Relationships Between Size Proportions, Distances Between the Large Impurities, Hardness and Strength Parameters of High-Quality Steel

Relationships Between Size Proportions, Distances Between the Large Impurities, Hardness and Strength Parameters of High-Quality Steel

LIPIŃSKI Tomasz, PIETRASZEK Jacek, MAZUR Piotr

Abstract. High purity steels are used for responsible structural elements operating under cyclic loads. An important issue is the appropriate selection of steel to ensure the expected durability of the construction material. Ensuring durability requires testing. One of the methods to find out the durability of a material is indirect testing. With their help, it is possible to draw conclusions about the fatigue life of the material based on simple tests, including hardness tests, which require the estimation of the proportionality coefficient allowing comparison of durability with hardness. To correctly estimate durability based on hardness, it is necessary to know the impact of real conditions on the microstructure and properties of steel. This necessitates the determination of equations enabling the connection of the actual microstructure of the steel (main phase, morphology of impurities) with the parameters characterizing the fatigue strength. High reliability of the obtained results requires tests to be carried out in natural conditions, which cannot be ensured by laboratory conditions. The objectives set out above were achieved in the research planned and presented in this manuscript.

Keywords
Steel, Arc Furnace, Non-Metallic Inclusions, Impurities Distances, Fatigue Strength, Bending Fatigue Strength

Published online 10/20/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: LIPIŃSKI Tomasz, PIETRASZEK Jacek, MAZUR Piotr, Relationships Between Size Proportions, Distances Between the Large Impurities, Hardness and Strength Parameters of High-Quality Steel, Materials Research Proceedings, Vol. 45, pp 75-82, 2024

