Synergistic effects in MXene: Transition metal chalcogenides to unlock supercapacitor potential
Harshini Sharan, Pavithra Karthikesan, Jayachandran Madhavan, Alagiri Mani
The foremost nations and scientific circles are focusing the spotlight mainly on energy because of the shifting global environment. The development and upgrade of energy storage systems featuring higher efficiency have drawn a great deal of concern. Therefore, significant advancements in energy storage might be made possible by a high-power density device called a supercapacitor (SCs). The use of 2D layered materials has sparked a lot of attention in the modern era since these materials have suitable electrochemical and physiochemical properties that make them ideal for high-performance energy storage devices. Amidst several 2D materials, MXenes have garnered significant interest due to their hydrophilic nature, metallic conductivity, rich active sites, and high surface area. In virtue of these upsides, compositing MXene with electrochemically favourable Ternary Metal Chalcogenides (TMCs) electrode material will significantly improve the composite performance by reducing the agglomeration of nanoparticles and inhibit restacking of MXene sheets through synergistic effects. This chapter mainly focuses on the MXene-TMCs composites for supercapacitor application and discusses the process involving them.
Keywords
MXene, Ternary Metal Chalcogenides, Nanocomposites, Supercapacitors, 2D Materials
Published online 10/20/2024, 23 pages
Citation: Harshini Sharan, Pavithra Karthikesan, Jayachandran Madhavan, Alagiri Mani, Synergistic effects in MXene: Transition metal chalcogenides to unlock supercapacitor potential, Materials Research Foundations, Vol. 170, pp 145-167, 2024
DOI: https://doi.org/10.21741/9781644903292-7
Part of the book on Emerging Materials for Next Frontier Energy and Environment Applications
References
[1] S.E.E.Küçükkambak, Environmental Solutions and Alternative Policies to Energy Crises on the Basis of Renewable Energy Production and the Global RenewableEnergyMarket,. https://doi.org/10.4018/979-8-3693-0440-2.CH003.
[2] H.S. Magar, A.M. Mansour, A.B.A. Hammad, Advancing energy storage and supercapacitor applications through the development of Li+-doped MgTiO3 perovskite nano-ceramics, Sci Reports 2024 141 14 (2024) 1–18. https://doi.org/10.1038/s41598-024-52262-6.
[3] K.V.G. Raghavendra, R. Vinoth, K. Zeb, C.V.V. Muralee Gopi, S. Sambasivam, M.R. Kummara, I.M. Obaidat, H.J. Kim, An intuitive review of supercapacitors with recent progress and novel device applications, J Energy Storage 31 (2020) 101652. https://doi.org/10.1016/J.EST.2020.101652.
[4] Z.A. Sheikh, P.K. Katkar, H. Kim, S. Rehman, K. Khan, V.D. Chavan, R. Jose, M.F. Khan, D. kee Kim, Transition metal chalcogenides, MXene, and their hybrids: An emerging electrochemical capacitor electrodes, J Energy Storage 71 (2023) 107997. https://doi.org/10.1016/J.EST.2023.107997.
[5] T.E. Balaji, H. Tanaya Das, T. Maiyalagan, Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications, ChemElectroChem8(2021)1723–1746. https://doi.org/10.1002/CELC.202100098.
[6] S.G. Krishnan, A. Arunachalam, P. Jagadish, M. Khalid, 2D Materials for Supercapacitor and Supercapattery Applications, ACS Symp Ser 1353 (2020) 33–47. https://doi.org/10.1021/BK-2020-1353.CH002.
[7] Z.S. Iro, C. Subramani, S.S. Dash, A Brief Review on Electrode Materials for Supercapacitor, Int J Electrochem Sci 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
[8] J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: Theory and solutions, J Power Sources 401 (2018) 213–223. https://doi.org/10.1016/J.JPOWSOUR.2018.08.090.
[9] X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, Natl Sci Rev 4 (2017) 453–489. https://doi.org/10.1093/NSR/NWX009.
[10] J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, J. Thomas, Recent trends in transition metal dichalcogenide based supercapacitor electrodes, Nanoscale Horizons 4 (2019) 840–858. https://doi.org/10.1039/C9NH00152B.
