Comparative Analysis of the Strain in Composite Rings Fabricated with Fibre Prestressing

Comparative Analysis of the Strain in Composite Rings Fabricated with Fibre Prestressing

KRYSIAK Piotr, PARTYKA Jacek, OLSZEWSKI Dawid, WYSOCZAŃSKI Andrzej, JASIŃSKI Wiesław, GĄSIOR Paweł

Abstract. The presented work addresses issues related to the manufacturing and testing of composite rings made of glass fibres and epoxy resin. Rings equivalent to a segment of a composite tube were prepared for the study. During the winding process, the tension force of the fibre bundle was varied to induce pre-stresses. After curing the samples, fibre optic sensors containing Fiber Bragg Gratings (FBG) were attached to their outer surface. Subsequently, the rings were cut along the generator, resulting in noticeable displacements of the cut planes. Thanks to the sensors used, it was possible to determine the circumferential deformations induced by the initial stresses in the manufactured composites.

Keywords
Epoxy Resin, Glass Fibre, Composite, Strain, Fiber Bragg Grating

Published online 10/20/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KRYSIAK Piotr, PARTYKA Jacek, OLSZEWSKI Dawid, WYSOCZAŃSKI Andrzej, JASIŃSKI Wiesław, GĄSIOR Paweł, Comparative Analysis of the Strain in Composite Rings Fabricated with Fibre Prestressing, Materials Research Proceedings, Vol. 45, pp 91-100, 2024

