Location Conditions of Buildings at Risk from the Shock Wave of an Explosion of Hazardous Materials

Location Conditions of Buildings at Risk from the Shock Wave of an Explosion of Hazardous Materials

PARTYKA Jacek, KRYSIAK Piotr, OLSZEWSKI Dawid, WYSOCZAŃSKI Andrzej, JASIŃSKI Wiesław

Abstract. The article addresses issues related to the shock wave impact resulting from explosions of hazardous materials and implications for the location of a hazardous material storage facility and other objects in the surroundings. It outlines the procedure for determining the minimum allowable distance from the base warehouse to other surrounding structures. This approach considers the shock wave effects for various subclasses of hazardous materials. To help readers understand the topics covered and their practical applications of formulas for determining permissible distances between hazardous materials warehouse structures located in the vicinity of these warehouses, a computational example is provided. The entire study is summarized with a call for ongoing research in the field of hazardous materials and the determination of such safe distances taking into account the shock wave phenomenon.

Keywords
Shock Wave, Explosives, Base Warehouse, Embankment, Separation Distance

Published online 10/20/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PARTYKA Jacek, KRYSIAK Piotr, OLSZEWSKI Dawid, WYSOCZAŃSKI Andrzej, JASIŃSKI Wiesław, Location Conditions of Buildings at Risk from the Shock Wave of an Explosion of Hazardous Materials, Materials Research Proceedings, Vol. 45, pp 111-118, 2024