[11] D. Monga, S. Sharma, N.P. Shetti, S. Basu, K.R. Reddy, T.M. Aminabhavi, Advances in transition metal dichalcogenide-based two-dimensional nanomaterials, Mater Today Chem 19 (2021) 100399. https://doi.org/10.1016/J.MTCHEM.2020.100399.
[12] Y. Liu, Y. Li, H. Kang, T. Jin, L. Jiao, Design, synthesis, and energy-related applications of metal sulfides, Mater Horizons 3 (2016) 402–421. https://doi.org/10.1039/C6MH00075D.
[13] P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, M. V. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices, J Mater Chem A 5 (2017) 22040–22094. https://doi.org/10.1039/C7TA07329A.
[14] S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chem Soc Rev 48 (2019) 4178–4280. https://doi.org/10.1039/C8CS00664D.
[15] A. Das, B. Raj, M. Mohapatra, S.M. Andersen, S. Basu, Performance and future directions of transition metal sulfide-based electrode materials towards supercapacitor/supercapattery, Wiley Interdiscip Rev Energy Environ 11 (2022). https://doi.org/10.1002/WENE.414.
[16] S. Wei, R. Zhou, G. Wang, Enhanced Electrochemical Performance of Self-Assembled Nanoflowers of MoS2 Nanosheets as Supercapacitor Electrode Materials,ACS Omega 4 (2019). https://doi.org/10.1021/ACSOMEGA.9B01058.
[17] C. Nagaraju, C.V.V.M. Gopi, J.W. Ahn, H.J. Kim, Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications, New J Chem 42 (2018) 12357–12360. https://doi.org/10.1039/C8NJ02822B.
[18] T.N.V. Krishna, P. Himasree, K.V.G. Raghavendra, S.S. Rao, N.B. Kundakarla, D. Punnoose, H.J. Kim, Hydrothermal synthesis of layered CoS@WS2 nanocomposite as a potential electrode for high-performance supercapacitor applications, J Mater Sci Mater Electron 31 (2020) 16290–16298. https://doi.org/10.1007/S10854-020-04177-X.
[19] S. Wang, P. Zhang, C. Liu, Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors, Colloids Surfaces A Physicochem Eng Asp 616 (2021) 126334. https://doi.org/10.1016/J.COLSURFA.2021.126334.
[20] X. Liu, D. Zhang, Y. Ma, G. Li, X. Yuan, Y. Huang, G. Liu, M. Guo, W. Zheng, M2+-Doped Nickel Selenide Nanoflowers (M = Co, Cu, and Zn) for Supercapacitors, ACS Appl Nano Mater (2024). https://doi.org/10.1021/ACSANM.4C00313/SUPPL_FILE/AN4C00313_SI_001.PDF.
[21] M. Sajjad, M. Amin, M.S. Javed, M. Imran, W. Hu, Z. Mao, W. Lu, Recent trends in transition metal diselenides (XSe2: X = Ni, Mn, Co) and their composites for high energy faradic supercapacitors, J Energy Storage 43 (2021) 103176. https://doi.org/10.1016/J.EST.2021.103176.
[22] S. Liu, S. Sarwar, J. Wang, H. Zhang, T. Li, J. Luo, X. Zhang, The microwave synthesis of porous CoSe2 nanosheets for super cycling performance supercapacitors, J Mater Chem C 9 (2021) 228–237. https://doi.org/10.1039/D0TC04718J.
[23] J. Yang, Z. Sun, J. Wang, J. Zhang, Y. Qin, J. You, L. Xu, Hierarchical NiSe2 spheres composed of tiny nanoparticles for high performance asymmetric supercapacitors, CrystEngComm 21 (2019) 994–1000. https://doi.org/10.1039/C8CE01805G.
[24] Y. Liu, W. Li, X. Chang, H. Chen, X. Zheng, J. Bai, Z. Ren, MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability, J Colloid Interface Sci 562 (2020) 483–492. https://doi.org/10.1016/J.JCIS.2019.11.089.
[25] P.A. Shinde, N.R. Chodankar, M.A. Abdelkareem, S.J. Patil, Y.K. Han, K. Elsaid, A.G. Olabi, All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor, Small 18 (2022). https://doi.org/10.1002/SMLL.202200248.