DOI: https://doi.org/10.21741/9781644903315-12

The article was published as article 12 of the book Terotechnology XIII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] P. Krysiak, Microstructural Analysis of Wound Composites with Considerations on the Fiber Winding Force, Mater. Res. Proc. 34 (2023) 43-52. https://doi.org/10.21741/9781644902691-6
[2] L.A. Dobrzanski, J. Domagała and J.F. Silva. Application of Taguchi method in the optimisation of filament winding of thermoplastic composites, Arch. Mater. Sci. Eng. 28 (3) (2007) 133-140.
[3] M. Azuma, K. Oimatsu, S. Oyama, S. Kamiya, K. Igashira, T. Takemura and Y. Takai, Safety design of compressed hydrogen trailers with composite cylinders, Int. J. Hydrogen Energy 39 (35) (2014) 20420-20425. https://doi.org/10.1016/j.ijhydene.2014.05.147
[4] S. Jansma, P. Cloos and E. van der Stok, Testing spoolable reinforced flexible pipes and liner material for high-pressure hydrogen transport, in: 20th Plastic Pipes Conf., September 21-23, 2020, Amsterdam, Netherlands, 2021.
[5] M. Schlottermoller, R. Schledjewski and P. Mitschang, Influence of process parameters on residual stress in thermoplastic filament-wound parts, Proc. Inst Mech Eng, Part L: J. Mater.: Des. Appl. 218 (2) (2004) 157-164. https://doi.org/10.1243/146442004323085572
[6] R. Rafiee, A. Salehi, Estimating the burst pressure of a filament wound composite pressure vessel using two-scale and multi-scale analyses, Mech. Adv. Mater. Struct. 30 (2023) 2668-2683, https://doi.org/10.1080/15376494.2022.2062077.
[7] X. Su, W. Gao, X. Liu, C. Xie and B. Xu, Theoretical study of fiber tension distribution at the spinning triangle, Textile Res. J. 83 (2013) 1728-1739. https://doi.org/ 10.1177/0040517513481867
[8] D. Mahdiyeh, E. Esfandiyar, (2014). Review of distribution of fiber tension at the spinning triangle, The Journal of the Textile Institute 105(11) (2014) 1167-1177. https://doi.org/10.1080/00405000.2013.877189
[9] M. Marco, E. Giner, M.H. Miguélez and D. González, On the effect of geometrical fiber arrangement on damage initiation in CFRPs under transverse tension and compression, Composite Structures 274 (2021) art.114360. https://doi.org/10.1016/j.compstruct.2021.114360
[10] Q. Wang, T. Li, B. Wang, C. Liu, Q. Huang and M. Ren, Prediction of void growth and fiber volume fraction based on filament winding process mechanics, Composite Structures 246 (2020) art.112432. https://doi.org/10.1016/j.compstruct.2020.112432
[11] L. Ge, J. Zhao, H. Li, J. Dong, H. Geng, L. Zu, S. Lin, X. Jia and X. Yang. A three-dimensional progressive failure analysis of filament-wound composite pressure vessels with void defects, Thin-Walled Structures 199 (2024) art.111858. https://doi.org/10.1016/j.tws.2024.111858
[12] P. Krysiak, A. Błachut and J. Kaleta, Theoretical and Experimental Analysis of Inter-Layer Stresses in Filament-Wound Cylindrical Composite Structures, Materials 14 (2021) art. 7037. https://doi.org/10.3390/ma14227037
[13] J. Degrieck, W. De Waele and P. Verleysen, Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels, NDT and E International 34 (2001) 289-296. https://doi.org/10.1016/S0963-8695(00)00069-4
[14] D. Kang, C. Kim, The embedment of fiber Bragg grating sensors into filament wound pressure tanks considering multiplexing, NDT and E International 39 (2006) 109-116. https://doi.org/10.1016/j.ndteint.2005.07.013
[15] E. Saeter, K. Lasn, F. Nony and A.T. Echtermeyer, Embedded optical fibres for monitoring pressurization and impact of filament wound cylinders, Composite Structures 210 (2019) 608-617. https://doi.org/10.1016/j.compstruct.2018.11.051
[16] R.C. Foedinger, D.L. Rea, J.S. Sirkis, C.S. Baldwin, J.R. Troll, R. Grande, C.S. Davis and T.L. VanDiver, Embedded Fiber Optic Sensor Arrays for Structural Health Monitoring of Filament Wound Composite Pressure Vessels, in Proc. of SPIE 3670 (1999) 289-301. https://doi.org/10.1117/12.349740
[17] H.-K. Kang, J.-S. Park, D.-H. Kang, C.-U. Kim, C.-S. Hong and C.-G. Kim, Strain monitoring of a filament wound composite tank using fiber Bragg grating sensors. Smart Mater. Struct. 11 (2002) 848-853. https://doi.org/10.1088/0964-1726/11/6/304
[18] M. Kunzler, E. Udd, S. Kreger, M. Johnson and V. Henrie, Damage evaluation and analysis of composite pressure vessels using fiber Bragg gratings to determine structural health, in Proc. of SPIE 6004 (2005) art.60040D. https://doi.org/10.1117/12.629514
[19] F. Yu, P.B. Ruffin and S. Yin (Eds.), Fiber Optic Sensors, Second Edition. CRC Press, Boca Raton, USA, 2019.