DOI: https://doi.org/10.21741/9781644903315-14

The article was published as article 14 of the book Terotechnology XIII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Ustawa z dnia 19 sierpnia 2011 r. o przewozie towarów niebezpiecznych (Dz. U. z 2022 r.
poz. 2147, z 2023 r. poz. 1123).
[2] Council Directive 95/50/EC of 6 October 1995 on uniform procedures for checks on the transport of dangerous goods by road. http://data.europa.eu/eli/dir/1995/50/oj
[3] Umowa dotycząca międzynarodowego przewozu drogowego towarów niebezpiecznych (ADR), obowiązująca od dnia 1 stycznia 2023 r., Tom I.
[4] E. Guzek, Problematyka wyznaczania stref ochronnych wokół magazynów oraz składów materiałów i przedmiotów wybuchowych, Problemy Techniki i Uzbrojenia 42(126) (2013) 21 40.
[5] P. Ojczyk, The traumas caused by the blast of the explosives, Diploma Thesis, Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Wydział Zdrowia i Nauk Medycznych, Ratownictwo medyczne, 2018.
[6] M. Machowicz, The influence of the air shock wave on the surroundings, Górnictwo
i Geoinżynieria 29(3) (2005) 17-30.
[7] Rozporządzenie Ministra Rozwoju, Pracy i Technologii z dnia 5 sierpnia 2021 r. w sprawie obiektów i pomieszczeń magazynowych do przechowywania materiałów wybuchowych, broni, amunicji oraz wyrobów i technologii o przeznaczeniu wojskowym lub policyjnym (Dz. U. z dnia 13 września 2021 r., poz. 1674).
[8] K. Ptasińska-Gucik, The market square in Katowice – a place which no longer exists – an evolution of the spatial structure, Technical Transactions 120 (2023) art. e2023006. https://doi.org/10.37705/TechTrans/e2023006
[9] D. Strzałka-Rogal, The evolution of the form and function of the window as a detail influencing historical architecture, Technical Transactions 120 (2023) art. e2023018. https://doi.org/10.37705/TechTrans/e2023018
[10] M. Radek, A. Pietraszek, A. Kozień, K. Radek and J. Pietraszek, Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Mater. Res. Proc. 34 (2023) 453-459. https://doi.org/10.21741/9781644902691-52
[11] T. Lipiński, P. Szabracki, Mechanical properties of AlSi9Mg alloy with a sodium modifier, Solid State Phenom. 223 (2015) 78-86. https://doi.org/10.4028/www.scientific.net/SSP.223.78
[12] A. Szczotok, J. Pietraszek and N. Radek, Metallographic Study and Repeatability Analysis of γ’ Phase Precipitates in Cored, Thin-Walled Castings Made from IN713C Superalloy, Arch. Metall. Mater. 62 (2017) 595-601. https://doi.org/10.1515/amm-2017-0088
[13] A. Szczotok, N. Radek and R. Dwornicka, Effect of the induction hardening on microstructures of the selected steels, METAL 2018 – 27th Int. Conf. Metall. Mater. (2018) 1264-1269.
[14] T. Lipiński, R. Ulewicz, The effect of the impurities spaces on the quality of structural steel working at variable loads, Open Eng. 11 (2021) 233-238. https://doi.org/10.1515/eng-2021-0024
[15] N. Radek, R. Dwornicka, Fire properties of intumescent coating systems for the rolling stock, Communications – Scientific Letters of the University of Žilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96
[16] N. Radek, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, J. Świderski, M. Radek and D. Gontarski, The effect of laser treatment on operational properties of ESD coatings, METAL 2021 – 30th Int. Conf. Metall. Mater., (2021) 876-882. https://doi.org/10.37904/metal.2021.4212
[17] N. Radek, A. Kalinowski, J. Pietraszek, J. Orman, M. Szczepaniak, A. Januszko, J. Kamiński, J. Bronček and O. Paraska, Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122. https://doi.org/10.30657/pea.2022.28.13
[18] N. Radek, H. Danielewski, J. Pietraszek, Ł. Orman, D. Gontarski, M. Radek and O. Paraska, Operational Properties of Heterogeneous Surfaces, Mater. Res. Proc. 34 (2023) 161-168. https://doi.org/10.21741/9781644902691-20
[19] T. Lipiński, D. Karpisz, Corrosion rate of 1.4152 stainless steel in a hot nitrate acid, METAL 2019 – 28th Int. Conf. Metall. Mater. (2019) 1086-1091.
[20] T. Lipiński, Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K, Prod. Eng. Arch. 27 (2021) 108-111. https://doi.org/10.30657/pea.2021.27.13
[21] T. Lipiński, J. Pietraszek, Influence of animal slurry on carbon C35 steel with different microstructure at room temperature, Engineering for Rural Development 21 (2022) 344-350. https://doi.org/10.22616/ERDev.2022.21.TF115
[22] R. Ulewicz, F. Nový, P. Novák and P. Palček, The investigation of the fatigue failure of passenger carriage draw-hook, Engineering Failure Analysis 104 (2019) 609-616. https://doi.org/10.1016/j.engfailanal.2019.06.036
[23] P.J. Romanowicz, D. Smolarski and M.S. Kozień, Using the Effect of Compression Stress in Fatigue Analysis of the Roller Bearing for Bimodal Stress Histories, Materials 15 (2022) art. 196. https://doi.org/10.3390/ma15010196
[24] T. Lipiński, J. Pietraszek and A. Wach, Influence of oxygen content in medium carbon steel on bending fatigue strength, Engineering for Rural Development 21 (2022) 351-356. https://doi.org/10.22616/ERDev.2022.21.TF116
[25] J. Pietraszek, A. Szczotok and N. Radek, The fixed-effects analysis of the relation between SDAS and carbides for the airfoil blade traces, Arch. Metall. Mater. 62 (2017) 235-239. https://doi.org/10.1515/amm-2017-0035