[26] C.V.V. Muralee Gopi, A.E. Reddy, H.J. Kim, Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods, J Mater Chem A 6 (2018) 7439–7448. https://doi.org/10.1039/C8TA01141A.
[27] K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu, Y. Hou, Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides, Nano Energy 77 (2020) 105162. https://doi.org/10.1016/J.NANOEN.2020.105162.
[28] T. Zhang, J. Li, R. Bi, J. Song, L. Du, T. Li, H. Zhang, Q. Guo, J. Luo, One-step microwave synthesis of in situ grown NiTe nanosheets for solid-state asymmetric supercapacitors and oxygen evolution reaction, J Alloys Compd 909 (2022) 164786. https://doi.org/10.1016/J.JALLCOM.2022.164786.
[29] B. Ye, M. Huang, L. Fan, J. Lin, J. Wu, Co ions doped NiTe electrode material for asymmetric supercapacitor application, J Alloys Compd 776 (2019) 993–1001. https://doi.org/10.1016/J.JALLCOM.2018.10.358.
[30] M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, NiTe Nanorods as Electrode Material for High Performance Supercapacitor Applications, ChemistrySelect 3 (2018) 9034–9040. https://doi.org/10.1002/SLCT.201801421.
[31] B. Ye, M. Huang, Q. Bao, S. Jiang, J. Ge, H. Zhao, L. Fan, J. Lin, J. Wu, Construction of NiTe/NiSe Composites on Ni Foam for High-Performance Asymmetric Supercapacitor, ChemElectroChem 5 (2018) 507–514. https://doi.org/10.1002/CELC.201701033.
[32] M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor, RSC Adv 10 (2020) 13632–13641. https://doi.org/10.1039/C9RA08692G.
[33] M. Manikandan, K. Subramani, S. Dhanuskodi, M. Sathish, One-Pot Hydrothermal Synthesis of Nickel Cobalt Telluride Nanorods for Hybrid Energy Storage Systems, Energy and Fuels 35 (2021) 12527–12537. https://doi.org/10.1021/ACS.ENERGYFUELS.1C00351.
[34] P. Bhol, P.B. Jagdale, A.H. Jadhav, M. Saxena, A.K. Samal, All-Solid-State Supercapacitors Based on Cobalt Magnesium Telluride Microtubes Decorated with Tellurium Nanotubes, ChemSusChem 17 (2024) e202301009. https://doi.org/10.1002/CSSC.202301009.
[35] M. Molaei, G.R. Rostami, A.M. Zardkhoshoui, S.S.H. Davarani, In situ tellurization strategy for crafting nickel ditelluride/cobalt ditelluride hierarchical nanostructures: A leap forward in hybrid supercapacitor electrode materials, J Colloid Interface Sci 653 (2024) 1683–1693. https://doi.org/10.1016/J.JCIS.2023.10.012.
[36] L. Zhu, P. Xu, B. Chang, J. Ning, T. Yan, Z. Yang, H. Lu, Hierarchical Structure by Self-sedimentation of Liquid Metal for Flexible Sensor Integrating Pressure Detection and Triboelectric Nanogenerator, Adv Funct Mater (2024) 2400363. https://doi.org/10.1002/ADFM.202400363.
[37] T. Yuan, Y. Li, S. Chen, X. Ren, P. Zhao, X. Zhao, H. Shan, Microstructural evolution and mechanisms affecting the mechanical properties of wire arc additively manufactured Al-Zn-Mg-Cu alloy reinforced with high-entropy alloy particles, J Alloys Compd 992 (2024) 174582. https://doi.org/10.1016/J.JALLCOM.2024.174582.
[38] S.E. Moosavifard, A. Mohammadi, M. Ebrahimnejad Darzi, A. Kariman, M.M. Abdi, G. Karimi, A facile strategy to synthesis graphene-wrapped nanoporous copper-cobalt-selenide hollow spheres as an efficient electrode for hybrid supercapacitors, Chem Eng J 415 (2021) 128662. https://doi.org/10.1016/J.CEJ.2021.128662.
[39] H. Jiang, Z. Wang, Q. Yang, M. Hanif, Z. Wang, L. Dong, M. Dong, A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors, Electrochim Acta 290 (2018) 695–703. https://doi.org/10.1016/J.ELECTACTA.2018.08.096.
