, Manuf. Technol. 21 (2021) 657-667. https://doi.org/10.21062/mft.2021.073
[41] M. Ingaldi, D. Klimecka-Tatar, Digitization of the service provision process – Requirements and readiness of the small and medium-sized enterprise sector, Procedia Computer Science 200 (2022) 237-246. https://doi.org/10.1016/j.procs.2022.01.222
[42] R. Ulewicz, B. Krstić and M. Ingaldi, Mining Industry 4.0 – Opportunities and Barriers, Acta Montanistica Slovaca 27 (2022) 291-305. https://doi.org/10.46544/AMS.v2i2.02
[43] A. Deja, T. Dzhuguryan, L. Dzhuguryan, O. Konradi and R. Ulewicz, Smart sustainable city manufacturing and logistics: A framework for city logistics node 4.0 operations, Energies 14 (2021) art. 8380. https://doi.org/10.3390/en14248380