DOI: https://doi.org/10.21741/9781644903315-10

The article was published as article 10 of the book Terotechnology XIII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] L.A. Dobrzański, Materiały inżynierskie z podstawami z podstawami technologii procesów materiałowych. WNT Warszawa 2014.
[2] S. Suresh, Fatigue of Materials; Cambridge University Press: Cambridge, UK, 1998.
[3] K.S. Chan, Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 32 (2010) 1428-1447. https://doi.org/10.1016/j.ijfatigue.2009.10.005
[4] T. Lipiński, Quality of Low-Carbon Steel as a Distribution of Pollution and Fatigue Strength Heated in Oxygen Converter, Coatings 13 (2023) art. 1275. https://doi.org/10.3390/coatings13071275
[5] P. Kováčiková, A. Dubec and J. Kuricová, The microstructural study of a damaged motorcycle gear wheel, Manuf. Technol. 21 (2021) 83-90. https://doi.org/10.21062/mft.2021.011
[6] T. Lipiński, Influence of Impurity Morphology on the Fatigue Strength of High-Purity Structural Steel Melted in an Electric Furnace. Manuf. Technol. 23 (2023) 53-59. https://doi.org/10.21062/mft.2023.001
[7] R. Ulewicz, P. Szataniak, F.Novy, L. Trsko and O. Bokuvka, Fatigue characteristics of structural steels in the gigacycle region of loading. Mater. Today Proc. 4 (2017) 5979-5984. https://doi.org/10.1016/j.matpr.2017.06.081
[8] G. Zhang, Q. Zhang, J. Yang, Z. Xie, L. Zhang, R. Liu, G. Li, H. Wang, Q. Fang and X. Wang, Microstructures and tensile properties of 9Cr-f/m steel at elevated temperatures, Materials 15 (2022) art. 1248. https://doi.org/10.3390/ma15031248
[9] T. Lipiński, Effect of Impurities Spacing on Fatigue Strength Coefficient, Coatings 13 (2023) art. 242. https://doi.org/10.3390/coatings13020242
[10] G.L. Halford, Low Cycle Thermal Fatigue; NASA: Washington, DC, USA,1986.
[11] T. Lipinski, J. Pietraszek and A. Wach, Influence of oxygen content in medium carbon steel on bending fatigue strength, Engineering for Rural Development 21 (2022) 351-356. https://doi.org/10.22616/ERDev.2022.21.TF116
[10] X. He, M. Wang, Ch. Hu and L. Xu, Study of the relationship among total oxygen, inclusions and fatigue properties of gear steel, Materials Sciences & Engineering A 827 (2021) art. 14199. https://doi.org/10.1016/j.msea.2021.141999
[13] T. Lipiński, Influence of the Scatter Index of Non-Metallic Inclusions in Structural Steel on the Fatigue Resistance Coefficient, Materials 16 (2023) art. 2758. https://doi.org/10.3390/ma16072758
[14] T. Lipiński, The Role of the Distance between Fine Non-Metallic Oxide Inclusions on the Fatigue Strength of Low-Carbon Steel, Applied Sciences 13 (20230 art. 8354. https://doi.org/10.3390/app13148354
[15] M. Yang, C. Gao, J. Pang, S. Li, D. Hu, X. Li and Z. Zhang, High-Cycle Fatigue Behavior and Fatigue Strength Prediction of Differently Heat-Treated 35CrMo Steels, Metals 12 (2022) art. 688. https://doi.org/10.3390/met12040688
[16] PN-74/H-04327; Metals testing for fatigue. Axial tensile-compression test at a constant cycle of external loads. 1974.
[17] A. Wronska, J. Andres, T. Altamer, A. Dudek and R. Ulewicz, Effect of tool pin length on microstructure and mechanical strength of the FSW joints of Al 7075 metal sheets, Communications – Scientific Letters of the University of Žilina 21 (2019) 40-47.
[18] M. Krynke, R. Ulewicz, Analysis of the influence of slewing bearing mounting on their static load capacity, Transportation Research Procedia 40 (2019) 745-750. https://doi.org/10.1016/j.trpro.2019.07.105
[19] P. Wos, R. Dindorf and J. Takosoglu, Bricklaying robot lifting and levelling system, Communications – Scientific Letters of the University of Žilina 23 (2021) B257-B264. https://doi.org/10.26552/COM.C.2021.4.B257-B264
[20] A. Szczotok, J. Nawrocki and J. Pietraszek, The Impact of the Thickness of the Ceramic Shell Mould on the (γ + γ′) Eutectic in the IN713C Superalloy Airfoil Blade Casting, Arch. Metall. Mater. 62 (2017) 587-593. https://doi.org/10.1515/amm-2017-0087
[21] D. Siwiec, R. Dwornicka and A. Pacana, Improving the process of achieving required microstructure and mechanical properties of 38MNVS6 steel, METAL 2020 – 29th Int. Conf. Metall. Mater. (2020) 591-596. https://doi.org/10.37904/metal.2020.3525
[22] P. Jonšta, Z. Jonšta, S. Brožová, M. Ingaldi, J. Pietraszek and D. Klimecka-Tatar, The effect of rare earth metals alloying on the internal quality of industrially produced heavy steel forgings, Materials 14 (2021) art. 5160. https://doi.org/10.3390/ma14185160