[40] C. Eames, M.S. Islam, Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials, J Am Chem Soc 136 (2014) 16270–16276. https://doi.org/10.1021/JA508154E/SUPPL_FILE/JA508154E_SI_001.PDF.
[41] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance., Nature 516 (2014) 78–81. https://doi.org/10.1038/NATURE13970.
[42] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341 (2013) 1502–1505. https://doi.org/10.1126/SCIENCE.1241488.
[43] X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc’H, C. Coutanceau, V. Mauchamp, S. Célérier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water, J Mater Chem A 5 (2017) 22012–22023. https://doi.org/10.1039/C7TA01082F.
[44] P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. Gogotsi, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale 8 (2016) 11385–11391. https://doi.org/10.1039/C6NR02253G.
[45] Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Transition metal chalcogenide anodes for sodium storage, Mater Today 35 (2020) 131–167. https://doi.org/10.1016/J.MATTOD.2019.11.008.
[46] H. Guo, J. Zhang, F. Yang, M. Wang, T. Zhang, Y. Hao, W. Yang, Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode, J Alloys Compd 906 (2022) 163863. https://doi.org/10.1016/J.JALLCOM.2022.163863.
[47] Y. Luo, Y. Tian, Y. Tang, X. Yin, W. Que, 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors, J Power Sources 482 (2021) 228961. https://doi.org/10.1016/J.JPOWSOUR.2020.228961.
[48] M.S. Javed, X. Zhang, S. Ali, A. Mateen, M. Idrees, M. Sajjad, S. Batool, A. Ahmad, M. Imran, T. Najam, W. Han, Heterostructured bimetallic–sulfide@layered Ti3C2Tx–MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor, Nano Energy 101 (2022) 107624. https://doi.org/10.1016/J.NANOEN.2022.107624.
[49] J.Q. Qi, M.Y. Huang, C.Y. Ruan, D.D. Zhu, L. Zhu, F.X. Wei, Y.W. Sui, Q.K. Meng, Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors, Rare Met 41 (2022) 4116–4126. https://doi.org/10.1007/S12598-022-02167-Y/FIGURES/8.
[50] J.Q. Qi, C.C. Zhang, H. Liu, L. Zhu, Y.W. Sui, X.J. Feng, W.Q. Wei, H. Zhang, P. Cao, MXene-wrapped ZnCo2S4 core–shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors, Rare Met 41 (2022) 2633–2644. https://doi.org/10.1007/S12598-021-01956-1/TABLES/1.
[51] Y. Shen, H. Jiang, Z. Lu, G. Li, Z. Wang, J. Zhang, Facile decoration of two-dimensional Ti3C2T x nanoplates with CuS nanoparticles via a facile in situ synthesis strategy at room temperature for superhigh specific capacitance of supercapacitors, Nanotechnology 33 (2021). https://doi.org/10.1088/1361-6528/AC30F2.
[52] W. Zhang, J. Qi, T. Cao, Z. Lei, Y. Ma, H. Liu, L. Zhu, X. Feng, W. Wei, H. Zhang, A facile method synthesizing marshmallow ZnS grown on Ti3C2 MXene for high-performance asymmetric supercapacitors, J Energy Storage 50 (2022) 104652. https://doi.org/10.1016/J.EST.2022.104652.
[53] H. Liu, R. Hu, J. Qi, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, Y. Zhao, W. Wei, One-Step Synthesis of Nanostructured CoS2 Grown on Titanium Carbide MXene for High-Performance Asymmetrical Supercapacitors, Adv Mater Interfaces 7 (2020) 1901659. https://doi.org/10.1002/ADMI.201901659.
[54] J. Fu, L. Li, D. Lee, J.M. Yun, B.K. Ryu, K.H. Kim, Enhanced electrochemical performance of Ti3C2Tx MXene film based supercapacitors in H2SO4/KI redox additive electrolyte, Appl Surf Sci 504 (2020) 144250. https://doi.org/10.1016/J.APSUSC.2019.144250.
[55] H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-Coated MoSe 2 /MXene Hybrid Nanosheets for Superior Potassium Storage, ACS Nano 13 (2019) 3448–3456. https://doi.org/10.1021/ACSNANO.8B09548/SUPPL_FILE/NN8B09548_SI_001.PDF.
