–
Laser Beam Assisted Machining of Metal Matrix Composites Reinforced by SiC Particles
PRZESTACKI Damian, NAPLOCHA Krzysztof, RADEK Norbert, DMITRIUK Anna, ZHANG Ping, NARAYANASAMY Pandiarajan
Abstract. The main objective of the present work was to analysis an effect of laser assisted machining (LAM) when turning the AlSi9Mg alloy reinforced with 20 vol.% particles of SiC. Metal Matrix Composites (MMC) have been found in different industrial applications due to their excellent properties compared to conventional materials. MMCs due to hard ceramic reinforcing components are difficult to machine using conventional manufacturing processes. The applied laser assisted turning process was used to heat the cutting zone, the aluminum matrix becomes softer and easer in plastic deformation, which leads to reduction of pushing force of the SiC particles on the clearance face of the cutting tool, with is the reason of cutting tool wear.
Keywords
Laser Cleaning, Laser Beam Processing, Properties
Published online 10/20/2024, 7 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: PRZESTACKI Damian, NAPLOCHA Krzysztof, RADEK Norbert, DMITRIUK Anna, ZHANG Ping, NARAYANASAMY Pandiarajan, Laser Beam Assisted Machining of Metal Matrix Composites Reinforced by SiC Particles, Materials Research Proceedings, Vol. 45, pp 1-7, 2024
DOI: https://doi.org/10.21741/9781644903315-1
The article was published as article 1 of the book Terotechnology XIII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] A. Manna, B. Bhattacharayya, A study on machinability of Al/SiC – MMC, Journal of Material Processing Technology 140 (2003) 711-716. https://doi.org/10.1016/S0924-0136(03)00905-1
[2] A. Klimpel, S. Stano, Spawanie laserem diodowym cienkich blach ze stopu aluminium z zastosowaniem substancji zwiększających głębokość przetopienia, Przegląd Spawalnictwa LXXIV (8 10) (2002) 165-168.
[3] N.P. Hung, L.J. Yang and K.W. Leong, Electro discharge machining of cast metal matrix composites, Journal of Materials Processing Technology 44 (1994) 229-236. https://doi.org/10.1016/0924-0136(94)90435-9
[4] Y. Wang, L.J. Yang and N.J. Wang, An investigation of laser-assisted machining of Al2O3 particle reinforced aluminium matrix composite, Journal of Materials Processing Technology 129 (2002) 268 272. https://doi.org/10.1016/S0924-0136(02)00616-7
[5] P. Twardowski, J. Czyżycki, A. Felusiak-Czyryca, M. Tabaszewski and M. Wiciak-Pikuła, Monitoring and forecasting of tool wear based on measurements of vibration accelerations during cast iron milling, Journal of Manufacturing Processes 95 (2023) 342-350. https://doi.org/10.1016/j.jmapro.2023.04.036
[6] M. Tabaszewski, P. Twardowski, M. Wiciak-Pikuła, A. Felusiak-Czyryca and J. Czyżycki, Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning, Materials 15 (2022) art. 4359. https://doi.org/10.3390/ma15124359
[7] A. Felusiak-Czyryca, M. Madajewski, P. Twardowski and M. Wiciak-Pikuła, Cutting forces during INCONEL 718 orthogonal turn-milling, Materials 14 (2021) art.6152. https://doi.org/10.3390/ma14206152
[9] A. Bejger, L. Chybowski and K. Gawdzińska, Utilising elastic waves of acoustic emission to assess the condition of spray nozzles in a marine diesel engine, J. Marine Eng. Technol. 17 (2018) 153-159. https://doi.org/10.1080/20464177.2018.1492361
[10] R. Sika, M. Rogalewicz, P. Popielarski, D. Czarnecka-Komorowska, D. Przestacki, K. Gawdzińska and P. Szymański, Decision Support System in the Field of Defects Assessment in the Metal Matrix Composites Castings, Materials 13 (2020) art.3552. https://doi.org/10.3390/MA13163552
[11] H. Danielewski, N. Radek, Ł. Orman, J. Pietraszek and J. Bronček, Laser Metal Deposition of INCONEL 625 Alloy – Comparison of Powder and Filler Wire Methods, Mater. Res. Proc. 34 (2023) 154-160. https://doi.org/10.21741/9781644902691-19
[12] N. Radek, H. Danielewski, J. Pietraszek, Ł. Orman, D. Gontarski, M. Radek and O. Paraska, Operational Properties of Heterogeneous Surfaces, Mater. Res. Proc. 34 (2023) 161-168. https://doi.org/10.21741/9781644902691-20
[13] N. Radek, J. Pietraszek, M. Radek and O. Paraska, The influence of plasma cutting parameters on the geometric structure of cut surfaces, Mater. Res. Proc. 17 (2020) 132-137. https://doi.org/10.21741/9781644901038-20
[14] A. Gądek-Moszczak, N. Radek, I. Pliszka, J. Augustyn-Nadzieja and Ł.J. Orman, Nano X-ray Tomography Application for Quantitative Surface Layer Geometry Analysis after Laser Beam Modification, Materials 15 (2022) art. 5935. https://doi.org/10.3390/ma15175935