[20] T.C. Haber, S. Ferguson, D. Guthrie, T.W. Graver, B.J. Soller and A. Mendez, Analysis, compensation, and correction of temperature effects on FBG strain sensors, in Proc. of SPIE 8722 (2013) art. 872206. https://doi.org/10.1117/12.2018772
[21] D. Cohen, S.C. Mantell and L. Zhao. The effect of fiber volume fraction on filament wound composite pressure vessel strength, Composites Part B: Engineering, 32 (2001) 413-429. https://doi.org/10.1016/S1359-8368(01)00009-9
[22] H. Lu, M. Schlottermuller, N. Himmel and R. Schledjewski, Effects of tape tension on residual stress in thermoplastic composite filament winding, J. Thermoplastic Compos. Mater. 18 (2005) 469-487. https://doi.org/10.1177/0892705705054409
[23] L. Zu, H. Xu, B. Zhang, D. Li, H. Wangand and B. Zi, Filament-wound composite sleeves of permanent magnet motor rotors with ultra-high fiber tension, Composite Structures 204 (2018) 525-535. https://doi.org/10.1016/j.compstruct.2018.07.119
[24] P. Krysiak, J. Kaleta, P. Gąsior, A. Błachut and R. Rybczyński, Identification of strains in a multilayer composite pipe, Scie. J. Military Univ. Land Forces 49 (2017) 272-282. http://doi.org/10.5604/01.3001.0010.7233
[25] P. Krysiak, R. Owczarek, W. Błażejewski and A. Błachut, Strength Testing and Ring Stiffness Testing of Underground Composite Pressure Pipes, Mater. Res. Proc. 17 (2020) 191-202. https://doi.org/10.21741/9781644901038-29
[26] P. Krysiak, W. Jasiński and C. Pichlak, Static Mechanical Force Amplifier on the Example of a Fastener with an Electromagnetic Bolt, Mater. Res. Proc. 34 (2023) 246-251. https://doi.org/10.21741/9781644902691-29
[27] R. Ulewicz, D. Siwiec, A. Pacana, M. Tutak and J. Brodny, Multi-criteria method for the selection of renewable energy sources in the polish industrial sector, Energies 14 (2021) art. 2386. https://doi.org/10.3390/en14092386
[28] P. Ratajczyk, A. Katrusiak, K.A. Bogdanowicz, W. Przybył, P. Krysiak, A. Kwak and A. Iwan, Mechanical strain, thermal and pressure effects on the absorption edge of an organic charge-transfer polymer for flexible photovoltaics and sensors, Materials Advances 3 (2022) 2697-2705. https://doi.org/10.1039/d1ma01066b
[29] S. Maleczek, M. Szczepaniak, N. Radek, S. Kowalkowski and K.A. Bogdanowicz, Tests of Acid Batteries for Hybrid Energy Storage and Buffering System – A Technical Approach, Energies 15 (2022) art. 3514. https://doi.org/10.3390/en15103514
[30] A. Goroshko, V. Royzman and J. Pietraszek, Construction and practical application of hybrid statistically-determined models of multistage mechanical systems, Mechanika 20 (2014) 489-493. https://doi.org/10.5755/j01.mech.20.5.8221
[31] I. Drach, A. Goroshko and R. Dwornicka, Design Principles of Horizontal Drum Machines with Low Vibration, Adv. Sci. Technol. Res. J. 15 (2021) 258-268. https://doi.org/10.12913/22998624/136441
[32] G. Filo, E. Lisowski and J. Rajda, Design and flow analysis of an adjustable check valve by means of cfd method, Energies 14 (2021) art. 2237. https://doi.org/10.3390/en14082237
[33] M. Domagala, H. Momeni and J. Fabis-Domagala, The Influence of Oil Contamination on Flow Control Valve Operation, Mater. Res. Proc. 24 (2022) 1-8. https://doi.org/10.21741/9781644902059-1
[34] Ł.J. Orman, G. Majewski, N. Radek and J. Pietraszek, Analysis of Thermal Comfort in Intelligent and Traditional Buildings, Energies 15 (2022) art. 6522. https://doi.org/10.3390/en15186522
[35] Ł.J. Orman, N. Krawczyk, N. Radek, S. Honus, J. Pietraszek, L. Dębska, A. Dudek and A. Kalinowski, Comparative Analysis of Indoor Environmental Quality and Self-Reported Productivity in Intelligent and Traditional Buildings, Energies 16 (2023) art. 6663. https://doi.org/10.3390/en16186663
[36] A. Szczotok, J. Nawrocki and J. Pietraszek, The Impact of the Thickness of the Ceramic Shell Mould on the (γ + γ′) Eutectic in the IN713C Superalloy Airfoil Blade Casting, Arch. Metall. Mater. 62 (2017) 587-593. https://doi.org/10.1515/amm-2017-0087
[37] E. Guzik, A. Świątkowski, A. Szczęsny, D. Kopyciński, P. Mirek and K. Piotrowski, Developing the inoculation procedure for high-quality cast iron with flake graphite, intended for large-size casting (bottom or distance plates and counterweights) – produced in Krakodlew Foundry S.A., Technical Transactions 120 (2023) art. e2023009. https://doi.org/10.37705/TechTrans/e2023009
[38] T. Lipiński, Microstructure and Mechanical Properties AlSi7Mg Alloy with Sr, Al and AlSi7Mg, Manuf. Technol. 24 (2024) 227-234. https://doi.org/10.21062/MFT.2024.031