[56] T. Kshetri, D.T. Tran, H.T. Le, D.C. Nguyen, H. Van Hoa, N.H. Kim, J.H. Lee, Recent advances in MXene-based nanocomposites for electrochemical energy storage applications, Prog Mater Sci 117 (2021) 100733. https://doi.org/10.1016/J.PMATSCI.2020.100733.
[57] T. Chen, S. Li, J. Wen, P. Gui, G. Fang, Metal-Organic Framework Template Derived Porous CoSe2 Nanosheet Arrays for Energy Conversion and Storage, ACS Appl Mater Interfaces 9 (2017) 35927–35935. https://doi.org/10.1021/ACSAMI.7B12403/SUPPL_FILE/AM7B12403_SI_002.PDF.
[58] Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li, F. Besenbacher, M. Dong, The ambipolar transport behavior of WSe2 transistors and its analogue circuits, NPG Asia Mater 2018 108 10 (2018) 703–712. https://doi.org/10.1038/s41427-018-0062-1.
[59] Z. Wang, Q. Li, F. Besenbacher, M. Dong, Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics, Adv Mater 28 (2016) 10224–10229. https://doi.org/10.1002/ADMA.201602889.
[60] H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2Tx (MXene) Nanosheet-Wrapped NiSe2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting, Nano-Micro Lett 11 (2019) 1–14. https://doi.org/10.1007/S40820-019-0261-5/FIGURES/4.
[61] C. Arulkumar, R. Gandhi, S. Vadivel, Ultra-thin nanosheets of Ti3C2Tx MXene/MoSe2 nanocomposite electrode for asymmetric supercapacitor and electrocatalytic water splitting, Electrochim Acta 462 (2023) 142742. https://doi.org/10.1016/J.ELECTACTA.2023.142742.
[62] R. Samal, P. Mane, S. Ratha, B. Chakraborty, C.S. Rout, Rational Design of Dynamic Bimetallic NiCoSe2/2D Ti3C2T xMXene Hybrids for a High-Performance Flexible Supercapacitor and Hydrogen Evolution Reaction, Energy and Fuels 36 (2022) 15066–15079. https://doi.org/10.1021/ACS.ENERGYFUELS.2C02808/SUPPL_FILE/EF2C02808_SI_001.PDF.
[63] A.J. Khan, M. Sajjad, S. Khan, M. Khan, A. Mateen, S.S. Shah, N. Arshid, L. He, Z. Ma, L. Gao, G. Zhao, Telluride-Based Materials: A Promising Route for High Performance Supercapacitors, Chem Rec 24 (2024) e202300302. https://doi.org/10.1002/TCR.202300302.
[64] K.A. Sree Raj, N. Barman, S. Radhakrishnan, R. Thapa, C.S. Rout, Hierarchical architecture of the metallic VTe2/Ti3C2Tx MXene heterostructure for supercapacitor applications, J Mater Chem A 10 (2022) 23590–23602. https://doi.org/10.1039/D2TA05904E.
[65] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat Nanotechnol 2015 104 10 (2015) 313–318. https://doi.org/10.1038/nnano.2015.40.
[66] S. Liu, Y. Zeng, M. Zhang, S. Xie, Y. Tong, F. Cheng, X. Lu, Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors, J Mater Chem A 5 (2017) 21460–21466. https://doi.org/10.1039/C7TA07009H.
[67] S.B. Saseendran, A. Ashok, A.S. Asha, Flexible and binder-free supercapacitor electrode with high mass loading using transition metal doped MoS2 nanostructures, J Alloys Compd 968 (2023) 172131. https://doi.org/10.1016/J.JALLCOM.2023.172131.
[68] T.M. Masikhwa, F. Barzegar, J.K. Dangbegnon, A. Bello, M.J. Madito, D. Momodu, N. Manyala, Asymmetric supercapacitor based on VS2 nanosheets and activated carbon materials, RSC Adv 6 (2016) 38990–39000. https://doi.org/10.1039/C5RA27155J.
[69] G. Nabi, W. Ali, M. Tanveer, T. Iqbal, M. Rizwan, S. Hussain, Robust synergistic effect of TiS2/MoS2 hierarchal micro-flowers composite realizing enhanced electrochemical performance, J Energy Storage 58 (2023) 106316. https://doi.org/10.1016/J.EST.2022.106316.