[15] Ł.J. Orman, N. Radek, J. Pietraszek, J. Wojtkowiak and M. Szczepaniak, Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement, Materials 16 (2023) art. 1365. https://doi.org/10.3390/ma16041365
[16] Ł.J. Orman, N. Radek, J. Pietraszek, S. Honus and J. Dziedzic, Laser Treatment Technique for Boiling Heat Transfer Application, Mater. Res. Proc. 34 (2023) 178-185. https://doi.org/10.21741/9781644902691-22
[17] Ł.J. Orman, N. Radek, S. Honus and J. Pietraszek, Application of laser treatment technology for boiling heat transfer augmentation, Prod. Eng. Arch. 30 (2024) 259-265. https://doi.org/10.30657/pea.2024.30.25
[18] A. Dudek, B. Lisiecka, N. Radek, Ł.J. Orman and J. Pietraszek, Laser Surface Alloying of Sintered Stainless Steel, Materials 15 (2022) art. 6061. https://doi.org/10.3390/ma15176061
[19] A. Kalinowski, N. Radek, Ł. Orman, J. Pietraszek, M. Szczepaniak and J. Bronček, Laser surface texturing: characteristics and applications, System Safety: Human – Technical Facility – Environment 5 (2023) 240-248. https://doi.org/10.2478/czoto-2023-0026
[20] N. Radek, E. Wajs and M. Luchka, The WC-Co electrospark alloying coatings modified by laser treatment, Powder Metallurgy and Metal Ceramics 47 (2008) 197-201. https://doi.org/10.1007/s11106-008-9005-7
[21] N. Radek, B. Antoszewski, The influence of laser treatment on the properties of electro-spark deposited coatings, Kovove Materialy 47 (2009) 31-38.
[22] N. Radek, J. Pietraszek, A. Szczotok, P. Fabian and A. Kalinowski, Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[23] N. Radek, Determining the operational properties of steel beaters after electrospark deposition, Eksploatacja i Niezawodnosc 44 (2009) 10-16.
[24] N. Radek, A. Kalinowski, J. Pietraszek, J. Orman, M. Szczepaniak, A. Januszko, J. Kamiński, J. Bronček and O. Paraska, Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122. https://doi.org/10.30657/pea.2022.28.13
[25] N. Radek, J. Pietraszek, J. Bronček, D. Gontarski, A. Szczotok, O. Paraska and K. Mulczyk, Laser Processing of WC-Co Coatings, Mater. Res. Proc. 24 (2022) 34-38. https://doi.org/10.21741/9781644902059-6
[26] A. Szczotok, J. Pietraszek and N. Radek, Metallographic Study and Repeatability Analysis of γ’ Phase Precipitates in Cored, Thin-Walled Castings Made from IN713C Superalloy, Arch. Metall. Mater. 62 (2017) 595-601. https://doi.org/10.1515/amm-2017-0088
[27] A. Szczotok, N. Radek and R. Dwornicka, Effect of the induction hardening on microstructures of the selected steels, METAL 2018 – 27th Int. Conf. Metall. Mater. (2018) 1264-1269.
[28] J. Pietraszek, N. Radek and A.V. Goroshko, Challenges for the DOE methodology related to the introduction of Industry 4.0, Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[29] J. Pietraszek, A. Ga̧dek-Moszczak and N. Radek, The estimation of accuracy for the neural network approximation in the case of sintered metal properties, Studies in Computational Intelligence 513 (2014) 125-134. https://doi.org/10.1007/978-3-319-01787-7_12
[30] J. Pietraszek, A. Gądek-Moszczak and T. Toruński, Modeling of errors counting system for PCB soldered in the wave soldering technology, Adv. Mater. Res. 874 (2014) 139-143. https://doi.org/10.4028/www.scientific.net/AMR.874.139
[31] J. Pietraszek, A. Szczotok, M. Kołomycki, N. Radek and E. Kozień, Non-parametric assessment of the uncertainty in the analysis of the airfoil blade traces, METAL 2017 – 26th Int. Conf. Metall. Mater. (2017) 1412-1418.
[32] N. Radek, J. Pietraszek, J. Bronček and P. Fabian, Properties of Steel Welded with CO2 Laser, Lecture Notes in Mechanical Engineering (2020) 571-580. https://doi.org/10.1007/978-3-030-33146-7_65
[33] M. Patek, R. Konar, A. Sladek and N. Radek, Non-destructive testing of split sleeve welds by the ultrasonic TOFD method, Manuf. Technol. 14 (2014) 403-407. https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/3/403
[34] G. Majewski, Ł.J. Orman, M. Telejko, N. Radek, J. Pietraszek and A. Dudek, Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment, Energies 13 (2020) art. 1973. https://doi.org/10.3390/en13081973
[35] Ł.J. Orman, G. Majewski, N. Radek and J. Pietraszek, Analysis of Thermal Comfort in Intelligent and Traditional Buildings, Energies 15 (2022) art. 6522. https://doi.org/10.3390/en15186522