[39] R. Dwornicka, The impact of the power plant unit start-up scheme on the pollution load, Adv. Mater. Res. 874 (2014) 63-69. https://doi.org/10.4028/www.scientific.net/AMR.874.63
[40] E. Radzyminska-Lenarcik, M. Ulewicz, The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(II), nickel(II), copper(II), and zinc(II) ions, Polish Journal of Chemical Technology 17 (2015) 51-56. https://doi.org/10.1515/pjct-2015-0029
[41] E. Radzyminska-Lenarcik, M. Ulewicz, The application of polymer inclusion membranes based on CTA with 1-alkylimidazole for the separation of zinc(II) and manganese(II) ions from aqueous solutions, Polymers 11 (2019) art. 242. https://doi.org/10.3390/polym11020242
[42] L. Adamczyk, K. Giza and A. Dudek, Electrochemical preparation of composite coatings of 3,4- etylenodioxythiophene (EDOT) and 4-(pyrrole-1-yl) benzoic acid (PyBA) with heteropolyanions, Materials Chemistry and Physics 144 (2014) 418-424. https://doi.org/10.1016/j.matchemphys.2014.01.012
[43] J. Korzekwa, A. Gądek-Moszczak and M. Zubko, Influence of the Size of Nanoparticles on the Microstructure of Oxide Coatings, Materials Science 53 (2018) 709-716. https://doi.org/10.1007/s11003-018-0127-x
[44] N. Radek, H. Danielewski, J. Pietraszek, Ł. Orman, D. Gontarski, M. Radek and O. Paraska, Operational Properties of Heterogeneous Surfaces, Mater. Res. Proc. 34 (2023) 161-168. https://doi.org/10.21741/9781644902691-20
[45] J. Korzekwa, M. Bara, J. Pietraszek and P. Pawlus, Tribological behaviour of Al2O3/inorganic fullerene-like WS2 composite layer sliding against plastic, International Journal of Surface Science and Engineering 10 (2016) 570-584. https://doi.org/10.1504/IJSURFSE.2016.081035
[46] N. Naprstkova, J. Cais and M. Ingaldi, Modification of AlSi9CuMnNi alloy by antimony and heat treatment and their influence on tool wear after turning, Manuf. Technol. 16 (2016) 209-214.
[47] N. Radek, A. Szczotok and R. Dwornicka, The analysis of friction properties after laser texturizing of the silicon carbide surface layer, MATEC Web of Conf. 183 (2018) -. https://doi.org/10.1051/matecconf/201818302010
[48] N. Radek, J. Pietraszek, A. Szczotok, P. Fabian and A. Kalinowski, Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[49] N. Radek, A. Kalinowski, J. Orman, M. Szczepaniak, J. Świderski, D. Gontarski, J. Bronček and J. Pietraszek, Operational properties of DLC coatings and their potential application, 31st Int. Conf. Metall. Mater., METAL 2022 (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[50] R. Dwornicka, J. Pietraszek, The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09
[51] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[52] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[53] J. Pietraszek, A. Szczotok and E. Kocyłowska, Factorial approach to assessment of GPU computational efficiency in surrogate models, Adv. Mater. Res. 874 (2014) 157-162. https://doi.org/10.4028/www.scientific.net/AMR.874.157
[54] J. Pietraszek, M. Seńcio, J. Diakun, A. Gądek-Moszczak and M. Stojek, The parametric RSM model with higher order terms for the meat tumbler machine process, Solid State Phenom. 235 (2015) 37-44. https://doi.org/10.4028/www.scientific.net/SSP.235.37
[55] E. Augustyn, M.S. Kozień and M. Prącik, FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes, Archives of Acoustics 39 (2014) 639-644. https://doi.org/10.2478/aoa-2014-0069
[56] A. Bąkowski, M. Kekez, L. Radziszewski and A. Sapietova, Vibroacoustic real time fuel classification in diesel engine, Arch. Acoust. 43 (2018) 385-395. https://doi.org/10.24425/123910
[57] N. Radek, J. Pietraszek, J. Bronček and P. Fabian, Properties of Steel Welded with CO2 Laser, Lecture Notes in Mechanical Engineering (2020) 571-580. https://doi.org/10.1007/978-3-030-33146-7_65
[58] J. Pietraszek, Fuzzy regression compared to classical experimental design in the case of flywheel assembly, Lecture Notes in Computer Science 7267 LNAI (2012) 310-317. https://doi.org/10.1007/978-3-642-29347-4_36
[59] J. Pietraszek, The modified sequential-binary approach for fuzzy operations on correlated assessments, Lecture Notes in Computer Science 7894 LNAI (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[60] R. Ulewicz, D. Kleszcz and M. Ulewicz, Implementation of Lean Instruments in Ceramics Industries, Manag. Sys. Prod. Eng. 29 (2021) 203-207. https://doi.org/10.2478/mspe-2021-0025
[61] R. Ulewicz, M. Ulewicz, Problems in the Implementation of the Lean Concept in the Construction Industries, Lecture Notes in Civil Engineering 47 (2020) 495-500. https://doi.org/10.1007/978-3-030-27011-7_63