[70] A. Panagiotopoulos, G. Nagaraju, S. Tagliaferri, C. Grotta, P.C. Sherrell, M. Sokolikova, G. Cheng, F. Iacoviello, K. Sharda, C. Mattevi, 3D printed inks of two-dimensional semimetallic MoS2/TiS2 nanosheets for conductive-additive-free symmetric supercapacitors, J Mater Chem A 11 (2023) 16190–16200. https://doi.org/10.1039/D3TA02508J.
[71] M. Habib, S. Ullah, F. Khan, M.I. Rafiq, A. Salem Balobaid, T. Alshahrani, Z. Muhammad, Supercapacitor electrodes based on single crystal layered ZrX2 (X = S, Se) using chemical vapor transport method, Mater Sci Eng B 298 (2023) 116904. https://doi.org/10.1016/J.MSEB.2023.116904.
[72] W. Li, X. Wei, H. Dong, Y. Ou, S. Xiao, Y. Yang, P. Xiao, Y. Zhang, Colloidal Synthesis of NbS2 Nanosheets: From Large-Area Ultrathin Nanosheets to Hierarchical Structures, Front Chem 8 (2020) 533530. https://doi.org/10.3389/FCHEM.2020.00189/BIBTEX.
[73] M. Zhang, Y. He, D. Yan, H. Xu, A. Wang, Z. Chen, S. Wang, H. Luo, K. Yan, Multifunctional 2H-TaS2 nanoflakes for efficient supercapacitors and electrocatalytic evolution of hydrogen and oxygen, Nanoscale 11 (2019) 22255–22260. https://doi.org/10.1039/C9NR07564J.
[74] X. Yang, J. Mao, H. Niu, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors, Chem Eng J 406 (2021) 126713. https://doi.org/10.1016/J.CEJ.2020.126713.
[75] Y. Abu Dakka, J. Balamurugan, R. Balaji, N.H. Kim, J.H. Lee, Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors, Chem Eng J 385 (2020) 123455. https://doi.org/10.1016/J.CEJ.2019.123455.
[76] S. De, S. Roy, G.C. Nayak, MoSn2Se4-decorated MXene/functionalized RGO nanohybrid for ultrastable supercapacitor and oxygen evolution catalyst, Mater Today Nano 22 (2023) 100337. https://doi.org/10.1016/J.MTNANO.2023.100337.
[77] A.M. Abuelftooh, M.G. Fayed, S.Y. Attia, Y.F. Barakat, N.S. Tantawy, S.G. Mohamed, A three-dimensional directly grown hierarchical graces-like Nickel Manganese Selenide for high-performance Li-ion battery and supercapacitor electrodes, Mater Today Chem 26 (2022) 101187. https://doi.org/10.1016/J.MTCHEM.2022.101187.
[78] S. Hussain, D. Vikraman, M.T. Mehran, M. Hussain, G. Nazir, S.A. Patil, H.S. Kim, J. Jung, Ultrasonically derived WSe2 nanostructure embedded MXene hybrid composites for supercapacitors and hydrogen evolution reactions, Renew Energy 185 (2022) 585–597. https://doi.org/10.1016/J.RENENE.2021.12.065.
[79] P. Bhol, S. Swain, A. Altaee, M. Saxena, A.K. Samal, Cobalt–iron decorated tellurium nanotubes for high energy density supercapacitor, Mater Today Chem 24 (2022) 100871. https://doi.org/10.1016/J.MTCHEM.2022.100871.
[80] M. Manikandan, K. Subramani, S. Dhanuskodi, M. Sathish, One-Pot Hydrothermal Synthesis of Nickel Cobalt Telluride Nanorods for Hybrid Energy Storage Systems, Energy and Fuels 35 (2021) 12527–12537. https://doi.org/10.1021/ACS.ENERGYFUELS.1C00351/SUPPL_FILE/EF1C00351_SI_001.PDF.
[81] S. Liu, S. Sarwar, J. Wang, H. Zhang, T. Li, J. Luo, X. Zhang, The microwave synthesis of porous CoSe2 nanosheets for super cycling performance supercapacitors, J Mater Chem C 9 (2021) 228–237. https://doi.org/10.1039/D0TC04718J.