[23] N. Radek, J. Pietraszek and A. Szczotok, Technology and application of electro-spark deposited coatings, METAL 2017 – 26th Int. Conf. Metall. Mater. (2017) 1432-1437.
[24] N. Radek, A. Szczotok, A. Gądek-Moszczak, R. Dwornicka, J. Bronček and J. Pietraszek, The impact of laser processing parameters on the properties of electro-spark deposited coatings, Arch. Metall. Mater. 63 (2018) 809-816. https://doi.org/10.24425/122407
[25] N. Radek, J. Pietraszek, A. Szczotok, P. Fabian and A. Kalinowski, Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[26] N. Radek, A. Kalinowski, J. Orman, M. Szczepaniak, J. Świderski, D. Gontarski, J. Bronček and J. Pietraszek, Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater. (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[27] N. Radek, A. Kalinowski, J. Pietraszek, J. Orman, M. Szczepaniak, A. Januszko, J. Kamiński, J. Bronček and O. Paraska, Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122. https://doi.org/10.30657/pea.2022.28.13
[28] N. Radek, J. Pietraszek, J. Bronček, D. Gontarski, A. Szczotok, O. Paraska and K. Mulczyk, Laser Processing of WC-Co Coatings, Mater. Res. Proc. 24 (2022) 34-38. https://doi.org/10.21741/9781644902059-6
[29] N. Radek, H. Danielewski, J. Pietraszek, Ł. Orman, D. Gontarski, M. Radek and O. Paraska, Operational Properties of Heterogeneous Surfaces, Mater. Res. Proc. 34 (2023) 161-168. https://doi.org/10.21741/9781644902691-20
[30] M.S. Kozień, J. Wiciak, Passive structural acoustic control of the smart plate – FEM simulation, Acta Physica Polonica A 118 (2010) 1186-1188. https://doi.org/10.12693/APhysPolA.118.1186
[31] A. Bąkowski, M. Kekez, L. Radziszewski and A. Sapietova, Vibroacoustic real time fuel classification in diesel engine, Archives of Acoustics 43 (2018) 385-395. https://doi.org/10.24425/123910
[32] Ł. Łacny, M. Kozień and D. Ziemiański, Selected overview of the impact of ground motion on the vibrations of particle accelerators, AIP Conf. Proc. 2239 (2020) art. 20025. https://doi.org/10.1063/5.0008950
[33] R. Ulewicz, Quality management system operation in the woodworking industry, The Path Forward for Wood Products: A Global Perspective – Proc. Sci. Papers (2016) 51-56.
[34] D. Siwiec, R. Dwornicka and A. Pacana, Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Mater. Res. Proc. 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
[35] K. Czerwinska, R. Dwornicka and A. Pacana, Improving quality control of siluminial castings used in the automotive industry, METAL 2020 – 29th Int. Conf. Metall. Mater. (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661
[36] I. Dominik, J. Kwasniewski, L. Krzysztof and R. Dwornicka, Preliminary signal filtering in Self-Excited Acoustical System for stress change measurement, CCC – Chinese Control Conference (2013) art. 6640759.
[37] K. Knop, E. Olejarz and R. Ulewicz, Evaluating and Improving the Effectiveness of Visual Inspection of Products from the Automotive Industry, Lecture Notes in Mechanical Engineering (2019) 231-243. https://doi.org/10.1007/978-3-030-17269-5_17
[38] A. Gądek-Moszczak, N. Radek, I. Pliszka, J. Augustyn-Nadzieja and Ł.J. Orman, Nano X-ray Tomography Application for Quantitative Surface Layer Geometry Analysis after Laser Beam Modification, Materials 15 (2022) art. 5935. https://doi.org/10.3390/ma15175935
[39] E. Lisowski, G. Filo, Automated heavy load lifting and moving system using pneumatic cushions, Autom. Constr. 50 (2015) 91-101. https://doi.org/10.1016/j.autcon.2014.12.004
[40] J. Takosoglu, Angular position control system of pneumatic artificial muscles, Open Eng. 10 (2020) 681-687. https://doi.org/10.1515/eng-2020-0077
[41] G. Barucca, et al., The potential of Λ and Ξ- studies with PANDA at FAIR, Europ. Phys. J. A. 57 (2021) art. 154. https://doi.org/10.1140/epja/s10050-021-00386-y
[42] B. Jasiewicz, J. Pietraszek, S. Duda, S. Pietrzak, B. Pruszczyński, T. Parol, T. Potaczek and A. Gądek-Moszczak, Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment, Foot and Ankle Surgery 27 (2021) 371-376. https://doi.org/10.1016/j.fas.2020.04.015
[43] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[44] A. Szczotok, J. Nawrocki, A. Gądek-Moszczak and M. Kołomycki, The bootstrap analysis of one-way ANOVA stability in the case of the ceramic shell mould of airfoil blade casting, Solid State Phenom. 235 (2015) 24-30. https://doi.org/10.4028/www.scientific.net/SSP.235.24
[45] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33