[26] R. Dwornicka, J. Pietraszek, The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09
[27] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[28] N. Radek, J. Pietraszek, A. Szczotok, P. Fabian and A. Kalinowski, Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[29] N. Radek, A. Kalinowski, J. Orman, M. Szczepaniak, J. Świderski, D. Gontarski, J. Bronček and J. Pietraszek, Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater. (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[30] G. Majewski, Ł.J. Orman, M. Telejko, N. Radek, J. Pietraszek and A. Dudek, Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment, Energies 13 (2020) art. 1973. https://doi.org/10.3390/en13081973
[31] Ł.J. Orman, G. Majewski, N. Radek and J. Pietraszek, Analysis of Thermal Comfort in Intelligent and Traditional Buildings, Energies 15 (2022) art. 6522. https://doi.org/10.3390/en15186522
[32] Ł.J. Orman, N. Krawczyk, N. Radek, S. Honus, J. Pietraszek, L. Dębska, A. Dudek and A. Kalinowski, Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings, Energies 16 (2023) art. 6663. https://doi.org/10.3390/en16186663
[33] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[34] J. Pietraszek, A. Szczotok and E. Kocyłowska, Factorial approach to assessment of GPU computational efficiency in surrogate models, Adv. Mater. Res. 874 (2014) 157-162. https://doi.org/10.4028/www.scientific.net/AMR.874.157
[35] J. Pietraszek, M. Seńcio, J. Diakun, A. Gądek-Moszczak and M. Stojek, The parametric RSM model with higher order terms for the meat tumbler machine process, Solid State Phenom. 235 (2015) 37-44. https://doi.org/10.4028/www.scientific.net/SSP.235.37
[36] P. Sygut, D. Klimecka-Tatar and S. Borkowski, Theoretical analysis of the influence of longitudinal stress changes on band dimensions during continuous rolling process, Arch. Metall. Mater. 61 (2016) 183-188. https://doi.org/10.1515/amm-2016-0032
[37] N. Radek, J. Pietraszek, M. Radek and O. Paraska, The influence of plasma cutting parameters on the geometric structure of cut surfaces, Mater. Res. Proc. 17 (2020) 132-137. https://doi.org/10.21741/9781644901038-20
[38] Z. Nowak, M. Nowak, J. Widłaszewski and P. Kurp, Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate, AIP Conf. Proc. 1922 (2018) art. 140006. https://doi.org/10.1063/1.5019148
[39] A. Dudek, B. Lisiecka, N. Radek, Ł.J. Orman and J. Pietraszek, Laser Surface Alloying of Sintered Stainless Steel, Materials 15 (2022) art. 6061. https://doi.org/10.3390/ma15176061
[40] A. Szczotok, J. Nawrocki, A. Gądek-Moszczak and M. Kołomycki, The bootstrap analysis of one-way ANOVA stability in the case of the ceramic shell mould of airfoil blade casting, Solid State Phenom. 235 (2015) 24-30. https://doi.org/10.4028/www.scientific.net/SSP.235.24
[41] J. Pietraszek, L. Wojnar, The bootstrap approach to the statistical significance of parameters in RSM model, ECCOMAS Congress 2016 – Proc. 7th Europ. Congr. Comp. Methods in Appl. Sci. Eng. 1 (2016) 2003-2009. https://doi.org/10.7712/100016.1937.9138
[42] J. Pietraszek, Fuzzy regression compared to classical experimental design in the case of flywheel assembly, Lecture Notes in Computer Science 7267 LNAI (2012) 310-317. https://doi.org/10.1007/978-3-642-29347-4_36
[43] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[44] J. Pietraszek, E. Skrzypczak-Pietraszek, The optimization of the technological process with the fuzzy regression, Adv. Mater. Res. 874 (2014) 151-155. https://doi.org/10.4028/www.scientific.net/AMR.874.151
[45] J. Pietraszek, A. Szczotok, M. Kołomycki, N. Radek and E. Kozień, Non-parametric assessment of the uncertainty in the analysis of the airfoil blade traces, METAL 2017 – 26th Int. Conf. Metall. Mater. (2017) 1412-1418.
[46] J. Pietraszek, R. Dwornicka, M. Krawczyk and M. Kołomycki, The non-parametric approach to the quantification of the uncertainty in the design of experiments modelling, UNCECOMP 2017 – Proc. 2nd Int. Conf. Uncert. Quant. Comp. Sci. Eng. 2017-January (2017) 598-604. https://doi.org/10.7712/120217.5395.17225
[47] A. Gądek-Moszczak, N. Radek, I. Pliszka, J. Augustyn-Nadzieja and Ł.J. Orman, Nano X-ray Tomography Application for Quantitative Surface Layer Geometry Analysis after Laser Beam Modification, Materials 15 (2022) art. 5935. https://doi.org/10.3390/ma15175935
[48] A. Gądek-Moszczak, N. Radek, S. Wroński and J. Tarasiuk, Application the 3D image analysis techniques for assessment the quality of material surface layer before and after laser treatment, Adv. Mater. Res. 874 (2014) 133-138. https://doi.org/10.4028/www.scientific.net/AMR.874.133
[49] B. Jasiewicz, J. Pietraszek, S. Duda, S. Pietrzak, B. Pruszczyński, T. Parol, T. Potaczek and A. Gądek-Moszczak, Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment, Foot and Ankle Surgery 27 (2021) 371-376. https://doi.org/10.1016/j.fas.2020.04.015
[50] A. Piwowarczyk, I. Jastrzębska, Enhancing Materials Science through Computer Image Analysis and IQA Approaches, Mater. Res. Proc. 34 (2023) 374-379. https://doi.org/10.21741/9781644902691-43